
Using FTP, Views, and PROC SUMM4RY
to analyse large databases.

Don Stanley
Don Stanley Consulting Limited
Wellington
NE WZEALAND
EM4LL: Don_Stanley@ibm. net

Overview

This paper discusses some techniques that have proven
helpful to the New Zealand Accident Rehabilitation and
Compensation Corporations (ACC) recent analysis of
data quality.

The ACC recently undertook a project to redevelop its
core computer systems. Over the last few years, many
different systems that provide ACC fimctionality have
been reviewed, with the result that a team, called Data
Transition, was formed in early 1996 to carry out the
task of analyzing existing dat~ comparing data where
duplicate data was stored in several systems, modeling
existing databases and developing models for an optimal
database. Following the analysis, the team is also
charged with the tasks of data cleaning and developing
extracts from existing systems to populate new
databases. I joined the data transition team at end of
MAY 96 after it had been in existence for 3 months.

The existing ACC systems are Fujitsu AIM databases.
There are three main systems which often store similar
data. For historical reasons, these 3 systems duplicate
dat~ and have separate mechanisms for entering data.
Interface programs run daily to keep the data
synchronized, i.e. to move data from one system to the
others.

In addition to the AIM databases, ACC runs a SUN 4
UNIX box primarily running SAS as a data warehouse.
SAS does not run on the Fujitsu, so all analysis is done
on the SUN, including that discussed here.

A feature of the AIM databases is their size. Some, such
as the master person record, have about 3.6 million
records. Much of this is duplicated in another ACC
system. This is about a 700 megabyte SAS tile on the
SUN. Others, such as the database that describes all
medical services by person, exceed 32 million records.
Another, describing medical procedures, exceeds 96
million records. These latter two files are 3.5 gigs and
7.7 gigs respectively and do not form part of the SUN
data warehouse. However, they are required for data
transition analysis.

Data Analysis

Data transition have been charged with the task of
analyzing AIM data to look at validity, completeness
and correctness. A example here is to verifJ on the
person database that the sex is consistent with the
persons title. Another example is that the stored
calculated SOUNDX field used for person searching
actually is the correct soundx.

Many of the things data transition are looking at have
come from knowledge of the ACC system within ACC
operations staff, some have been inspired by data
transition when looking at other things (for example we
were looking at birth date versus claim date to ensure
claims were entered after birth, and found a number of
people born prior to 1850 which spawned a separate
analysis). The business have also requested certain
analysis, the soundx on surname mentioned above was
investigated because of a perception in the business
branches that searches didn’t work properly.

This paper discusses a specific analysis that data
transition had to do. This involved the 32 million plus
record medical services tile. To carry out this analysis I
had to go back to basics and examine the whole way that
data transition had traditionally been working.

SAS At ACC

From a purely data transition team viewpoint, the use of
SAS on the SUN analyzing Fujitsu data was somewhat
inefficient.

Warehouse and MIS data were summarized too much
for data transition to make any use of it. Also,
warehouse data only cover the latest financial year, and
our exercise involved the AIM databases back to ACC’S
inception in 1974.

To do an analysis, data transition would write an
INTERACT query on the Fujitsu. DQTERACT is an
AIM utility that writes AIM database fields to a flat file.
It follows the AIM field storage structures exactly, i.e. a
signed packed field in AIM is written out signed packed
to the flat tile by INTERACT.

The INTERACT queries are simple to create, but often
take 2-3 hours to run and are a cpu hog. They are
unavoidable as they are the only means of getting data
from AIM to a flat file.

Following the INTERACT query, data transition were
using FTP to transfer the flat file, in its entirety, from
Fujitsu to SUN. This could take anything from 2-5
hours dependent on SUN and Fujitsu loading. It is very
CPU intensive. It is also very inefilcient on SUN disk.

The inefficiency inherent in this on SUN disk space is
that at least two copies must be stored on the SUN. This
is the downloaded flat file, plus the work space that
SAS requires. Additionally, we usually wanted to keep
the file atler reading on the SUN. The chain of events

that occurred was very inet%cient and followed these
steps:

● Interact 2-4 hours to get an up to date 3.5
million record file

● FTP 2 hours to transmit to SUN
● SAS 1-2 hours to read on SUN and create

SAS tile

Then we could start analyzing the file. Note that these
times were not absolute, they depended on system
loading and we often struck a situation where the Fujitsu
ground to a halt when downloading using FTP. So
sometimes the actual time to get data was measured in
days, but the physical process of downloading when
able to followed the above table.

This was for one of the simplest, smallest files. As file
size increased the inherent deadtime in the FTP transfer
meant that analyses were taking longer to perform.

Efficient Use of FTP

FTP (File Transfer Protocol) is a method of transmitting
files across computers connected using a TCP/IP
protocol. If you have multiple machines at your site you
should contact your system administrator to see if they
are connected by FTP.

In release 6.11, SAS Institute provide production
support for treating a file on an external machine as an
input file without first copying that file to the machine
that SAS is running on. This is just another example of
the client-server facilities that SAS provide. The
machine running SAS is a client, and requests data from
the server machine by means of an FTP request.

One of the most critical problems facing data transition
was the deadtime inherent in moving a whole tile via
FTP ffom Fujitsu to SUN. So, by using SAS to read the
file using FTP, the entire transfer time is removed from
the equation. SAS now reads the file, then immediately
does the analysis. In fact, because the transmit now sent
each record direct to SAS, new fields could be created
and various record counts started as the data was sent
from the Fujitsu.

As well as eliminating the deadtime associated with the
sending of the whole tile then starting a SAS analysis,
using FTP direct into SAS had another tremendous
advantage. The SUN is disk constrained. We had a total
of 4 gigs for all our files, including work space. Four
data transition team members regularly fought for space.
By removing the copy of the flat tile (actually many flat
files as we usually each worked on different extracts),
we were able to vastly improve the disk utilization.

Having FTP direct into SAS had other spin-offs. Some
people would regard these spin-offs as additional
problems. The main one was that now we could look at

analyzing files that previously could not be downloaded
due to their size.

Incidentally, transmitting a file in its entirety is quite
CPU intensive as the Fujitsu repeatedly hands the SUN
blocks of data. Using SAS reduces this to some extent,
the SUN is still sent data in a similar way, but now it
also processes that data instead ofjust receiving it and
writing it. This appears to cause a little less bottleneck
on the Fujitsu, as the SUN takes longer between
requests.

Handling Very Large Files

We soon found that our new found space was not
enough. It allowed us to analyse bigger files, and more
quickly, but ultimately just led back to the same
situation as workspace requirements for even bigger
files became difficult to cope with. So I started looking
for different ways to achieve some of the analyses.

Consider the following analysis that we needed to carry
out

We have a master file containing about 8800 records.
This is a list of people or companies who provide some
service which ACC pays for (E.g. a doctor treating a
patient whose injuries are eligible for ACC
compensation). We wanted to find out the following
from the 32 million record services database

● how many services have no provider in the master
file

● how many providers have no services

. how many services were provided in each year from
1974 (a year is defined as OIJUL to 30JUN)

● percentiles for number of services per provider
. how many providers have most recent service prior

to 1994

None of these questions is particularly difficult to
answer. The processing involved to get the answers is
basic and typical SAS number crunching. But the
practical issues associated with space make the
questions impossible to resolve using traditional
techniques which may include downloading input files,
creating SAS datasets and then analyzing.

SAS Views

A view is a template. Any datastep that normally
produces a single dataset could instead be stored as a
view. When SAS attempts to use the view (E.g. in a
PROC PRINT), the datastep executes and instead of
writing the records it creates to a SAS dataset, it instead
passes them to the process that invoked the view.

One of the ramifications of this is that SAS can read a
flat tile and pass each record to a procedure without
creating an intermediate dataset. The procedure can then

do its thing with the records. This implies that a
substantial disk saving may be possible as no dataset
ever needs to exist, and only scratch files created by the
calling process will be used. At worst, you are likely to
need half the space that would have been required with a
dataset (and then only if the calling process needs to
make a copy of the dataset).

Now, we already saw that SAS can read a file on the
Fujitsu using FTP. If we use a view, the 32 million
record file can be passed record by record to a procedure
for analysis. Further, since the view is itself inherently a
SAS datastep, we can create any extra fields that the
procedure requires.

Essentially the problem here comes down to needing to
summarize the records in the 32 million record database
down to one record per service provider. By passing
each record fkom the view straight to PROC
SUMMARY, we should be able to almost completely
remove the need for work space. This is because
SUMMARY uses memory to build its classification
levels.

When PROC SUMMARY runs against a view, the
datastep inherent in the view effectively runs and PROC
SUMMARY waits for it to return data. Then summary
operates on that record as it normally would had the
record come from a dataset.

Because the view just executes a datastep for a record,
you can do anything in the view that can be done in a
standmd datastep. This includes creating new fields.

The ability to create new fields in the view is absolutely
critical to the reduction of work space. Had we not been
able to do that, we would have achieved nothing, a copy
of the flat file in SAS dataset format would have been
needed and we would have simply not had the space.

Remember one of the requirements here is to find out
many service records existed per year. To do this, I
created, in the view, a new variable for each year. This
is easiest achieved as follows:

if ‘OJUL96’d le servday le ‘30JUN96’d then

year96=l ;

and creating a year field for each year of interest. We
were interested here back to July 1990, with a catch all
year of year89 being all data entered prior to that date.
So I created a yeamx variable for each of these. These
year fields can be passed into PROC SUMMARYS var
list and used to count each years services.

In addition to getting the count per year, which is easily
obtained by summing the YEARxx fields created in the
view, we also require a number of extra statistics. These
statistics include

. number of providers with no services since 1994

● services that have no provider (should be
impossible, but data transition team have found that
with the number of incarnations of these systems
impossible is not a viable assumption)

● providers who never had a service

It is not obvious at first, but all these are obtainable
from the dataset created by PROC SUMMARY. If we
use the provider identifier as the class variable, then
PROC SUMMARY will produce two distinctly different
types of output records.

The first is the overall summary level, which will
contain all the counts across the whole file, i.e. the
statistics for the number of services per year. This is just
one record. It is identified by the SAS internal field
TYPE being equal to O and ako by being the first
record. It will also be the only record with a blank
classification variable.

The second type of record is a set of statistics grouped
by provider id. There is one of these records for each
provider on the 32 million record file. These are
identified by the SAS internal field _TYPE_ being equal
to 1.

Extracting The Statistics

At this stage I am going to start looking at code. First,
issue a filename to establish a connection to your FTP
file if necessary. Note that when connecting to a Fujitsu,
for reasons that no-one has yet been able to answer, the
filename statement needs to include a file structured as
follows:

filename myfile ftp ‘/ziisds/qmfs. servday ’
host= <hostname> user= <username> prompt
lrecl=<record length>
blocks ize=<blocksize> recfm=f ;

The actual filename is an unusual structure, but the more
traditional MVS structure of ‘ziisds.qmfs.servday’ just
doesn’t seem to work. The lrecl, blocksize and recfm
turned out critical; omit any and the datastep just doesn’t
work.

The following datastep view is used to read the FTP file
and create relevant extra fields.

data bigfile / view=bigfile ;
infile bigfile ;
input person $ebcdic8 .

inj id s370fpd2.
medfnd $ebcdic10.
provider $ebcdic6.
provclss $ebcdic2 .
servday s370fpd3 .
servid s370fpd5.
statis $ebcdicl. ;

/’ header record removal */

● percentiles if n eq 1 then delete ;— —

format

/’ set

length

servday ddmmyy10. ;

condition fields */

nservice sum96 sum95 sum94 sum93
sum92 sum91 sum90 sumpre90 deleted
3;

if statis ne ‘*’ then nservice = 1 ;

/’ please note -- normally the following
if statements would be joined together
with an else. It is omitted here solely to
permit the code to fit in the column space
available */

if statis ne ‘*’ & ‘Olju195’d le servday
le ‘30jun96’d then year96 = 1 ;

if statis ne ‘*’ & ‘Olju194’d le servday
le ‘30jun95’d then year95 = 1 ;

if statis ne ‘*’ & ‘Olju193’d le servday
le ‘30jun94’d then year94 = 1 ;

if statis ne ‘*-’ & ‘Olju192’d le servday
le ‘30jun93’d then year93 = 1 ;

if statis ne ‘*’ & ‘Olju191’d le servday
le ‘30jun92’d then year92 = 1 ;

if statis ne ‘*’ & ‘Olju1901d le servday
le ‘30jun91’d then year91 = 1 ;

if statis ne ‘*’ & ‘Olju189’d le servday
le ‘30jun90’d then year90 = 1 ;

if statis ne ‘*’ & servday lt ‘Olju189’d
then year89 = 1“;

/’ end of code that should have else
statements */

if statis eq ‘*’ then deleted = 1 ;
run ;

In the above step, the statis field value of’*’ indicates
that a record is logically deleted. The count of logically
deleted records is of interest because they effectively
waste space in the AIM dataset.

The view creates the YEARxx fields, assigning a value
of 1 or missing, plus the deleted field to count the
logically deleted records, and overall count field
(nservice) which is like a dummy field. It will have a
value of 1 for every record. These fields will simply be
summed in PROC SUMMARY to give the overall and
provider group counts.

data provptyp ;

infile ‘/home/datatran/prv96may.mfs’
recfm=f lrecl=91 ;

input @65 provider $ebcdic6. ;
if _n_ eq 1 then delete ;

run ;

This step just reads the master list of providers which is
a small flat file (about 8800 records) already on the
SUN. Only 1 field, the provider id is read. In the 32
million record file, the provider id is the field that is
used in the PROC SUMMARY class statement, so this
masterfilewillbe usedlaterinthe jobto compare with
the SUMMARY output _type_ =1 records to determine
how many providers have no service, and how many
services have no provider.

proc summary data=bigfile ;
class provider ;
var nservice year96 year95 year94 year93

year92 year91 year90 year89
deleted servday ;

output out=provs (drop=_tyPe_
rename= (_freq_=totserv)) sum=
max(servday) =mservday ;

run ;

Notehowthedataset nameonthePROC SUMMARY
is BIGFILE, which is the view created above.
Remember that a view executes the when requested by a
calling process, so this code is going to see PROC
SUMMARY request a record from the view, the
datastep inherent in they view execute and get data ftom
the Fujitsu, and then hand that record back to the
procedure, and then SUMMARY will incorporate the
record in its summarization.

Most of the fields are simply summed. Since they just
havevaluesoflor missing summing thefieldvalues
amounts to counting how many records matched the
particular attribute. Additionally, themaximum valueof
the servday field (the service date) is extracted for each
provider, this will be used shortly to get the number of
providers who have had no services since 1994.

This PROC SUMMARY is incredibly efficient on our
scarce disk resource. It used a total of just over half a
megabyte of work space. Given we were concerned that
we would hit problems with our 32 million records this
is an impressive use of disk resource, clearly showing
the benefit of using the view. PROC SUMMARY used
1 hour 5 seconds of CPU.

Manyofthe statistics requiredarefound onthe
~e=O record from the SUMMARY. To print these
statisticsisquite simple,youcould doitinavariety of
ways. This example uses SQL, but could as easy been a
data step or other procedure.

proc sql inobs=l ;
select year96 ‘Total 1995/96 Year’,

year95 ‘Total 1994/95 Year’,
year94 ‘Total 1993/94 Year’,
year93 ‘Total 1992/93 Year’,
year92 ‘Total 1991/92 Year’ ,
year91 ‘Total 1990/91 Year’,
year90 ‘Total 1989/90 Year’,
year89 ‘Total pre 01JuL89’,

deleted ‘Total Logical Deletions’,
totserv ‘Total Services Provided’

from provs ;
quit ;

In this SQL the inobs option forces SQL to only read
the first record. The statistics that were required relating
to overall counts are all on that record, so the above
SQL provides all the annual counts, plus deleted and
total records.

To obtainthenumber ofproviderswith Iastservice over
2 years ago (i.e. before Oljull 994) is quite simple. Just
extract from the summary provider records (which differ

from the overall record in that they have a provider id,
the overall count doesn’t) a count of those records where
the maximum service day is prior to that date.

proc sql ;
select count(*) ‘Total providers with

last service before 01ju194’
from provs
where mservday between O and ‘30jun94’d

and provider ne ‘ ‘ ;

That’sassimpleas youcouldget, and showshow

creatingthemaximum statisticby providerin PROC
SUMMARY has perrnittedtheSUMMARY togiveus
multiple answers, namely the overall counts, and now
the countofoutdated providers.

We are interested in two important statistics relating to
the integrity of the services data These are to find out if
any services have no provider in the 8800 record
provider master file, &d whether anY movider has never
provided a service. Use the followin~ SQL.

select count(*)
‘Providers With No Service

from
(select provider from provptyp
EXCEPT

select provider from provs
(firstobs=2)) ;

select count(*)
‘Services With No Provider
from

(select provider from provs
(firstobs=2)

EXCEPT
select provider from provptyp)

Data’

Account’

;

This has now provided the bulk of the statistics we
required. Note the firstobs=2 in the SQL, this causes
record 1 (the overall count record) to be bypassed. Thus
these analyses work on the records that contain counts
for each provider.

The final statistic that was required is the percentiles of
number of services. Each provider has a field called
nservice that contains the total services for that provider.
Use proc univariate to extract the percentiles.

proc univariate data=provs (firstobs=2) ;
var nservice ;
id provider ;

run ;

Itksofinteresttocompare SQLwiththeSUMMARY

procedure.There isvhtuallynothingthatSUMMARY

doesthat SQLcannot. Usingthefollowing SQL

proc sql;
create table provs as

select sum(deleted) as deleted,
sum(nservice) as nservice,
sum(year96) as year96,
sum(year95) as year95,
sum(year94) as year94,
sum(year93) as year93r

sum(year92) as year92,
sum(year91) as year91,
sum(year90) as year90,
sum(year89) as year89,
max(servday) as mservday,
count(*) as totrecs

from bigfile
group by provider ;

quit ;

we saw in excess of 600 megabytes of work space used,
and2hours35 seconds CPU. This isdespite the same
view being used. SQLprocesses data in avery different
mannertoSUMMARY, andIwouldhazard aguessthat
for straight forward SUMMARY like tasks SQL will
always prove less efficient. That isn’t to say you should
never use SQL, the product allows many things to be
done simply and elegantly that are otherwise difficult or
impossible using other SAS routines.

A Few Extras

A few additional efficiency tips are provided here with
examples.

We required to merge an 8 million record database
with an 800,000 record database. The merge was by
akeyfield, EVENTNUM. Onlythoseevent
numbers on the smaller database are to be kept.
There are multiple records for each EVENTNUM
on each database, andthesmall database contains
about 80/0 of the keys in the big database.

SQL joins were of little use, as they consistently
used all our available disk space. It also appeared
that some of the intermediate files hit the two
gigabyte file limit on SAS databases in this release
(6. 11 TSO040).

Eventually I created a file containing unique event
numbers from the smaller database, andfromthat
created a format containing about 600,000 items.
The format mapped each event number to ‘Y’. Then,
in a data step over the large file, I deleted every
record which the format didn’t return a ‘Y’ for.
SQL joins on the remaining tile with the original
smaller database were simple and used about 100
megabytesofdisk

I needed to read two very large (multi-million
record) databases using FTP. They are to form one
dataset on the SUN. Each record has the same
record structure.

I decided to read the files in one datastep, using the
following structure:

filename files ftp ;
filename fileb ftp ;

data <whatever>;
infile files;

loop through files until all read

infile fileb;
loop through fileb until all read
run;

By doing this, I would have created one file
immediately. Using two datasteps would have
pushed disk space to the limit, as SAS would have
needed to copy one of the datasets, thus doubling
one in size for a period.

The code did not work. Because the infile
statements open each file at compile time, the length
of time taken to read the first file caused the second
ftp link to time out.

A simple fix gets round this (thanks to Laurie
Fleming for this suggestion). Each loop becomes a
view:

data filea /view =filea;
infile tiles;
read file a;

run;

data fileb /view =fileb ;
infile tileb ;
read tile b;

run;

Then, run a datastep as follows:

data <whatever> ;
set files

tileb ;
run ;

SAS does not request a view to execute its inherent
datastep code until it is required. The INFILE opens
get done at runtime when the data is actually
required. Hence, the ftp does not time out, because it
is not opened until required. The requirement of
reading the data just once and storing as a SAS
database is met using the views exactly as it would
have been had the loop method worked.

Summarv

If you have a resource hungry job, particularly when the
resource is disk, you may find that some or all of ftp,
views, and summary processing helps considerably. In
particular,

● SUMMARY processes classification groups in
memory, so is likely to be more efficient than
equivalent SQL processes

Additionally, there may be cases when the use of
formats to reduce large databases before merging causes
the merge to run much more successfully then it would
using the whole database and relying on a WHERE or
ON clause.

● FTP removes the need to store remote input files
locally

● views remove the need to create SAS databases to
feed into SAS procedures

	Main TOC

