
Subclassing the FRAME Class to Incorporate Documentation Templates
and Standard Widgets.

Mark Bodt, SUNKEN TREASURE SOFTWARE SYSTEMS LIMITED, New Zealand

Written for SUGI 22 Coders’ Corner.

Abstract

When a new FRAME entry is created using the build window, SAS@
uses the FRAME class that is provided with SA.’YAF software.

Standardizing the look and feeI of an SAS/AF application is one
factor that determines how intuitive an application is. Frames often
have common components such as OK, Cancel, Help buttons etc.
The layout and positioning of these is important to ensure uniformity
across different screens of an application. Features of SAS/AF
release 6.11 (aka Orlando) promote Object Oriented Application
Design and allow developers to develop their own classes to ensure
that visual standards are easily incorporated into an application.

The SAWAF FRAME class is one object that can be subclasses to
aid developing applications that have a uniform look & feel. This
paper will discuss the subclassing of the FRAME class, working
through an example whereon creating a new frame entry, the type of
FRAME (eg dialog box) and the population of widgets in the FRAME
will be demonstrated. Initializing the new FRAME’s SCL entry with a
standard template will also be discussed.

By subclassing the FRAME class in this manner, development time
can be greatly reduced as it is not necessary to define the standard
widgets and frame attribute settings each time a new frame is
created. Uniformity of screens is also encouraged by initializing the
screen layout.

The examples in the paper will detail all the steps and code required
to subclass the FRAME class.

Scope

This paper covers topics discussed during the 20 minute Coders’
Corner presentation, The basics of subclassing the FRAME class
are outlined. However it is not intended to thoroughly discuss the
topic. I am hoping to write an article for a future Observations@ issue
which cover this topic in depth,

Introduction
When a new FRAME entry is created in the Build window, SAS
uses the FRAME class. By default, a blank FRAME is displayed and
the SCL entry is empty. This default behaviour can be overridden by
subclassing the FRAME class, This paper discusses the basics of
creating a subclass of the FRAME Class. The subclass will allow
the developer to specify whether the new FRAME is to initialise as
the default blank FRAME, or as a dialog box with an OK widget. The
subclass will also initialise the SCL window with a standard SCL
template, containing a documentation header etc. As the time set for
the paper is only 20 minutes, the examples will be kept very simple.

Creating a subclass of the FRAME class.
For the purposes of the example, a Iibname of 00P and a catalog
called 00P. OOP are created. In the build window, a new class is
created by using the pull-down menu options Fi/e-New-En@. The
following dialog is displayed:

Enter SUG/ for the Entry name & C/ass for the Entrv bme. Then

Class entry : / (X)P 00P , SW { 1

Description: I SUG I FFY+ME c1 ass example I

Parm t c 1ass: ID fx3HELP . FSP . FRhME +

FRAME developers will be familiar with the use of methods. In
Object Oriented Programming, methods are used to initiate actions
on an object. For example to hide an OK button on a FRAME, the
following code could be used:

Call Notify(’OK,’_hide_r);

In this case the method that is used is the _hide_ method. It is not
the intention discuss 00P concepts in this paper, but it helps to
understand how the objectives will be achieved in this example.

Each Object comes with standard methods. The FRAME class also
has methods. To achieve our objectives, the default behaviour of the
FRAME class when a new FRAME is created needs to be changed.
The FRAME class has several methods that are used at build time.
These methods have a prefix of _B. The methods are:
. BINIT_ Which runs when the build window for the FRAME is

~itialised.
. _BPOST_ Which runs after the build window has been created.,

ie after the _Bl NlT_ method has run.
. BTERM_ Which runs when the Build window for the FRAME

~ closed.
● BUPDATE_ Which runs after the GATTR (General Attributes)

findow for the FRAME is closed.

1

Overriding the _BPOSTINIT_ Method.
In order to modify the behaviour of the FRAME class on creating a
new FRAME entry during a build, the _BINIT_ or _BPOSTINIT_
method needs to be modified. In the example, the _BPOSTINIT_
method is modified. In the dialog displayed above, click on Methods.

All the methods that are applicable to the FRAME class are shown in
the Methods List Box. Click on the _f3POST/IV/T_ method. In the
Source errtry, enter 00P. OOP,FRMMETH.SCL, ensure that the
Run /abe/ irr SCL entry is selected and the label BPOST is entered.
Click on _BPOST/N/T_ in the list box. The _BPOST/N/T_ is shifted
to the top of the list box an has an * indicating that the method is

By carrying out the above actions, we have specified that the SAS
provided _BPOSTINIT_ method is to be overridden, and that the
new method to run is in the catalog entry

00 P,OOP.FRMMETH.SCL under the label BPOST. The next step
is to write the overridden method.

The _BPOSTINIT_ Method.
By double clicking on the_ BPOSTINIT_ in the list box, the Source
Entry, or the Label will display the SCL entry for the method. In the
overridden _BPOSTINIT method, the user is to be prompted to
specify what type of fram= is required and what widgets are required
on the new frame. This is done by using a selection dialog. Firstly
however, an example of a simple message dialog will be built and
various settings will be noted.

Building a Sample Dialog Window.
The only reason for building this dialog is to visualise how the
required dialog box is to look, and once the appearance is as
required, various attributes will be noted for use when creating a
dialog box in the _BPOSTINIT_ method. This dialog is not actually
required for the FRAME subclass, it is merely a simple way to
determine the values of various attributes.
For the example, I have used a simple message dialog as shown
below:

The dialog contains an Information icon, stored as a catalog image
entry, a text widget and an OK pushbutton.
For the example, we want to be able to create this type of dialog
when creating a new .FRAME entry, The easiest way to do this is to
create and populate the frame with widgets, exactly as what you
require. This includes positioning, colours, banner settings etc.

.,,

Q-y-
‘ ‘ Tip: An easy way to set the dialog position, and screen size

attributes is by using the setwsz command. Follow these steps:
1. Re-size the frame to the size you require by clicking & dragging

the lower right hand corner of the frame.
2. Drag the frame to the position that you require on the screen by

clicking & dragging on the window’s title bar.
3. When the frame is the size required and in the correct position

on the screen, enter the command setwsz. This will set the
appropriate General Attributes (GATTR) for the frame.

Note down the window size attributes from the general attributes
(Locals-General Attributes) dialog. In this example they were:
Row Start: 7 Column Start: 14
Number of Rows: 10 Number of Columns: 66

To keep this example simple, only one widget will be created in the
BPOSTINIT method, which will be the OK button. When the OK
button is created in the _BPOSTINIT_ method} the coordinates of
it’s position on the frame need to be specified. This can be
determined by counting the number of rows, columns etc, but an
easy way is to position the OK button where it is required in the
frame as in the above dialog, and write some simple code that
returns the coordinates. In the SCL window for the above dialog, the
following SCL is entered:

Init:

/*this is some temporary code to demonstrate how to
determine the coordinates for a widget. In this example
we will get the coordinates for the OK button. *I

*create a temporary list;
region_ list=makelist ();

*get the region attributes and place them in the
temporary list;
call notify(‘ok’, ‘ get region ‘,region list) ;
*put the list to th~ me=sage w~ndow so tie can examine
the contents;
call putlist (region_list, ‘This is the region list ‘1t

‘for the OK widget’ ,1);
*delete the temporary list;
if listlen (region list)>=0 then

rc=dellist (reg~on_list) ;

Return;

‘Testafing the code lists the OK buttons region list in the message
window as follows:
This is the region list for the OK widget

(uLX=28
uLY=5
LlZX=44
LRY=8
uNITS= ‘FONTS ‘
PARENT = ‘‘

i+ANS PARENT= ‘N ‘
. etc

Of interest are the coordinates of the OK button which are listed as
. ULX (Upper Left X)
. ULY (Upper Left Y)
. LRX (Lower Right X)
● LRY (Lower Right Y)

2

Note down these values,
Those are all the settings that are required from the dialog. The
dialog is no longer needed as it is not used by the subclass that is
being created. This SCL & Frame entry can be closed.

Creating the Selection Dialog.
When a new FRAME entry is created, the user is to be prompted to
specify what type of frame is required and what widgets are required
on the new frame. This is done by using a selection dialog. This

The widgets are as follows:
● A radiobox called Type which returns N for Normal & D for

Dialog
● A Check Box called Okbutton which returns Y for selected or N

for deselected.
● A Pushbutton called OK.
The SCL for the screen is shown below

entry type okbutton S;

Init:
*hide check box. as required;
link type;

Return;

Main:
Return;

Term:
Return;

type :
if type= ,D, then call notify(‘okbutton ‘,‘_unhide 1);—
else call notify(‘okbutto~’, ‘_hide ‘);

return;
—

Compile the frame and close it.

Writing a new _BPOSTINIT_ method.
Open the SCL window for the overridden _BPOSTIN lT_ method.
(Refer to ‘The _BPOSTl NIT_ method’ section on the previous
page). The SCL code that follows is to be entered in this SCL
window. Note that for the purposes of explaining the code, the code
will be discussed in sections.

*define lengths;
length frame classname $35 catname $17

method $200 frametype ok $1;

/’ avoid compilation warnings */
self = self ; *special variable;

‘fram~ =–fram~ ;*special variable;
~metho~ =—metho~ ;*special variable;— —
rc =Fc ;
classname= class name;

In this first part of the SCL entry, the lengths are set for several
variables. To avoid compilation warnings stating that a variable has
not been initialised, some variables are initialised to themselves. The
variables _self_, _frame_, and _method_ are special variables that
are automatically set to the appropriate settings when the SCL
program is executing.

BPOST : method;
*call parent class method;

call SLIper(_self_, ‘ bpostinit_’);—

/*if the frame is new then we need to get the user to
select the required attributes by calling a dialog.
We can detect if the frame is new by checking if it

exists in the catalog. */

*get the name of the new frame;
call send (self_, I GET N~E_’ ,frame) ;— — —

The label that was specified for the overridden _BPOSTINIT_

method was BPOST. In actual fact, this code adds to the original
method. For this reason the original method is called with the
call super(_self_, ‘_bpostini~~; line.

As the overridden _BPOSTINIT method runs every time a frame is
opened, it is necessary to detert%e whether the _BPOSTINIT_

method is running for a new frame or for an existing frame that is to
be edited. The creation of the new frame is only to be done for a new
frame. Whether the frame is a new frame of an existing one is
determined by checking whether the frame entry exists in the
catalog. The _get_name_ method returns the 4 level catalog name of
the frame.

*check if frame does not exist then this is a new frame;
if 110’C cexist (frame) then do; *New Frame;

*prompt user as to what type of frame they require;
call display(‘seltype .frame T,frame typerok) ;

*initialise frame as selected;

if upcase (frametype)=’D’ then do;
*set frame type & size for a dialog window;

call send(self_, t set window size 1,7,14,10,66) ;
call send (~self_, !~set—window—typ e~r,‘DIALOG!);

*switch off command line;
—

call send(self_, ‘ set window banner_lr ‘NONE1) ;

*Set the titie of th~ wi~dow;
—

call send(self_, ‘ set title_l ,—
‘SUGI Frame ~las~ example!);

*Set the background colour of the window;
call send(_self_, ‘_set cOl Or_’ ,

‘background ,‘gz~y!);

/*This is just a sample of the frame attributes
that can be set. Many other attributes can be
set here. *I

end;

In this section of code, if the frame entry does not exist in the
catalog, then the frame entry is new.
The user is prompted to select the type of frame and whether an OK
button is required by calling the selection dialog built previously
(se/type.kme). This returns two variables being:
. frametype D= Dialog N= Normal
. OK Y=Yes an OK button is required, N=No not required.
If the user selected a normal frame, then no frame attributes are
altered. If the user selected Dialog (D) then several frame attributes
need to be set. These are set using methods, which progammatically
change the settings in the General Attributes (GATTR) dialog of the
frame. Note the settings in the _set_window_size_ of 7,14,10,66.
These are the window size settings that were noted in the section
‘Building a Sample Dialog Window’. Only the basic attributes have
been set in this example. There are numerous others that can be set
if required.

if ok= ’Y’ then do;*create OK button selected;
*create a list that contains the button’s
attributes;
attr list=makelisto ;

*crea~e a list that contains the button 1s region
attributes;
region list=makelisto ;

*the ze~ion list is a named sublist of the
attributes list;
rc=setniteml (attr_list,regiOn_list< ‘_re910n_ ‘);

*button coordinates;
u1x=28 ;
uly=5;
lrx=44;
lry=8 ;

3

rc=setnitemn (regiOn_list, ulx, ‘ulx’);
rc=setnitemn (region list,uly, ‘uly’);
rc=setnitemn (region—list, lrx, ‘lrx7);
rc=setnitemn (region—list, lry, ‘lry’);—

Next the positioning of the pushbutton is to be determined. These
settings are required in an attribute list that is used when the
pushbutton widget is created on the frame. Within the attribute list is
a sublist named _region_ which contains the button coordinates.
The above section of code creates the two lists, inserts the _region_
lkiiIItOthe attribute list and creates named list items for the
coordinates. Note that the pushbutton coordinates are the values
that were noted in the section ‘Building a Sample Dialog Window’.

/*the pushbutton class now has to be loaded */

class id=loadclass (!sashelp .fsp.phutton. class,) ;

/*now that the class is loaded, we can create a
widget on the frame based on the coordinates in
the region list. The first argument is the new
widget’s id. The second is the attribute list
fOr the widget. Refer to the new method in the
Class Class SAS documentation=/ –

call send (classed, ‘ new_7,0kid, attr list) ;— —

The pushbutton class is now loaded. The pushbutton class is
located in the catalog entry sashe/p,tsp.pbution. The classid
returned by the Ioadclass function is the id for the loaded class. An
instantiation of the class is created with the _new_ method. The
attributes to use when instantiating the class are contained in the
attribute list (attr_list) which was created in the previous section of
code. The _new_ method returns the widget id of the new

pushbutton. At this stage, the push button widget will be on the
frame.

/’now that the widget is on the frame, further attributes
can be set */

call send (okid, 1 set label_’, ‘OK!);— —

end; *create OK button selected;

Now that the widget has been created and has a widget id (okid),
any other attributes for the widget can be set. The example above
sets the object label to ‘OK.

The above steps demonstrated how the new frame attributes were
set and how a widget can be programmatically placed on the frame.
Only one widget was placed on the frame to keep the example
simple, however more extensive processing can completely populate
a frame with widgets and set all the attributes for each widget.

Creating the SCL template.
Most developers have their own standards for the layout of their SCL
code, which may include a header describing the purpose of the
code, who wrote the code etc. The second half of the _BPOSTINIT_
method looks after the initializing of the new SCL screen from a
template.

/’ Create an SCL program for the frame */

* Create nzme for SCL entry to be copied;

*get the library and catalog of the SCL template;

/’ this will be in the same catalog as the class
therefore we will find out the class name and
extract the library and catalog names */

call send(self_, 1 GET CLASS ‘,class id) ;
call send (~lassid,y GET N~E— T,class name) ;
catname=sc an(classn~me, y, 1 ‘T1I! 1 II

scan (classname,2, T 1,;

The above section of code determines the catalog member name of
the SCL template. For this example, the template is held in the same
catalog as the SUGI FRAME class. The catalog name is determined
by getting the name of the class. This returns a four level catalog
name for the class. As only the two level time is needed, the catalog
name (catname) is extracted using the scan function.

The name of the SCL template is held in an instance variable. The
instance variable will be set later in this paper. It is a value that is
stored with the class,

*assemble new SCL entry name;
scl=substr (frame,I,length (frame)–5) I1TSCL!;

/*if the SCL entry does not exist then create it
based on the SCL template. *I

if not cexist(scl) then do;
rc=copy(scl template, SC1, lCATALOG1);—
if rc ne O then do;*copy failed - er~or handling;

Sysnlsg=sysmsg();
put ‘ERROR: New SCL entry , SCI
‘ could not be created. 1;
put ‘ The system message was: I sysmsg;

end;*copy failed – error handling;
else do;

*rename SCL entry description;
scll=scan(scl,3, 1.,);/*g~t o~~ level ~a,ne*/
rc=rename (sc1,SC1l, ‘CATUOG, ,‘sCL entzy for ,11

scan (frame,3,r. r)lI’.FRAME T);
end;

end; *create SCL entry;
end; *new frame;

endmethod;

The name of the SCL entry associated with the frame is built by
using the four level frame name, stripping of the FRAME part of the
name and replacing it with SCL. The new SCL entry name is
checked to ensure that it does not exist, to avoid overwriting an
existing entry. If the entry does not exist then the template is copied
to the name of the new SCL entry. Lastly, the description for the
SCL entry is set to ‘SCL entry forFRAME’.

Once the method code has been entered, compile it and close the
SCL & the Methods window. In the Class window, click on hzstance
Variab/es. The Instance variables dialog is displayed as shown

The list box lists the standard instance va~ables for the FRAME
class. In this example, an additional instance variable is required:
SCL_TEMPLATE. Click on Actions-Add mode on and enter the
values for Name (scl_template) and Va/ue (scltempl.scl) as shown
below. Ensure that Type is set to character.

*assemble new SCL entry name;
SC1 template= getnitemc (self ,‘SCL TEMPLATE!);
scl—template=compress (c~tnam~l IT ‘~1SC1 template) ;— —

Once these settings have been completed, OK out of the instance
variables dialog and also out of the Class entry window.

This concludes the creating of the SUGI FRAME subclass. The last
two things that need to be done are to put together an SCL template
and to define the class in the Resource entry.

The SCL Template.
The SCL template is simply an SCL entry that contains any code
that is to be used as a template in the new SCL window when
creating a new FRAME entry. The entry must have the same name
as specified in the instance variable SCf._TErWLATE ie
SCLTEMPL,SCL
The contents of the SCL entry SCLTEMPL,SCL for the example is:

* *******,***,, * *,*,,******.* *****,**,,**** * ****,******,* ;
* Sunken Treasure Software Systems Liznited. *;
* --------------------------------------.–– *;

* 73 Pine St, Mt Eden, Auckland, New Zealand. *;

* Ph: (025) 725 386 Fax: +64 9 620 9079 *;

* Email: markbodtl ?stss. co.nz *;
* *;

* SAS Institute (NZ) Quality Partner x;
* *;

*******%****** ************** ************** **********.*** ;

* Function: *;
* *;

* *;

* Written by: M.R.Bodt Date: *;
* *;

*************** *************** *************** ***********;

* Modifications: *;

* *;

*************** *************** *************** *%*********;

*define lengths;

/’ avoid compilation warnings ‘/

Init:

Return;

Main:

Return;

Term:

Return;

Registering the New Subclass in the Resource Entry.
Forthe example, acopyof the default resource entry will be made
and the copy modified, so as not to affect the original resource entry.
The resource entry sashe/p.fsp.buld. resource k copied to the
catalog where the SUGI FRAME class has been developed:
Oop.oop
In the build window, double click onthebuild,resource entry in the
oop.oop catalog. The resource window is displayed as shown below:

~

Cr itscal Success FactorP,. ture

Data #pplicat,on Objsct, s proxy &je. t

To add the new SUGI FRAME class to the resource entry, click on
Actions-Add Select OOP.OOPSUGI.CLASS and click on OK. The
class is then added to the bottom of the list in the list box. Scroll to

The new entry dialog is shown and testis entered by the user, On
clicking OK the dialog is closed and the Se/ect a Frame Type dialog
is displayed:

5

	Main TOC

