
1

Some Practical Ways to Use the New SAS Pattern-Matching Functions
Mike Rhoads, Westat, Rockville, MD

ABSTRACT

The 6.11 and 6.09E releases of SAS® software contain,
in experimental form, a powerful new set of pattern-
matching functions, which can be used in DATA steps,
macros, or SCL code. This paper provides a summary
description of these new routines and includes several
examples of how their use can significantly reduce the
coding effort required to perform common tasks.

INTRODUCTION

SAS software has always contained a fairly extensive set
of functions for finding particular characters within strings
(INDEX, INDEXC, VERIFY) and for changing the contents
of character strings in certain ways (TRANSLATE,
COMPRESS, UPCASE, LEFT, RIGHT, SUBSTR on the
left side of an assignment statement). New functions
have been added periodically -- for instance, version 6.07
added COMPBL, TRANWRD, INDEXW, QUOTE, and
DEQUOTE. Nevertheless, while these functions are
extremely useful, they lack the kind of generality and
expressive power that is found in some other software,
such as the grep command in Unix.

The 6.11 and 6.09E releases of base SAS software add
two functions and three CALL routines that provide
pattern matching and changing capabilities using regular
expression patterns. The pattern notation allows for built-
in and user-defined character classes, wild card
characters, elements that are optional or occur a varying
number of times, and either/or subpatterns.

These functions are currently in experimental status and
are expected to become production in a later release of
the SAS system. They can be called from DATA steps,
SCL modules, or macro routines (using the %SYSFUNC
interface). Draft documentation can be downloaded from
SAS Institute's Internet site (see References for the full
Internet address).

The next section of this paper summarizes how this
facility operates and briefly describes the five routines
that it contains. This is followed by a summary of the
major constructs that can be used in pattern specification.
The remainder of the paper shows how these routines
can be used both to search for patterns within character
strings and to modify the original string based on the
results of the search.

BASIC CAPABILITIES AND SYNTAX

Using the pattern-matching routines in a DATA step
involves three distinct phases. (The basic principles are
similar if the functions are being used in macro or SCL
code instead.) These phases are as follows:

1. Use the RXPARSE function to parse (compile) the
pattern. This is normally done once, at the beginning
of the step. The facility is designed in this manner to
improve performance when processing large amounts
of data, since the time-consuming step of translating
the pattern into a more efficient internal representation
needs to be performed only once, rather than every
time the pattern is used.

2. Use a pointer to the parsed version of the pattern in a
function or call routine for string searching or
modification. This step is normally performed
multiple times (e.g. for every record in a data set).
The available routines are RXMATCH (basic pattern
matching), RXSUBSTR (advanced pattern matching),
and RXCHANGE (string modification).

3. At the end of the step, use RXFREE to free up the
memory occupied by the parsed version of the
pattern.

The syntax of these routines is as follows:

Initial pattern compilation

rx = RXPARSE (pattern);

This function parses a pattern (which may be a character
constant, variable, or expression) for later use. The
returned value rx, while nominally a numeric variable,
actually serves as a pointer to the parsed version of the
pattern and is used as an argument to all of the other RX
routines. The documentation warns that this value should
not be printed, saved to an output data set, or otherwise
operated on, since it may not actually represent a valid
number. Note also that the first character of the pattern
must be a backquote (`), otherwise it will be interpreted
as a literal rather than as a pattern.

Basic pattern matching

position = RXMATCH (rx,string);

This is the most basic of the RX routines. It searches
string for the previously-parsed pattern pointed to by rx,
returning the position within string where the match
begins (or 0 if no match is found).

Enhanced pattern matching

CALL RXSUBSTR (rx, string, position, length, score);

RXSUBSTR performs the same matching as does
RXMATCH, and the first three arguments have the same
meanings as for RXMATCH. The final two optional
arguments allow additional information about the match
to be returned. Length indicates the number of

2

characters that matched, while score returns a numeric
score value that can be set using expressions within the
pattern.

String modification

CALL RXCHANGE (rx, times, string, result);

RXCHANGE uses the parsed expression pointed to by rx
to search string for a pattern and change the matched
substring as specified. Times specifies the maximum
number of changes that will be made. The modified
character string is placed into result, or back into string if
the optional final argument is not specified.

Cleanup

CALL RXFREE (rx);

RXFREE should be called when you are finished with a
pattern expression to free up the memory that is occupied
by the parsed version of the pattern.

SPECIFYING THE PATTERN EXPRESSION

The power of the RX routines really lies in the richness of
the constructs that can be used in the pattern expression.
This section summarizes many of the basic constructs for
pattern matching. A few additional constructs that are
used only when changing strings are discussed in a later
section of the paper.

Quoted literals. Patterns may contain character strings
in single or double quotes, which indicate that the string
being searched must contain exactly that sequence of
characters.

Unquoted literals. Patterns may also contain letters,
digits, periods, and underscores as unquoted literals,
which indicate that the string must contain that character.
Unquoted letters match either upper case or lower case.

Wild card characters. The question mark (?) matches
any single character, while the colon (:) matches any
sequence of zero or more characters.

Character classes. Character classes specify that the
character in the search string must match one of the
characters in the class. There are a number of
predefined classes, such as $d for any digit and $u for
any uppercase letter. You can also specify your own
classes by preceding a quoted string with a dollar sign.
For instance, $'13579' matches any odd digit. The dollar
sign can be replaced by a ~ or ^ to specify the
complement of a set of characters: e.g., ^'13579'
matches any character except an odd digit.

Miscellaneous abbreviations. There are also a number
of abbreviations that are not character classes as such.
For instance, $f matches any floating point number, $n
matches any valid SAS name, and $q matches any
quoted string.

Modifiers. There are a number of ways in which the
effect of individual pattern elements can be modified.
Enclosing the pattern in brackets indicates that it is
optional, following it with an asterisk indicates that it may
occur zero or more times, while following it with a plus
sign means it may occur one or more times. A single
vertical bar between patterns means that one or the other
must match. Parentheses may be used to group pattern
elements.

Location specifiers. A notation using the at-sign (@)
can be used to specify that a match or portion thereof
begin or end in a specific position of the string. @1
specifies the first column, and in general @n specifies the
nth column from the beginning if n is positive and the nth
character from the end of the string if n is negative. @0
denotes the end of the string.

USING PATTERNS FOR DATA VALIDATION

One obvious area for exploiting the versatility of the RX
routines is in data validation rules that go beyond what
can be conveniently done with traditional SAS functions
and formats. As a simple example, take the following
pattern, which can be used to validate an 11-character
field that should contain a Social Security number:

` dd$d '-' dd '-' dddd

This is a relatively simple but useful pattern. It specifies
that, in order to match, the string must contain 3 digits,
followed by a hyphen, followed by 2 digits, another
hyphen, and then 4 digits. Note that the various elements
of the pattern are logically concatenated, that white space
may be used to improve readability, and that the first
character of the pattern must be a backquote.

Shown below is a short DATA step that illustrates how
this pattern could be parsed and used. The first section
of the program is devoted to setup and housekeeping:
the pattern is parsed on the first iteration of the DATA
step and a pointer to the parsed version is saved in the
retained variable RX. RXFREE is then used to free up
memory when data set processing has been completed.

RXMATCH is then used to verify the data, with the
starting position of the match being placed in the variable
MATCHPOS. The VALID message is displayed if
RXMATCH's search of the string found an occurrence of
the pattern, thus returning the starting position of the
match. If the pattern was not found, MATCHPOS is set
to 0 and the message INVALID is printed.

data _null_;
 /* HOUSEKEEPING */
 if _n_ = 1 then rx = rxparse
 (" ` dd$d '-' dd '-' dddd ");
 retain rx;
 if eof then call rxfree (rx);

 set mystuff end=eof;

 /* NOW USE THE PATTERN */
 matchpos = rxmatch (rx, ssndata);
 if matchpos > 0

3

 then put ssndata= ' VALID';
 else put ssndata= ' INVALID';
run;

The following more complex example demonstrates
additional elements that can be used in an expression. It
shows a pattern that could be used to check U.S.
monetary data, such as $14,598 or $2.95. (The
numbered line below the pattern refers to the notes.)
Although the results produced by the example are similar
to the operation of the COMMAw.d informat, the
techniques illustrated could be adapted to validate
complex string patterns for which SAS does not provide
its own informats.

` @1 '$' $d[$d][$d] (','$ddd)* [.dd] ' '* @0
 1 2 3 4 5 6 7

The @1 (1) "anchors" the match at the beginning of the
string. The quoted dollar sign (2) must be matched
exactly in the string, and this must be immediately
followed by at least one and up to three digits (3). The
pattern consisting of a comma followed by three digits (4)
is enclosed in parentheses and followed by an asterisk,
indicating that it may occur any number of times or not at
all. Optionally, this may be followed by a decimal point
and two more digits representing cents (5). Then, there
may be some blanks (6) between the matched dollar
amount and the end of the string (7).

ENHANCED PATTERN MATCHING

The RXSUBSTR routine adds more versatility by allowing
the user to get back the length and "score" of the match,
in addition to its starting position. The pattern expression
syntax contains notation to modify the score of a match
as it proceeds -- for instance, #5 means "add 5 to the
current score". Let's take the following pattern and CALL
statement as a quick illustration:

` cal #1 [' ' ripken #2] [' ' jr #4]
call rxsubstr (rx,string,start,len,score);

In this example, the string "Cal" would return 3 for LEN
and 1 for SCORE, while "Cal Ripken" would return 10 for
LEN and 3 for SCORE (1 + 2), and "Cal Ripken Jr" would
produce a value of 13 for LEN and 7 for SCORE (1 + 2 +
4). Note that the unquoted letters in the pattern match
either uppercase or lowercase characters.

When used in conjunction with the "or" operator (single
vertical bar), the scoring facilities of RXSUBSTR can also
be used for recoding, as shown by the following pattern:

` (@1 gold ' '* @0) #1 |
(@1 silver ' '* @0) #2 | (@1 bronze ' '*
@0) #3

This pattern returns a score of 1 if the input string is equal
to "gold" (any case), 2 for "silver", and 3 for "bronze". The
vertical bars indicate that the match must consist of one
of the three alternatives, each of which are contained
within parentheses. Within each of these, the @1 forces
the match to start at the beginning of the string (column

1), with no leading blanks or other characters. @0 refers
to the end of the string being searched -- along with the
expression ' '* (0 or more blanks), it allows trailing blanks
but no other characters between the word of interest and
the end of the string.

ALTERING STRINGS USING RXCHANGE

The RXCHANGE routine allows the value of the search
string to be changed, based on how the match proceeds.
To accomplish this, the pattern that is passed to
RXPARSE must consist of a matching expression,
followed by the keyword TO and then a "change
expression".

We have already seen the syntax of the matching
expression: the primary enhancement that is relevant
here is that enclosing part of the expression in angle
brackets (< >) "tags" that part for reference in the change
expression.

Like the matching expression, the change expression may
contain quoted and unquoted literals. In addition, values
from the matched expression that have been tagged can
be carried over into the change expression: =n copies the
value of the nth tagged substring, =-n copies the value of
the nth tagged substring from the end, and == copies
over the entire matched substring.

One of the most useful functions of RXCHANGE is to
"normalize" user-specified parameters so that they are
then easier to break apart and work with. For instance,
let's take an example where a user can input an arbitrarily
complex SAS variable list, including single dashes,
double dashes, etc. (For instance, A B C1-C3 D--G H I.)
Using SCAN (with a blank as the only delimiter) to break
such a compound list into more basic elements for further
processing seems like a good way to proceed, but the
problem becomes more difficult if the user likes to put
blanks before or after his hyphens. Rather than
complicating the coding or restricting the user's flexibility,
RXCHANGE provides an easy way to preprocess the
input string and magically eliminate all the white space
surrounding hyphens, using the following pattern and
statement:

` ' '* '-' ' '* TO '-'

CALL RXCHANGE (rx, 99999, string, result);

This pattern works by specifying a hyphen, optionally
preceded and/or followed by some blanks, as the pattern
to be matched, and a single hyphen with no leading or
trailing blanks as the replacement pattern. The call to
RXCHANGE contains the pointer to the parsed pattern,
the maximum number of changes to be made (here an
arbitrarily high 99999), the original string, and the altered
string (RESULT).

RXCHANGE can also be used to transpose the order of
substrings within a string. The following expression, for
instance, takes dates in MM/DD/YY format and changes
their representation to YY/MM/DD:

4

` <$d[$d]>'/'<$d[$d]>'/'<dd> TO =3'/'=1'/'=2

This pattern works by setting up a search pattern for the
complete date and using angle brackets (<>) to tag each
of the three elements -- month, day, and year. The
change expression after the TO then simply rearranges
the elements, starting with the tagged element that was
originally third (YY), and then following this with the first
tagged element (MM) and finally the portion (DD) that
was originally in the second position.

CONCLUSION

These new pattern-matching functions greatly expand the
power and flexibility of base SAS software for
manipulating character strings. Data validation, recoding,
normalization, and string element rearrangement are just
a few of the ways in which these new features can be
used. As more programmers begin to learn about and
use these routines, and as they gain official support and
documentation from SAS Institute, it can be expected that
additional innovative uses for these functions will be
developed.

REFERENCES

SAS Institute Inc., SAS Language: Reference, Version 6,
First Edition, Cary, NC: SAS Institute Inc., 1990. 1042 pp.

SAS Institute Inc., Macro Facility Enhancements for
Release 6.09E and Release 6.11, unpublished 1996 draft.
103 pp. Available on the SAS Institute Web site at
ftp://www.sas.com/techsup/download/base/macroenh.psl.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

ACKNOWLEDGMENTS

The author wishes to thank Ian Whitlock and Roberta
Garrison-Mogren of Westat and Jeff Polzin of SAS
Institute for their assistance before and during the writing
of this paper.

AUTHOR CONTACT INFORMATION

Michael D. Rhoads
Westat
1650 Research Blvd.
Rockville, MD 20850
rhoadsm1@westat.com

	Main TOC

