NO MORE MERGE - Alternative Table Lookup Techniques

Written and Prepared by

—dEsimy=—

CORPORATION

ABSTRACT

This tutorial is designed to show you several techniques
available for pulling together multiple sets of data for the
purpose of combining or comparing their values.

INTRODUCTION

When you are first faced with the concept of pulling
together mutliple sets of data, the primary method taught
in SAS for many years is merge processing. While this is
a very flexible form of combining and comparing data, it
is not the only method. There are several other methods
you should consider because each of them has their
merits. We talk about five additional lookup
methodologies in this paper, some of which avoid the
need to sort your data. Hint: the first big benefit of reading
this paper. These are:

e Lookups Using Formats

e Lookups Using Indexes
ee | ookups Using Arrays

e Lookups Using SQL Joins
e Lookups Using Macros

We use the term “Table Lookup” instead of the word
“Merge” to avoid confusion. For the following examples,
most of our data has made it into the form of one or two
SAS data sets with a key variable. The key variable is
used to associate the two forms of data. A typical key
would be social security nhumber or employee ID. The
examples we use assume two sets of data, EMPLOYEEs
and MANAGERs associated together by a department
number. The assumption is that only one manager
oversees a department of multiple employees. The
incoming data is not sorted.

The MANAGER information is:

DEPT MANAGER TITLE

401 J JONES PRESIDENT

201 S SMITH VICE PRESIDENT
301 R OSWALD ADMINISTRATOR
101 B WILLIE MANAGER

The EMPLOYEE information is:
DEPT EMPLOYEE

401 JOHN DOE

201 SALLY MAY

301 FAT TUESDAY

401 PAULIE SURE

401 SALLY MUSTANG

401 JEFF WILEY

401 AGATHA HARLEY and so on

The final result in most of the following examples will
yield a data set similar to the following:

DEPT EMPLOYEE MANAGER TITLE

401 JOHN DOE JONES PRESIDENT

201 SALLY MAY SMITH VICE PRESIDENT
301 FAT TUESDAY OSWALD ADMINISTRATOR

401 PAULIE SURE JONES PRESIDENT

401 SALLY MUSTANG JONES PRESIDENT

401 JEFF WILEY JONES PRESIDENT

401 AGATHA HARLEY JONES PRESIDENT

201 JP JONES SMITH VICE PRESIDENT
301 LARRY SMITH OSWALD ADMINISTRATOR

301 STEVE PERRY OSWALD ADMINISTRATOR

301 AL FRANKLIN OSWALD ADMINISTRATOR

301 STEVE SMITH OSWALD ADMINISTRATOR

301 JOHN HOWES OSWALD ADMINISTRATOR

jow B o Bl « s v [v Y 7> N G N R R v B ¢ B o)

TRADITIONAL MERGE PROCESSING

Before we examine alternatives, let's look at a traditional
merge. The values to retrieve during a merge operation
can be stored in a SAS data set. A key is a unique value
found in the data set and is used to determine the
observation obtained by the merge. This form of MERGE
is called MATCH MERGING.

MERGE statements are written in the data step with a BY
statement. This combination of MERGE and BY
statements reads and combines observations from two or
more data sets based upon their key variable values.

MATCH MERGING uses a special data set option called
(IN=variable). This structures a variable in the program
data vector. It can be checked for its contribution to the
data step. If it has a value of 1, the observation was
contributed by that data set; if it has a value of O, the
observation was not.

Syntax

The syntax for data step merging is as follows:

DATA sasdataset;
MERGE sasdataseti (
sasdataset2(
BY keyvariable(s);
RUN;

IN=variablel)
IN=variable?);

This assumes the incoming data sets are coming into the
step organized by the key variable(s).

Guidelines

ee All BY variables must exists in every data set and
must be of the same type.

ee Exact merging requires variables to not only be the
same type, but the same length.

ee Data sets referenced on the MERGE statement must
be sorted according to the order of the variables in
the BY statement. Data sets indexed on these

variables is also acceptable.

ee Observations are matched when values in the BY

variables on an observation are the same.

oo Possible selection statements against two data sets

with IN= variables called A and B would be:

oo |FA

e |F B=1;

ee |[FAAND B,
ee |[FAORB;

ee IF NOT(A AND BY;

Example
PROGRAM EDITOR

proc sort data=saved.managers out=managers;
by dept;
run;
proc sort data=saved.employee out=employee;
by dept;
run;
data lookup;
merge employee(in=a)
managers (in=b) ;
by dept;
if a and b;
run;
proc print data=lookup;
run;

Benefits

Multiple observations and BY values can be used
and retrieved.

The data set’'s maximize size is limited to DASD or
disk space available.

It is simple to look up observations when more than
one variable is needed to match observations.
Simply list those variables in the BY statement.

Multiple data sets can be used, but each requires
ordering according to the BY group variables.

Considerations

The data sets inbound must be organized according
to their BY variables.

BY variables must match between

observations.

exactly

BY variables must be present in every inbound data
set.

Lookups Using Formats

The PROC FORMAT statement allows creation of user-
defined formats for data. When a table lookup is required,
pre-defined formats can be used to retrieve the

appropriate data needed. Formats are temporary or
permanent and are stored in a Formats catalog in a SAS

data

library.

Use the PROC FORMAT statement to define:

value formats

create labels for codes using either
numeric or character values.

Picture formats create templates for numeric values like

999-99-9999 for social security
numbers.

Informats control the reading and storing of data
in data entry applications.

Syntax

The syntax for value formats is as follows:

PROC FORMAT options;
VALUE numfmt
valuel = ‘formatted-value-1’

value? = ‘formatted-value-2’
valuen = ‘formatted-value-n’
OTHER = ‘formatted-value’;
VALUE numfmt

rangei = ‘formatted-value-1’

range2 = ‘formatted-value-2’
rangen = ‘formatted-value-n’
OTHER = ‘formatted-value’;
VALUE charfmt

‘valuet!’ = ‘formatted-value-1’

RUN;

‘value?’ = ‘formatted-value-2’
‘value3’ = ‘formatted-value-n’
OTHER = ‘formatted-value’;

Guidelines

Format names may be up to 8 characters long which
includes using the $ as part of the name.

Place character values in quotes for formatting.
Numeric values do not require quotes but allow for
ranges.

Missing values can be formatted as well.

The resulting label can be mixed case, but the value
to be formatted, when character, is case sensitive.

Character formats are designed for Ilabeling
character data.

Numeric formats are designed for labeling numbers
and ranges.

Canned SAS format names are reserved. User
defined format names must be different.

All character formats must begin with a $ as part of
the name.

User-defined formats cannot end in a number,
primarily because SAS looks at a number as the
width of the formatted value.

All formatted values result in quoted labels.

A value is used to specify a user defined format.

ee (Character values to format can be up to 200
characters long.

oo Values must be unique. Formatted values are sorted
in ascending order.

The PUT function is typically used to test on the returned,
formatted value of a variable. The syntax is:

PUT (argument,format.)

The following two data sets are using in all of the lookup
examples.

Example
PROGRAM EDITOR

data manname;
set saved.managers;
rename dept =start
manager=1label;
fmtname = '$manname'’ ;
run;
proc format cntlin=manname;
run;
data mantitle;
set saved.managers;
rename dept =start
title =label;
fmtname = '$mantitl’;
run;
proc format cntlin=mantitle;
run;
data lookup;
set saved.employee;
manager = put(dept,$manname.);
title put(dept,$mantitl.);
run;
proc print data=lookup;
run;

Benefits

oo After formats exist, they can be used in data steps or
in procs.

oo Values needing formatted labels can be in the form
of a list, discrete, or a range.

ee Since formatting values can change often, consider
storing the values in a data set, instead of hard
coding them. Use CNTLOUT= and CNTLIN= which
specify data set information.

ee Formatted look ups use a binary search, by default.

oo Data step processing that uses the PUT function with
a format is much more efficient in CPU utilization
than a MERGE statement.

Considerations

ee The entire format is loaded into memory, therefore
the size may be limited by this resource.

ee Only one value is retrieved when a format is
matched.

e Only one value may be used to look up data at a
time.

ee A variable can take on only one format a time.

Lookups Using Indexes

Indexes may also be used to retrieve data from tables.
Indexes are most often used when the table is too large to
hold in memory, only a few values need to be retrieved,
or a SET or MODIFY statement contains the KEY=
option.

You may use indexes when performing an SQL join,
using a BY statement variable list starting with a simple
or composite primary key, or using a WHERE statement
referencing a simple or composite primary key.

Syntax

The syntax for indexes usage is as follows:

SET sasdataset KEY=indexname;
SET sasdataset;

BY indexname or variablesinindex;
SET sasdataset;

WHERE indexname or variablesinindex

Guidelines
oo [ndexes are relatively inefficient on small data sets.

e (Create an index based on a variable with a large
number of distinct values.

ee |ndexes should be used to retrieve a small subset of
the data set.

oo Keep the number of indexes small so disk storage
and update costs are minimal.

e |ndexes must conform to the assumptions
concerning value distributions.

ee Sort your data set in order of the most frequently
used index.

ee Use the MODIFY statement when the master data
set is indexed based on the variables used for
matching transactions.

Example
PROGRAM EDITOR

data managers(index=(dept=(dept)));
set saved.managers;

run;

data lookup;
set saved.employee;
set managers key=dept;

run;

proc print data=lookup;

run;

Benefits

ee Only the observations needed are read from the
lookup data set.

oo Multiple values are retrieved as a result of the lookup
operation.

ee The appropriate master observation is directly
accessed.

oo No additional disk space is required because updates
are done in place with the MODIFY statement.

Considerations

ee |ncreased resources required to store and maintain
the index.

Lookups Using Arrays

Arrays can also be used for table lookups. Arrays are
often used when the data to be retrieved can be identified
positionally, e.g. the 1st item, 2nd item, etc..., or when
the table value to be retrieved is identified by one or more
numeric values.

The ARRAY(table) can be made up of values which are
either hard coded in the data step or are stored into a
data set or external file and then loaded into array
variables via a set or input statement.

Use the ARRAY statement in the data step to define a set
of variables to be processed in a similar manner.

Syntax

The syntax for ARRAY statement is as follows:

ARRAY arrayname{dimension} $ length elements
initialvalues

A temporary ARRAY is usually defined to list al potential
values to compare data with. The ARRAY option used is
temporary.

Guidelines

oo Variables are created if they do not already exist in
the program data vector.

ee An ARRAY must be defined before the ARRAY name
can be referenced.

oo The ARRAY is designed to be of one type of variable,
either all character elements or all numeric elements.

ee You cannot execute an ARRAY statement.

ee You cannot refer to ARRAY statements in other
compile time statements.

oo ARRAY statements do not become part of the output
data set. They exist only while the data step is
processing.

ee A SET statement can be used to load values into
ARRAY elements.

Example
PROGRAM EDITOR

data lookup(drop=1i);
array namearay{101:401,4} $ 10

temporary;

array titlaray{101:401,4} $ 15
temporary;

if _n_ =1 then do i = 1 to manobs;

set saved.managers nobs=manobs;
namearay{input(dept,3.) ,i}=manager;
titlaray{input(dept,3.),i}=title;

end;

set saved.employee;

do i = 1 to manobs;

manager=
namearay{input(dept,3.),i};
title =
titlaray{input(dept,3.),1i};
if manager ne ' ' then output;

end;

run;

proc print;

run;

Benefits

ee The exact position of values in the PDV can be used.

ee Many values can be used to determine the ARRAY
element number ‘s value to be retrieved.

ee (Calculations can be used to figure which element of
the ARRAY is needed.

e The inbound data set does not have to be organized
in any way.

Considerations
oo ARRAYSs are loaded into memory.

oo ARRAY elements are pointed to with numbers.
Character information cannot be used.

ee The lookup operation results in only one value being
retrieved.

Lookups Using SQL Joins

The PROC SQL statement does not require all data sets
to have common variables in order to join them. Multiple
tables may be joined to create a new data set. In many
cases, data retrieval problems can be eliminated by using
a join, subquery, or both.

Subqueries are used when more than one query is
needed to achieve the desired results. Each subquery
provides a subset of the table used in the query. While
joins and subqueries are used in queries, a join is usually
the most efficient process.

PROC SQL can also be used to create SQL views and
SAS data sets.

Syntax

The syntax used for SQL joins is as follows:

PROC SQL;
CREATE TABLE tablename as
SELECT sasvariables
FROM sasdatasetl,sasdataset?
WHERE sasdatasetivariable(s)=
sasdataset2variable(s);
QUIT;

Guidelines

ee Joins can be performed in many ways. An
understanding of the different forms of joins available
in SAS demonstrates the capability of an Inner Join,
Outer Join, Full Join, Left Join, and a Right Join.

e The default Join as in the syntax above is an Inner
Join.

ee SQL Joins are table lookups that require exact
matches across observations

ee SQL can also be used to summarize data during the
process

ee SQL can also be used to return data in a sorted order
during the process

ee SQL can also be used to return statistics and
subsetted data before or after the join process.

oo |ndexes, if available, are used appropriately.

Example
PROGRAM EDITOR
proc sql;
create table lookup as
select

a.dept,a.employee,b.manager,b.title
from saved.employee as a,
saved.managers as b
where a.dept=b.dept;

quit;

proc print data=lookup;

run;

Lookups Using Macros

Macros may also be used to call data from a table.
Values can be placed into macro variables using a CALL
SYMPUT function or a %LET statement. These macro
variable values containing table information can then be
called using a SYMGET function. The SYMGET function
relates program data vector key variables to macro
variables.

Syntax

The syntax used for Macro lookups is as follows:

DATA _NULL_;

set or Input section;

CALL SYMPUT (‘ characterprefix’!!

keyvariable,TRIM(valuevariable(s));

RUN;
DATA RESULT;

set or Input section;
newvariable=SYMGET (‘characterprefix’!!valuevariable
(5));
RUN;

Guidelines

oo Macro lookups require a key to assign and retrieve
information.

ee Macro variables load in memory.

ee Consider using this method when there are a few
different values across a large file and not many
unique values matching with many unique values.

Benefits

ee Data sets need not be ordered any way when being
read.

ee SAS data sets, views, or hardcopy reports can be
created.

e Many data sets can be pulled together without having
the same variables in common in all data sets.

Considerations
oo Only sixteen tables can be joined at one time.

ee SQL joins require more resources than using
MERGE statements.

Example
PROGRAM EDITOR
data _null_;
set saved.managers;
call
symput('dep'!!dept,manager!!title);
run;

data lookup;
set saved.employee;

manager=
substr(symget('dep'!!dept),1,20);
title =
substr(symget('dep'!!dept),21,20);

run;

proc print data=lookup;

run;

Benefits

e No sorting of data sets is needed prior to the lookup.
ee Save processing time

ee Match against single key variables or multiple key
variables

ee Retrieve single variable data values or multiple
variable data values

ee | ookup macro variables do not take up disk space.

Considerations ACKNOWLEDGEMENTS

s¢ Requires an exact match. SAS is a registered trademark of SAS Institute Inc.

s Requires a good understanding of SAS macros, Oher brand and product names are registered trademarks
programming with functions and strings. or trademarks of their respective companies.

ee Since macro variables load in memory, many of . . .
them may use up available memory. Consider Some tOpICS complled from:

increasing memory for macro variables with the... Advanced Techniques and Efficiences, First Edition,
Copyright 1995 by Destiny Corporation.
OPTIONS MSYMTABMAX=value;
Advanced SAS Programming Techniques and

CONCLUSION Efficiencies, Copyright 1992 by SAS Institute Inc.
As we have seen, there are many additional Author: Dana Rafiee, Trainer/Consultant
methodologies avail_able to pull different sets of data Destiny Corporation/DDISC Group Ltd. U.S.
together. One form is not better than another. The goal
of this paper was to make you aware of what they are. 1321 Silas Deane Highway #A

These are additional tools to be added to your SAS tool

: Wethersfield, CT 06109-4302 USA
set for future programming endeavors.

Phone: 1-800-7TRAINING
1-860-721-1684
Fax: 1-860-721-9784

	Main TOC

