
Skipping, The Easy Way

Janet E. Stuelpner, ASG, Inc., Cary, North Carolina

ABSTRACT

The testing has begun. In order to see if the
different parts of your SAS(@) program are
working, you need to use PROC PRINT or some
other procedure to output the data quite often.
You practically have one after each DATA step
or PROC step. What a pain in the neck it is to
pull them all out when your testing is done and
the program is perfect. Well, now you don’t have
to do it. A simple little macro will allow you to
leave the source code there.

Another great use for this macro is to comment
out many lines of code where documentation is
plentiful. Sometimes it is difficult to remove
sections of code with standard comments, where
there are comments that exist . Read on to find
out an easy way to skip over code with Yoskip.

INTRODUCTION

When I first learned about macros, the best way
for me to use them was to put a %macro in front
of a section of code and a O/Omendat the end.
Usually, I would define only one parameter and
then invoke the macro several times changing
the parameter for each invocation. This worked
very well. In one job, I could run off reports for
many items, whether a particular system, class
or investigator. I never thought that this basic
premise would work so well in the future. With a
slight modification, this action is extremely useful
and a tremendous time saver.

The %skip macro is very simple and very useful.
It does not need to be defined at the beginning of
a job as we do with so many user written
macros. It does not need any parameters. It
can be defined as many times as you want
within the same job. What makes this such a
valuable tool is its versatility. There are many
ways in which to use it. This paper will explore
two of those ways

REASONS TO SKIP

Throughout the process of writing a program, it
is necessary to view many of the intermediary
data sets that are created in the process of
running a job. The easiest way to do this is to
print the output. When the program is
completed, the printing is no longer necessary.
Any procedure that creates output can be used.
It is very diticult to do a search, because all of
the output that are generated are not created in
the same way. This is where %skip can be
used. Define the macro and then invoke it. After
testing is complete, remove the invocation.
Because all of the output procedures have the
same macro surrounding it, the search to
remove the invocation is easy. The example
below shows exactly how it can be done.

OAmacro skip;
PROC PRINT DATA=TESTA;

TITLEI ‘PRINT OF TESTA;
RUN;
‘Amend skip;
7oskip;

Other lines of code

O/Omacroskip;
PROC FREQ DATA=TESTB;

TABLE MYVAR;
TITLEI ‘FREQUENCY OF MWAR’;

RUN;
%mend skip;
O/Oskip;

When testing is complete, the %skip (which is
the invocation of the macro) is removed. This
can be done in two different ways: removal of
the %skip or change it to %’skip. The whole
macro can remain in place. You don’t
necessarily want to remove the whole thing. It
may be necessary to test the program again at



some time in the future. This way the code for
the output procedure can stay and can be used
at any time. All you have to do is add the
invocation back into the program.

WAYS OF SKIPPING

A. COMMENTING

There are two ways of writing comments to
document a program. The first way is to begin
with an asterisk and end with a semi-colon.

* comment ;
The other way begins with a slash asterisk and
ends with an asterisk slash.

/’ comment ‘/
It is this second way that causes the most
problems. Some programmers place a comment
on each line of code to define what the code is
doing. If there are a great deal of comments in
the program and then it is necessary to comment
out a large block of code, it can be very difficult
to do. Since the comment ends with the first
asterisk slash it sees, placing a slash asterisk
before a block of code may end the code
prematurely.

DATA AGE;
SET DEMOG;
AGEYR=(TODAY()-DOB)/365 .25;
/*CALCULATE AGE IN YEARS*/
AGEGRP=PUT(AGEYR,AGEGP.);
/*Categorize AGES*/

RUN;

Let’s use the above code as an example. If it
were necessary to comment out the whole DATA
step, the first plan is to place a slash asterisk
before the word DATA and then after the RUN.
The problem with this is that the comment will
end at the first asterisk slash (at the end of the
word YEARS) and the next assignment
statement will be flagged as an error (statement
out of order). This is a good place for %skip.
The use of the macro will avoid any error
messages.

%macro skip;
DATA AGE;

SET DEMOG;
AGEYR=(TODAY()-DOB)/365 .25;
/*CALCULATE AGE IN YEARS*/
AGEGRP=PUT(AGEYR, AGEGP.);

/*Categorize AGES*/
RUN;
‘Amend skip;

If there is a need in the future to run this section
of code, just invoke the macro. Using the macro
like this avoids problems with ending a comment
too soon and getting error messages.

B. PREVENT STEP FROM RUNNING

A RUN statement will execute any previously
entered SAS statements. Typically it is used at
the end of DATA steps and/or PROC steps.
However, there is a little known option on the
RUN statement which terminates the step
without executing it. The system will print a
message on the log indicating that the step did
not run. An example of the use of this option:

PROC PRINT DATA=THEDATA;
TITLEI ‘JUST A PRINT’;

RUN CANCEL;

CONCLUSION

So now you have seen two ways to use a very
simple but powerful macro. An extensive
background in macro development is not
necessary. It is easy to use. It can be defined in
the job stream. No parameters are necessary,
but can be used if needed. Macros are
extremely versatile. As can be seen above, it
can be used to conditionally execute output
statements or to comment out a block of code.

SAS is a registered trademark or trademark of
SAS Institute Inc. in the USA and other
countries. @ indicates USA registration.

Janet Stuelpner
ASG, Inc.
326 Old Norwalk Road
New Canaan, CT 06840

(203) 966-7520 (voice)
(203) 966-8027 (fax)
jstuelpner@worldnet. att.net


	Main TOC

