
1

Errors, Warnings, and Notes (Oh My)
 A Practical Guide to Debugging SAS Programs

Susan J. Slaughter, University of California Extension, Davis, CA
Lora D. Delwiche, IT/ANSA, University of California, Davis, CA

Why a paper on debugging SAS
programs?

Most of the documentation about the SAS System
doesn’t even mention bugs, as if debugging wasn’t
worth talking about. This paper, on the other hand,
is based on the belief that debugging is a good way
to get insight into how SAS works. Once you
understand why you got an error, you’ll be better
able to avoid it in the future. In other words, people
who are good debuggers are good programmers.

Bugs can have different origins; some are
accidentally built into the software by developers,
others are introduced by programmers. Recently,
one of the authors of this paper had a conversation
about this topic with her father who is an aerospace
engineer but not knowledgeable about the SAS
System. The conversation went like this:

Susan: I’m writing about how to debug SAS
programs.

Father: I thought they would have gotten the bugs
out of SAS by now.

Fortunately, SAS Institute has done a good job of
getting the bugs out of SAS software.
Unfortunately, nobody has yet figured out how to
get the bugs out of people.1

The SAS System even fixes some mistakes made by
programmers. For example, SAS has gotten so smart
over the years that it is now almost impossible to get
an error by misspelling a keyword. If you misspell a
keyword in a SAS program, SAS will almost always
figure out what you meant to say and run the
statement correctly in spite of your poor typing skills.
But SAS can’t fix all programming errors, so this
paper discusses some of the most common bugs
and how to exterminate them.

1 “Debugging Myself” by Hayes (1995) contains an
entertaining discussion of human bugs.

What is a bug?

Scientists have identified approximately 1 1/4 million
species of animals. Of those about 3/4, or 932,000,
are insects. However, only the 82,000 species
belonging to the order Hemiptera are considered by
scientists to be “true bugs” (McGavin, 1993).
Fortunately, a taxonomy of SAS bugs would not
identify nearly so many species.

Entomology aside, a bug is an error in a computer
program that causes an undesirable, usually
unexpected, result. One way of classifying
computer bugs is to divide them into three types of
errors: syntax, data, and logic. Syntax errors result
from failing to follow SAS’s rules about the way
keywords are put together to make statements. With
data errors you have a program that is syntactically
sound but fails because of data values that do not fit
the program as it was written. With logic errors you
have a program that runs, and data that fits, but the
result is wrong because the program does
something different than you intended.

The bugs discussed in this paper can be classified
as:

Syntax
• missing semicolon
• uninitialized variable and variable not found

Data
• missing values were generated
• numeric to character conversion
• invalid data
• character field is truncated

Logic
• DATA step produces wrong results but no error

message.

Listen to the SAS Log

The first and most important rule in debugging SAS
programs is to always, always check the SAS log.
After running a SAS program many people turn
immediately to the output. This is understandable,

2

but not advisable. It is entirely possible and sooner
of later it happens to all of us to get output that
looks fine but is totally bogus. Often checking the
SAS log is the only way to know whether a program
has run properly.

SAS logs contain 3 types of messages: errors,
warnings, and notes.

Errors

If you get an error message in your program, you will
know it. Error messages get your attention because
SAS will not run a job with one of these bugs. Error
messages are not quiet, discrete, or subtle; they are
the loud, rabble-rousers of SAS messages. This
message, for example:

ERROR: No CARDS or INFILE statement.

stops a program dead in its tracks. This message
tells you that SAS could not find any data to read with
the INPUT statement.

Warnings

Warnings are less dire than errors. SAS prints
warnings in your log and then goes ahead and runs
the job anyway. Many people, including some
professional programmers, try to ignore warnings.
Don’t you be one of them. Sometimes the situations
that result in warnings are indeed harmless; other
times they indicate grave problems which, if
unresolved, will render your results worthless. You
should check all warnings to see if they are harmless
or hazardous. This message:

WARNING: The data set WORK.SPECIES may be

incomplete. When this step was stopped there

were 0 observations and 3 variables.

tells you that SAS did run a DATA step, but for some
reason there are zero observations. This could be
OK, but generally speaking when you go to the
trouble of creating a data set, you want some data in
it.

Notes

Notes are the most innocuous messages that SAS
writes in your SAS log. They simply inform you of the
status of your program. Notes contain information
such as the number of records input from an external
file, or the number of observations written in a SAS

data set. Don’t be fooled by demure little notes; they
are a critically important way of catching errors.
These messages:

NOTE: 29 records were read from the infile

'bugspeci.dat'.

 The minimum record length was 27.

 The maximum record length was 27.

NOTE: The data set WORK.SPECIES has 14

observations and 3 variables.

tell you that while 29 records where read from a raw
data file, the resulting SAS data set contains only 14
observations. If you were expecting only 14
observations, then this would be fine. But if you
were expecting 29 observations, one observation
for each input record, then this would tip you off that
something went wrong.

Another type of note can help you write efficient
programs. At the end of every step SAS prints a
note similar to this:

NOTE: The PROCEDURE PRINT used 6.98 seconds.

If you are running a one-time report, you may not
care, but if you run the same program over and over
then you may want to check your notes to see which
steps can benefit the most from streamlining.

The species data

The data for the next few examples appear in Table
1. Each observation contains data about one order
in the class Insecta (La Plante, 1996). The variables
are the name of the order (ORDER), the number of
species in that order found in North America
(NASP), and the number of species found outside
North America (OUTSP).

3

Table 1 Species data.
 ORDER NASP OUTSP

Thysanura 20 230
Diplura 30 370
Protura 30 70
Collembola 325 1675
Ephemeroptera 550 950
Odonata 425 4575
Plecoptera 34 1266
Grylloblattodea . 6
Saltatoria 110 21890
Phasmida . .
Dictyptera . .
Isoptera 45 .
Dermaptera 20 1080
Embioptera 10 140
Psocoptera 150 950
Zoraptera 2 17
Mallophaga 320 2280
Anoplura 65 285
Thysanoptera 625 2375
Hemiptera 8750 46250
Neuroptera 350 4350
Mecoptera 70 280
Trichoptera 950 3550
Lepidoptera 10500 189500
Diptera 16700 68300
Siphonaptera 250 850
Hymenoptera 14600 90400
Coleoptera 27000 530000
Strepsiptera 120 180

The missing semicolon

Even the newest of SAS programmers knows that
every SAS statement ends with a semicolon; so it is
ironic that one of the most common bugs is the
missing semicolon.

While most SAS error messages are clear and easy
to understand, the hallmark of a missing semicolon is
confusion. Missing semicolons often produce a long
stream of baffling messages. In the following
example, the absence of a semicolon at the end of
the DATA statement causes two error messages,
three warnings, and a suspicious note.

1 DATA species
2 INFILE 'bugspeci.dat';

 200
3 INPUT order $ 1-15 nasp outsp;
4 RUN;

ERROR 200-322: The symbol is not recognized.
ERROR: No CARDS or INFILE statement.
NOTE: The SAS System stopped processing this

step because of errors.
WARNING: The data set WORK.SPECIES may be

incomplete. When this step was stopped
there were 0 observations and 3 variables.

WARNING: Data set WORK.SPECIES was not
replaced because this step was stopped.

WARNING: The data set WORK.INFILE may be
incomplete. When this step was stopped
there were 0 observations and 3 variables.

The message “No CARDS or INFILE statement” is
especially odd since there obviously is an INFILE
statement. Without a semicolon the DATA
statement becomes concatenated with the INFILE
statement. SAS then interprets the keyword INFILE
as a data set name in the DATA statement resulting
in the warning “data set WORK.INFILE may be
incomplete.”

If you find that the messages in your log make no
sense, check for missing semicolons.

Uninitialized variable and variable
not found

These two related messages tell you that SAS was
unable to find one of your variables. The first time
you see one of these messages you will probably
wonder what SAS is babbling about, after all you
remember creating the variable.

In the following SAS log, the INPUT statement reads
the species data using the variable name NASP for
the number of species in North America. Then a
subsetting IF statement contains the misspelled
variable name NASPEC.

1 DATA species (KEEP = order worldsp);

2 INFILE 'bugspeci.dat';

3 INPUT order $ 1-15 nasp outsp;

4 IF naspec > 100;

5 worldsp = nasp + outsp;

6 RUN;

NOTE: Variable NASPEC is uninitialized.

When SAS is unable to find a variable in a DATA
step, SAS prints the variable-is-uninitialized
message. Then SAS creates the variable, sets its
values to missing for all observations, and runs the
DATA step. It’s nice that SAS runs the DATA step,
but you probably don’t want the variable to have
missing values for all observations.

A more serious problem ensues when SAS is unable
to find a variable in a PROC step. In the following
example, SAS cannot find the variable NASP. This
variable did exist, but was accidentally dropped in the
previous DATA step because it was not listed in the
KEEP option. SAS prints the variable-not-found
message and does not run the procedure at all.

4

7 PROC PRINT DATA=species;
8 VAR order nasp worldsp;
ERROR: Variable NASP not found.
9 RUN;

Another version of the variable-not-found message
appears as a warning when the problem occurs in a
less critical statement such as a LABEL statement.
Because this is a warning, not an error, SAS runs the
step.

Possible causes of the variable-is-uninitialized and
variable-not-found messages include:

• A misspelled variable name.
• Using a variable that has been dropped.
• Using the wrong data set.
• A logic error, such as using a variable before it is
created.

Missing values were generated

The missing-values-were-generated note tells you
that SAS was unable to compute the value of a new
variable because of existing missing values in your
data. This may not indicate a problem, but it warrants
an investigation.

In the following example, SAS computes the variable
WORLDSP by adding together NASP and OUTSP.

1 DATA species;
2 INFILE 'bugspeci.dat';
3 INPUT order $ 1-15 nasp outsp;
4 worldsp = nasp + outsp;
5 RUN;

NOTE: The infile 'bugspeci.dat' is:
 FILENAME=C:\BUGSPECI.DAT,RECFM=V,LRECL=256

NOTE: 29 records were read from the infile
 'bugspeci.dat'.
 The minimum record length was 27.
 The maximum record length was 27.
NOTE: Missing values were generated as a result
 of performing an operation on missing
 values.
 Each place is given by: (Number of times)
 at (Line):(Column).
 4 at 4:19
NOTE: The data set WORK.SPECIES has 29
 observations and 4 variables.
NOTE: The DATA statement used 5.42 seconds.

The missing-values-were-generated note tells you
that SAS assigned missing values to four
observations at line 4 column 19 of the program. A
quick look back at the species data shows that 4
observations have missing data for NASP or OUTSP.

The SUM function and its cousin the MEAN function
can lessen this problem because they use only non-

missing values. For the preceding program you
would use this statement:

worldsp = SUM(nasp, outsp);

However, if you have an observation with missing
values for all of the variables named in the function,
then the result is missing too and you will still get the
missing-values note for that observation.

The insecticide data

Data about the effectiveness of insecticides appears
in Table 2 (based on Conklin, 1996). The variables
are the name of the insecticide (INSTCIDE), its
residual effect on insects (TOXINSCT), and its
toxicity to mammals (TOXMAMML). The toxicity to
insects and mammals are both rated on a scale of 0 to
6 where 0 indicates no effect and 6 means extreme
toxicity.

Table 2 Insecticide data.

 INSTCIDE TOXINSCT TOXMAMML

DDT 6 3
Malathion 4 1
Pyrethrins 2 1
Sulfur 6 0
Chlordane 6 4
Diazinon 4 4
Heptachlor 6 5
Nicotine sulfate 1 6

Nicotine sulfate is a lousy insecticide. It has almost
no residual effect against insects, but is extremely
toxic to people.

Numeric to character conversion

If you accidentally mix numeric and character
variables, SAS will convert the data from one type to
the other, run the program anyway, and print the
values-have-been-converted note.

In the following example, the variables TOXINSCT
and TOXMAMML are input as character variables and
then used in an arithmetic expression. The note tells
you that SAS converted data at columns 10 and 21
in line 4 of the program. These columns correspond
to the variable names TOXINSCT and TOXMAMML.

5

1 DATA poisons;
2 INFILE 'bugtox.dat';
3 INPUT instcide $ 1-16 toxinsct $
 18 toxmamml $ 20;
4 dif = toxinsct - toxmamml;
5 RUN;

NOTE: Character values have been converted to
numeric values at the places given by:
(Line):(Column).

 4:10 4:21

It’s nice that SAS tries to fix the problem for you, but
this doesn’t mean that you can ignore the message.
If you let SAS convert your variables, it can come
back to haunt you at a later time when the variable
that you think is numeric is now character or vice
versa. If a variable needs to be converted, you
should do it yourself, explicitly, so there are no
surprises.

There is a bonus to doing the conversion yourself.
Your programs will run faster because it takes less
time for SAS to do an explicit conversion than for
SAS to figure out how to handle it.

To convert from character to numeric you use the
INPUT function. To convert from numeric to
character, you use the PUT function. The basic
forms of these statements are:

 character to numeric :
newvar = INPUT(oldvar, informat.);

 numeric to character :
newvar = PUT(oldvar, format.);

In either case, the informat or format must be
numeric. To convert the TOXINSCT and
TOXMAMML in the program above, you could add
these statements:

newtoxi = INPUT(toxinsct, 1.);
newtoxm = INPUT(toxmamml, 1.);

The new variables will have a length of 8 bytes.

Possible causes of the values-have-been converted
message include:

• Setting a variable equal to another variable of a
different type.

• Using a variable with the wrong type of
function.

• Using a character variable in an arithmetic
expression.

Invalid data

Once you know how to read the invalid-data
message, you’ll know exactly what the problem is
every time. Whenever SAS encounters invalid data
while reading with an INPUT statement, SAS sets the
problematic variable to missing for that observation
and then prints a detailed message like this:

1 DATA invalid;

2 INFILE 'bugtox.dat';

3 INPUT toxname $ 1-15 toxinsct toxmamml;

4 RUN;

NOTE: The infile 'bugtox.dat' is:

 FILENAME=C:\bugtox.dat,RECFM=V,LRECL=256

NOTE: Invalid data for TOXINSCT in line 8 16-16

RULE: ----+----1----+----2----+----3----+--

8 Nicotine sulfate 1 6

TOXNAME=Nicotine sulfat TOXINSCT=. TOXMAMML=1

ERROR=1 _N_=8

The first line of this message is a note telling you
which variable had a problem, TOXINSCT, in this
case; the line of the raw data file at which the problem
occurred, line 8; and the columns SAS was trying to
read, column 16. Next SAS prints a line labeled
RULE which is a handy ruler for counting columns.
On this ruler 1 indicates the 10th column, 2 the 20th,
and so on. Then SAS dumps the actual line of raw
data so you can see the little troublemaker for
yourself. Finally, SAS prints the values of variables
as it has read them.

In this case, you can see that column 16 contains the
letter “e” as the value for TOXINSCT which is a
numeric variable. The problem is that the INPUT
statement tells SAS to read TOXNAME from columns
1-15, but it should say 1-16.

Occasionally programmers get invalid-data messages
because they are trying to read unprintable or other
non-standard characters such as carriage returns. At
those times SAS prints two more lines of data
labeled ZONE and NUMR. These lines are the
hexadecimal representation of the raw data. You
don’t have to be able to read hexadecimal to be able
to interpret this. SAS prints the data this way
because the normal 10 numerals and 26 letters don’t
provide enough values to represent all computer
symbols uniquely. Hexadecimal uses two characters
to represent each symbol. To read hexadecimal,
take a digit from the ZONE line together with the
corresponding digit from the NUMR line.

6

The following invalid-data message is the result of
trying to read a Microsoft Word file without first saving
it as a text file. Two characters look like periods, but
in fact “2E” is a standard period while“11” is some
other non-standard character.

NOTE: Invalid data for BADDATA in line 1 1-9.

RULE: ----+----1----+----2----+----3----+---

1 CHAR 65._Ï.à¡±
 ZONE 332DC1EAB

 NUMR 65E0F1011

BADDATA=. _ERROR_=1 _N_=1

Possible causes of the invalid-data message include:
• Forgetting to specify that a variable is character
(SAS assumes it is numeric).

• Incorrect column specifications producing
embedded spaces in numeric data.

• Incorrect column specifications producing
character values for a numeric variable.

• List-style data with two periods in a row and no
space in between.

• Failing to mark a missing value with a period in
list-style input, causing SAS to read the data for
the next variable.

• Using the letter O instead of the number zero.
• Special characters such as carriage-return-line-
feed and page-feed.

• Invalid dates (such as September 31) read with
a date informat.

Character field truncated

This bug does not generate any error messages or
suspicious notes, but you know that you have this
problem when you print your data and find the end of
a character variable has been lopped off.

The length of a character variable is set when SAS
first encounters the variable, typically in an INPUT or
assignment statement. If you use list-style input, the
default length for character variables is eight bytes.
With column-style input it is the number of columns
you specify. With formatted-style input it is the
length of the informat. If you create a new variable
with assignment statements, SAS sets its length
based on the first occurrence of the variable.

In the following example, the variable TOXICITY is
first set equal to “high”. Therefore SAS gives
TOXICITY a length of four bytes, and any
subsequent longer values will be truncated.

1 DATA poisons;

2 INFILE 'bugtox.dat';

3 INPUT instcide $ 1-16 toxinsct toxmamml;

4 IF toxmamml >= 5 THEN toxicity = 'high';

5 ELSE IF toxmamml >= 3 THEN

 toxicity = 'moderate';

6 ELSE IF toxmamml >= 1 THEN

 toxicity = 'low';

7 ELSE toxicity = 'no effect';

8 RUN;

Using a PROC PRINT you can see the truncated
values for TOXICITY.

The SAS System 1

OBS INSTCIDE TOXMAMML TOXICITY

 1 DDT 3 mode
 2 Malathion 1 low
 3 Pyrethrins 1 low
 4 Sulfur 0 no e
 5 Chlordane 4 mode
 6 Diazinon 4 mode
 7 Heptachlor 5 high
 8 Nicotine sulfate 6 high

You could fix this problem by padding the value
“high” with blanks, but a more elegant and explicit
solution is to use the LENGTH statement. Insert this
statement in the DATA step before the first
occurrence of the variable TOXICITY.

LENGTH toxicity $9;

The new output is not truncated.

The SAS System 2

OBS INSTCIDE TOXMAMML TOXICITY

 1 DDT 3 moderate
 2 Malathion 1 low
 3 Pyrethrins 1 low
 4 Sulfur 0 no effect
 5 Chlordane 4 moderate
 6 Diazinon 4 moderate
 7 Heptachlor 5 high
 8 Nicotine sulfate 6 high

Perhaps some future release of SAS will warn you
when character values are truncated, but for now you
are on your own.

7

The moth flight data

Data about the flight of 15 individual moths appears
in Table 3 (Callahan, 1971). The variables are the
moth’s species(SPECIES), its family (FAMILY, where
n=noctid and s=sphingid), sex (SEX), weight in
grams (WEIGHT), and lift in grams at three, six, and
twelve degrees of pitch (LIFT3, LIFT6, and LIFT12).

Table 3 Moth flight data.

corn earworm n m 0.107 0.118 0.168 0.249
corn earworm n m 0.226 0.131 0.186 0.281
corn earworm n f 0.161 0.108 0.150 0.232
corn earworm n f 0.239 0.154 0.218 0.327
corn earworm n f 0.279 0.158 0.222 0.336
fall armyworm n m 0.140 0.113 0.159 0.241
fall armyworm n m 0.139 0.113 0.159 0.241
fall armyworm n f 0.156 0.131 0.186 0.277
white-lined s m 0.600 0.322 0.458 0.681
white-lined s m 0.322 0.313 0.436 0.654
white-lined s f 0.660 0.276 0.386 0.581
white-lined s f 0.853 0.336 0.472 0.708
tobacco hornworm s f 1.199 0.721 1.017 1.525
tobacco hornworm s f 1.604 0.617 0.872 1.307
satellite s f 1.726 0.767 1.076 1.616

DATA step produces wrong results
but no error

Sometimes a DATA step can seem like a “black box”.
You know what goes in, and you know what comes
out, but what goes on in the middle can be a
mystery. If what comes out is not what you want then
you have a bug. Problems like this are really logic
errors. Somewhere along the way SAS got the
wrong instruction a classic case of the computer
doing what you tell it to do, not what you want.

An example

For a moth, a bird, or even a supersonic jet, flight
occurs when lift exceeds weight. Using the moth
flight data and a series of IF-THEN/ELSE statements,
the following program finds the angle of attack at
which each moth can sustain flight. The new variable
ANGLE equals 3, 6, or 12 depending on the angle at
which the moth’s lift exceeds its weight.

DATA moths;
 INFILE 'bugwing.dat';
 INPUT species $ 1-16 family $ sex $ weight
 lift3 lift6 lift12;
 IF lift3 >= weight THEN angle = 3;
 ELSE IF lift6 >= weight THEN angle = 6;
 ELSE IF lift12 >= weight THEN angle = 12;

PROC PRINT DATA=moths;
 TITLE 'Angle of Attack to Sustain Flight';
 VAR species angle;
RUN;

This program runs fine (without errors, warnings, or
suspicious notes), but looking at the following
output you can see several observations have
missing values for ANGLE.

Angle of Attack to Sustain Flight 1

OBS SPECIES ANGLE

 1 corn earworm 3
 2 corn earworm 12
 3 corn earworm 12
 4 corn earworm 12
 5 corn earworm 12
 6 fall armyworm 6
 7 fall armyworm 6
 8 fall armyworm 6
 9 white-lined 12
10 white-lined 6
11 white-lined .
12 white-lined .
13 tobacco hornworm 12
14 tobacco hornworm .
15 satellite .

One way to figure out what went wrong is just to look
at the program and the output from PROC PRINT.
When that doesn’t work, then there are two ways to
solve the mystery: the traditional method using PUT
statements, and the new DATA step debugger.

Using PUT statements

PUT statements are like INPUT statements in
reverse. Instead of reading data, they write it. The
basic idea behind using PUT statements to debug a
DATA step is to print data values at intermediate
points in the DATA step. When used without a FILE
statement, PUT statements write values in the log, a
handy place for them to be for debugging. The
following statement tells SAS to print the values of
selected variables for every observation with a
missing value for ANGLE.

IF angle = . THEN PUT weight= lift3= lift6=

lift12=;

After inserting this statement in the program and
rerunning it, the log looks like this:

8

1 DATA moths;
2 INFILE 'bugwing.dat';
3 INPUT species $ 1-16 family $ sex $ weight
4 lift3 lift6 lift12;
5 IF lift3 >= weight THEN angle = 3;
6 ELSE IF lift6 >= weight THEN angle = 6;
7 ELSE IF lift12 >= weight THEN angle = 12;
8 IF angle = . THEN PUT weight= lift3=
9 lift6= lift12=;
10 RUN;

NOTE: The infile 'bugwing.dat' is:
 FILENAME=C:\bugwing.dat,RECFM=V,LRECL=256

WEIGHT=0.628 LIFT3=0.236 LIFT6=0.331
LIFT12=0.504
WEIGHT=0.66 LIFT3=0.276 LIFT6=0.386
LIFT12=0.581
WEIGHT=0.853 LIFT3=0.336 LIFT6=0.472
LIFT12=0.708
WEIGHT=1.604 LIFT3=0.617 LIFT6=0.872
LIFT12=1.307
WEIGHT=1.726 LIFT3=0.767 LIFT6=1.076
LIFT12=1.616
NOTE: 15 records were read from the infile
 'bugwing.dat'.
 The minimum record length was 48.
 The maximum record length was 48.
NOTE: The data set WORK.MOTHS has 15
 observations and 9 variables.
NOTE: The DATA statement used 1.86 seconds.

Looking at the data values in the log, you can see
that lift never exceeds weight for these moths.
Apparently, these moths need an angle of attack
greater than 12 to get off the ground. The IF-
THEN/ELSE series should be rewritten so that it
takes into account the possibility that some moths
may not sustain flight at 12 degrees.

In this example, the problem was simple enough that
you could have solved it by using a PROC PRINT
after the DATA step. In real life, the PUT statement
technique is most useful when you have long and
convoluted DATA steps, especially if that DATA step
was written by someone else and you are handed
the whole step rather than having the luxury of
building it piece by piece.

Using the DATA step debugger

The DATA step debugger offers SAS programmers
a new way to investigate logic errors. Available on an
“experimental” basis in releases 6.06 to 6.10, the
debugger became officially supported with release
6.11.

SAS runs programs in two phases. First SAS
compiles your program, then SAS executes your
program. Syntax errors and some data errors such as
numeric to character conversions occur at compile
time. Other errors such as logic errors and some data
errors compile just fine, but cause you to get bad
results. These are the errors that the DATA step
debugger can help identify.

Space limits do not allow for a detailed discussion of
the DATA step debugger, but the information here
should be enough to get you started. For more
information see SAS Software: Changes and
Enhancements, Release 6.11.

To invoke the debugger, add “/ DEBUG” to the end
of your DATA statement. Then run the DATA step in
display manager. For the preceding example you
would submit this.

DATA moths / DEBUG;

 INFILE 'bugwing.dat';

 INPUT species $ 1-16 family $ sex $ weight

 lift3 lift6 lift12;

 IF lift3 >= weight THEN angle = 3;

 ELSE IF lift6 >= weight THEN angle = 6;

 ELSE IF lift12 >= weight THEN angle = 12;

RUN;

After you submit the DATA step, two windows will
appear. These are the DEBUGGER LOG window
and the DEBUGGER SOURCE window. The
DEBUGGER LOG window contains messages from
the debugger and a command line. The SOURCE
window contains your DATA step statements with
the current line highlighted. By watching the
highlighting move, you can see how SAS executes
your program. SAS executes each-line of your
program for the first observation, then returns to the
top of the DATA step for the second observation,
and so on.

9

Figure 1 DATA Step Debugger screen.

DEBUGGER LOG

DATA STEP Source Level Debugger

Stopped at line 2 column 1

> STEP

DEBUGGER SOURCE
1 DATA moths / DEBUG;

2 INFILE ‘bugwing.dat’;

3 INPUT species $ 1-6 family $ sex $ weight

lift3 lift6 lift12;

4 IF lift3 >= weight THEN angle = 3;

5 ELSE IF lift6 >= weight THEN angle = 6;

6 ELSE IF lift12 >= weight THEN ANGLE = 12;

By using commands you can control how many lines
SAS executes, and you can print the current values
of variables you specify. Some of the basic
commands that you can issue appear in the following
table.

Commands
EXAMINE
variable-list

Prints the values of specified
variables. Must specify
variable names or _ALL_.

STEP Executes one statement.
<return> Executes one statement.
SET variable =
value

Assigns a new value to a
specified variable.

BREAK
linenumber

Tells SAS to execute
statements up to the line
number specified. Use the
GO command to begin
execution.

GO Starts or resumes execution
of the DATA step

QUIT Ends a debugger session.

To get a feel for the debugger, you may want to start
by stepping through your DATA step line by line.
When you want to know the current values of
variables, issue an EXAMINE command such as

EXAMINE _ALL_

for all variables, or

EXAMINE weight lift3 lift6 lift12 angle

to choose specific variables. To end your
debugging session enter the command

QUIT

DATA step debugger vs. PUT statements

Some programmers will probably find the DATA step
debugger very useful, others may choose to stay
with the traditional PUT statement method.

The debugger is designed to be used in display
manager, so people who normally use SAS in batch
will probably prefer the PUT statement method. The
debugger can work in batch in some environments
(by popping you into an interactive window), but it
makes more sense for people who work interactively.

Since the DATA step debugger is more interactive, it
is better suited to an exploratory approach, printing a
few data values here and there, making decisions as
you go. If you have a general idea of which part of
your DATA step is causing the problem, then you
may find it simpler to use PUT statements.

Some logic errors may be easier to debug by looking
at more than one observation at a time. In those
cases the observation-by-observation nature of the
debugger may give less insight than the PUT
statement method.

One nice bonus of the DATA step debugger is the
ability to watch SAS execute a DATA step line-by-
line and observation-by-observation. For a
beginner, this alone could be very enlightening.

CONCLUSIONS

This paper has discussed some of the most common
SAS programming bugs and how to exterminate
them. For discussions of other SAS bugs see
Delwiche and Slaughter (1995) and Carpenter
(1996).

You should always check your SAS log even when
the output looks fine. Notes are just as important as
error messages and warnings in debugging your
programs. Once you understand why you got an
error, you’ll be better able to avoid it in the future.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ®
indicates USA registration.

References

Callahan, Philip S. (1971). Insects and How They
Function. Holiday House, NY.

10

Carpenter, Arthur L (1996). Programming for Job
Security: Tips and Techniques to Maximize Your
Indispensability. Proceedings of the Twenty-
First Annual SAS Users Group International
Conference, 19, pp. 1637-1640.

Conklin, Gladys (1996). Insects. Encyclopedia
Americana, International Edition (1996). Grolier,
Danbury, CT, vol. 15, pp. 197-208.

Delwiche, Lora D. and Susan J. Slaughter (1995).
The Little SAS Book: A Primer. SAS Institute,
Cary, NC.

Hayes, Brian (1995). Debugging Myself. American
Scientist, 83, pp. 404-408.

LaPlante, Albert A. (1996). Insect Control.
Encyclopedia Americana, International Edition
(1996). Grolier, Danbury, CT, vol. 15, pp. 197-
208.

McGavin, George C. (1993). Bugs of the World.
Facts on File, Inc., New York.

SAS Software: Changes and Enhancements,
Release 6.11 (1995). SAS Institute, Cary, NC.

About the Authors

Lora Delwiche and Susan Slaughter are also the
authors of The Little SAS Book: A Primer published
by SAS Institute, and may be contacted at:

Susan J. Slaughter (916) 756-8434
slslaughter@ucdavis.edu

Lora D. Delwiche (916) 752-6285
llddelwiche@ucdavis.edu

	Main TOC

