
Introduction to Using PROC SQL
Thomas J. Winn Jr., Texas State Comptroller’s Office, Austin, Texas

ABSTRACT

This tutorial presentation will explain the basic syntax of the
SQL Procedure. PROC SQL is the SAS @ System’s
implementation of Structured Query Language, which is
used for retrieving and updating data in relational tables and
databases. PROC SQL also has substantial data
manipulation and summarization capabilities. PROC SQL
statements could be used to replace much traditional SAS
code (DATA step, PROC SORT, and PROC MEANS steps),
resulting in less programming time and greater computer
efficiency. Most of the illustrative examp[es in this
presentation pertain to DB2 tables which are used for tax
administration purposes at the author’s agency. The
principles underlying each example should transfer readily to
other settings.

FIRST STEPS TOWARD UNDERSTANDING
PROC SQL

Relational Database Management Systems

A relational database is an organized collection of
information in which the data are arranged into a collection
of two-dimensional tables, each containing one or more
rows and columns, and conforming to certain rules. The
data are logically related, based upon their values, and not
according to some other data structure.

Information in a relational database management system is
managed using a specific language comprised of a small but
elegant set of operators. This language is called Structured
Query Language (SQL).

Sometimes, I may refer to SAS data sets (SAS data files
and SAS data views) as “tables”, to SAS variables as
“columns”, and to observations as “rows”. Strictly speaking,
these aren’t exactly the same things (there exist tables
which aren’t SAS data sets, and views contain no data
themselves) but the underlying concepts are certainly
comparable, at least. If most of your work mostly involves
SAS data files, then whenever I refer to a “table”, you may
substitute “SAS data file; and when I write “column”,
substitute “SAS variable”; and when I say “row”, substitute
“SAS observation”.

Structured Query Language (SQL)

SQL is a language that talks to a relational database
management system. It is a standard. There are many
implementations of SQL For example, each RDBMS may
use its own particular “dialect” of SQL. Many programmers
admire SQL because it is compact and powerful. However,
these desirable characteristics also make SQL a little bit
tricky to use. SQL supports all of the standard operations
one might need to manage a database. Among other
provisions, for example, SQL allows such familiar actions as
CREATE, SELECT, INSERT, UPDATE, DELETE, and
DROP.

The theoretical foundation for relational database
management systems is mathematical set theory. This well-
defined foundation makes it possible to focus on the logical
structure of the data, rather than on the underlying physical
layout of the database.

Unlike many other data base programming languages, SQL
is non-procedural. SQL is a high-level language. SQL is
used to inform the DBMS about what data are needed (the
desired end result), but not about a particular method (the
where and the how) for dealing with the data. The access
method specifics are internal to the DBMS. The query
optimizer chooses an efficient strategy for achieving the
specified objective.

The SAS SQL Procedure

SAS has an implementation of Structured Query Language
called PROC SQL. PROC SQL follows most of the
guidelines set by the American National Standards Institute
(ANSI) in its implementation of SQL. However, it is not fully
compliant with the ANS1-standard for SQL. PROC SQL
includes several enhancements, which exceed the ANSI
specifications, for greater compatibility with other elements
of the SAS System.

The SQL Procedure processes SQL statements that read
and update tables. PROC SQL uses Structured Query
Language to:
● retrieve and manipulate SAS data sets,

c create and delete data sets,
● add or modify data values in a data set,
. add, modify, or drop columns in a data set,
● create and delete indexes on columns in a data

set.

PROC SQL can be used on SAS files, flat files, VSAM files,
database tables, and combinations of these to do query
operations, and also to perform many of the ordinary data
manipulation and reporting operations customarily
accomplished using DATA and PROC steps.

PROC SQL processes SQL statements that read and
update tables. PROC SQL uses SQL to create, modify, and
retrieve data from tables and views (and SAS data sets).
PROC SQL can be used in batch programs or during an
interactive SAS session. PROC SQL can perform many of
the operations provided by the DATA step, and the PRINT,
SORT, MEANS and SUMMARY procedures.

Syntax for the SAS SQL Procedure

The SQL Procedure includes several statements, not all of

which are always required. SQL itself is made up of
modular components, and PROC SQL includes statements
and clauses which reflect those components.

Here is the basic syntax:
PROC SQL < option < option >...

ALTER alter-statement;
CREATE create-statement;
DELETE delete-statement;

1

DESCRIBE VIEW view-name;
DROP drop-statement;
INSERT insert-statement;
RESET < option < option >... >;
SELECT select-statement;
UPDATE update-statement;
VALIDATE query-expression;

We’re planning to discuss only the most commonly-used
statements for the SQL Procedure here. For a more
complete explanation, please consult the appropriate
reference manuals.

USING PROC SQL TO SELECT DATA

Queries, Views, and Result Sets

A view is a stored specification of a database request. A
view is a description of selected data from one table, or from
several tables. It may be helpful to regard a view as a
vittual table.

A query is a request to retrieve some data from a database
table or view. A query may be a simple question about the
information which is in a single table, or it may be a complex
question about the information from several tables.

A resu/t set is what you get back when you query a
database table or view. A result set also is a table,

PROC SQL Syntax for Simple Queries

One of the most common uses for PROC SQL is to provide
a query to one or more SAS Data Files or SAS Data Views.
This is accomplished by means of a SELECT statement.
Here is a simple example:

PROC SQL ;
SELECT AUDID, ZIPSERVE
FROM MYLIB.ZIPAUDOF
WHERE AUDID=’2180’
ORDER BY ZIPSERVE ;

In the preceding example, the SELECT statement specifies
the column-names in a particular table from which the data
are to be chosen, it further subsets these data according to
a certain value contained in some of the rows, and then it
identifies the column to be used as the basis for re-
sequencing the extracted data for the printed report.

A general form for the SELECT statement is the following:
SELECT column-1, column-2, .

FROM table-a, table-b, .
WHERE expression
GROUP BY column-i, column-j, .
HAVING expression
ORDER BY column-r, column-s, ;

Here is another example of the use of the SELECT
statement:

PROC SQL ;
SELECT TPNUM, TAXID, CMPY_TY,

CMPY_LiC
FROM MYLIB.TAXRESP
WHERE TAXID=71
AND CMPY_TY IN (40,41 ,45,56)
ORDER BY TPNUM ;

The VALIDATE statement can be used to check the validity
of a query expression, without executing the query:

PROC SQL ;
VALIDATE

SELECT TPNUM, TAXID,
CMPY_TY, CMPY_LIC

FROM MYLIB.TAXRESP
WHERE TAXID=71

AND CMPY_TY IN (40,41 ,45,56)
ORDER BY TPNUM ;

Notice that this example is just a SELECT expression
preceded by the VALIDATE keyword. This would generate
the printing of a message in the SAS Log regarding whether
or not the PROC SQL SELECT statement has correct
syntax.

An asterisk ~) in the SELECT statement of a query results
in the selection of 4 of the columns in the specified table.

PROC SQL;
SELECT * FROM MASTER. TAXTYPEI ;

Often, we need to create new variables (temporary columns)
whose values are derived from existing columns. SAS
DATA step functions can be used to calculate values for
temporary columns. The AS keyword is used to specify a
column a/ias for such new columns.

PROC SQL ;
SELECT TPNUM, TAXID,

lNT((TODAY()-FRSBUSDT)/365.25)
AS BUSYRS

FROM MYLIB.PERMIT ;

Use a WHERE clause to specify a condition that the data
must satisfy in order to be selected. As you might expect,
one can use any of the customary comparison operators in
a WHERE clause.

PROC SQL ;
SELECT TPNUM, TAXID, PDOENDDT,

DTLTY, PYRNETPM
FROM MYLIB.PAYREVI
WHERE TAXID=21 AND DTLTY=’P’ ;

In addition to the common comparison operators (LT, <,

GT, >, EQ, =, LE, <=, GE, >=, NE, ‘=, -.=) and the lN-
operator, there also are some special operators that can be
used in a WHERE clause:
● CONTAINS or ? – selects rows that include a specified

string,
● IS NULL or IS MISSING -- selects rows for which the

value of a particular column is missing,
● BETWEEN - AND -- selects rows in which the value of the

column falls within a range of values, inchsive of the end
points,

● LIKE -- selects rows by comparing character values to
specified patterns [a percent sign (’7.) replaces any
number of characters, and an underscore (J replaces
only one character],

● =. -- selects rows that contain a spelling variation of the
specified word (this is a “sounds like” operator).

PROC SQL ;
SELECT TPNUM, TAXID, PDOENDDT,

DTLTY, PYRNETPM
FROM MYLIB.PAYREVI
WHERE TAXID=21 AND DTLTY=’P’

AND PDOENDDT BETWEEN
’01 SEP95’D AND ‘31AUG96’D ;

Consult a reference manual for additional examples of the
use of operators in a WHERE clause.

2

To eliminate duplicate rows returned from a query, precede
a column name with the keyword DISTINCT. Then, one row
would be displayed for each unique combination of values.
For example,

PROC SQL;
SELECT DISTINCT TPNUM, TAXID

FROM MYLIB.PERMIT

The CALCULATED keyword may be used to refer to a
temporary column, which was previously specified by an
expression in the SELECT clause.

PROC SQL ;
SELECT TPNUM, TAXID, PERIOD,

GRSALS - DEDUCTS+ PURCHS
AS AMTSUBJ

FROM MYLIB.REPTAMT
WHERE TAXID=2

AND CALCULATED AMTSUBJ > 5000;

Use an ORDER BY clause to return the results of a query in
ascending (the default), or in descending order, relative to
the values in specified columns.

PROC SQL;
SELECT TPNUM, TAXID, CMPY_TY, CMPY_LIC
FROM MYLIB.TAXRESP
WHERE TAXID=71
ORDER BY TPNUM ;

PROC SQL ;
SELECT AUDID, ZIPSERVE
FROM MYLIB.ZIPAUDOF
WHERE AUDID=’2180’
ORDER BY ZIPSERVE DESC ;

You can customize the printed reports produced from
queries by specifying SAS formats and/or labels to be used.
Here is an example:

PROC SQL ;
SELECT TPNUM

LABEL=’TAXPAYER NUMBER,
TAXID LABEL=’TAX CODE’,
PDOENDDT

LABEL=’PERIOD END DATE
FORMAT= MMDDYY8.,

DTLTY LABEL= ’RECORD TYPE,
PYRNETPM LABEL=’NET PAYMENT’

FORMAT= DOLLAR12.2
FROM MYLIB.PAYREVI
WHERE TAXID=21 AND DTLTY=’P ;

The SQL Procedure provides several functions for
summarizing the rows in a column. As an accommodation
to programmers who are familiar with either SAS or SQL,
some of these functions have multiple names.
. COUNT, FREQ, N -- number of (non-missing) values,
. NMISS – number of missing values,
● MAX - maximum (largest) value,
● MIN - minimum (smallest) value,
● SUM -- sum of values,
● AVG, MEAN - arithmetic average value,
● STD -- standard deviation of values,
● VAR - variance of values,
. STDERR - standard error of the mean.

Summary functions calculate statistics based on the entire
table.

PROC SQL;
SELECT SUM(PYRNETPM) AS TOTAL

FROM MYLIB.PAYREVI
WHERE TAXID=71 AND DTLTY=’P

AND PDOENDDT BETvVEEN
‘OISEP94’D AND ‘31AUG95’D ;

If more than one column-name is specified in a summary
function, then the summary function operates like a DATA
step function, in which the calculation is performed for each
row. Whenever the SELECT clause includes a summary
function, and at least one other column-name, then, after the
calculation is performed, the result of the calculation is re-
merged with each of the selected values from the table.

Let us suppose that a display or analysis needs to be
performed, not on the table as a whole, but for each of the
various classification groups defined by the values occurring
in a particular column. In this case, a GROUP BY clause
can be used to separate the data into groups based upon
the distinct values in a column, or to generate summary
function statistics for each of the distinct values in the
grouping column.

PROC SQL;
SELECT TAXID,

SUM(PYRNETPM) AS TOTAL
FROM MYLIB.PAYREVI
WHERE DTLTY=’P’

AND PDOENDDT BETWEEN
’01 SEP94’D AND ‘31AUG95’D

GROUP BY TAXID ;

We have previously discussed how to use a WHERE clause
to select data based on values for individual rows. If one
wanted to specify a condition (involving a summary function)
that each group in a query would have to satisfy, then the
HAVING clause would be used.

PROC SQL;
SELECT TAXID, SUM(PYRNETPM) AS TOTAL

FROM MYLIB.PAYREVI
WHERE DTLTY=’P’

AND PDOENDDT BETWEEN
’01 SEP94’D AND ‘31AUG95’D

GROUP BY TAXID
HAVING SUM(PYRNETPM) >500000 ;

The GROUP BY clause must precede the HAVING clause.
The HAVING clause contains an expression which includes
a summary function. The result set would include only those
groups of data which satisfy the condition specified in the
HAVING clause.

PROC SQL Syntax for Subqueries
(Nested Queries)

H is possible to nest queries inside other queries. Nested
queries, also called subqueries (or inner queries), select
rows from one table based on values in another table. A
subquery is a query-expression that is nested as part of
another query-expression. A subquery (the inner query,
which is enclosed in parentheses) is evaluated before the
outer query. The result set from the inner query is used as
the domain for the outer query. The subquery can be against
a different table than the outer query. If more than one
subquery is included, the innermost query is evaluated first,
then the next innermost query, and so forth, moving outward
through each level of nesting.

3

Subqueries usually involve a WHERE or HAVING clause
which contains its own SELECT clause, and which is
enclosed in parentheses. Here is an example of a
subquery:

PROC SQL;
SELECT DISTINCT TPNUM, CMPY_TY,

CMPY_LIC
FROM MYLIB.TAXRESP
WHERE TPNUM IN

(SELECT TPNUM
FROM MYLIB.TAXSTAT
WHERE TAXID=71

AND ENDSTADT=.)
ORDER BY TPNUM ;

A subquery that depends upon values returned by the outer
query is called a correlated subquery. Here is an example:

PROC SQL ;
SELECT CMPY_LIC

FROM MYLIB.TAXRESP AS T
WHERE 71 IN

(SELECT TAXID
FROM MYLIB.TAXSTAT AS S
WHERE EN DSTADT=.

AND S. TPN,UM=T.TPNUM)
ORDER BY CMPY_LIC ;

Observe that in this type of subquery, the WHERE
expression in the ~ query refers to values in a table in
the ~ query. The correlated subquery Is evaluated for
each row in the outer query. Fortunately, correlated
subqueries are encountered much less frequently than
ordinary nested queries. Often, one is able to find another
way to code this type of data request.

USING PROC SQL TO COMBINE DATA

Combining Data from Tables

There are two major ways of combining data from tables:
we use join operations to combine data from tables in a
horizontal, or side-by-side, manner, using a key value; and
we use set operations to combine data from tables vetilcally
-- that is, concatenating the information by stacking the data
from one table on top of the data from another table.

Join Operations

Joins combine information from multiple tables by matching
rows that have common values in columns which relate the
tables. Data from the tables are combined horizontally (i.e.,
in a side-by-side manner) using a key value. Tables do not
have to be sorted before they are joined. Joining tables is
similar to, though not the same as, merging SAS data sets.
There are different kinds of joins.
● Inner Joins (conventional joins) retrieve rows with

matching key values. Inner joins can be performed on up
to 16 tables in one query.

. Outer Joins retrieve rows with matching key values, plus
all non-matching rows from the left, both, or right tables.
Outer joins can be performed on only two tables at a time.

PROC SQL Syntax for Joining Tables

The fundamental type of horizontal synthesis of data from
two tables contains fl combinations of the rows from both
tables. This result set is called the Cartesian Product of two

tables. It is obtained by combining each row of the first table
with each row of the second table. Here is the syntax:

/’ CARTESIAN PRODUCT ‘/
PROC SQL;

SELECT * FROM FIRST, SECOND;

In the preceding example, the FROM clause identifies more
than one table name as sources of data for the query - this
tells us that some type of a join operation is being
performed. Since, in this case, there are no additional
conditions to be satisfied, we recognize that the desired
result set is the Cartesian Product.

Most of the time, we’re not interested in obtaining all of the
possible combinations of the rows. Usually, we want our
result to include@ those rows which have common values
in cettain columns (the keys) which relate the tables to each
other, so we include a WHERE statement which specifies
the key values where matches are sought. This situation
describes an innerjoin (or a conventional join). The
following example is for a conventional join result set, which
includes o@ those rows from the Cartesian Product which
have matching key values. The syntax for retrieving row
combinations having matching key values is:

/’ INNER JOIN OF TABLES ‘/
PROC SQL;

SELECT ●

FROM FIRST, SECOND
WHERE FIRST. X= SECOND.X;

As mentioned previously, the result set for an ouferjoin
would include all rows from the Cartesian Product with
matching key values, plus all non-matching rows from the
left, both, or right tables. Typical syntax for a left outer join
would be:

/“ LEFT OUTER JOIN OF TABLES ‘/

PROC SQL;

SELECT *
FROM FIRST LEFT JOIN SECOND
ON FIRST.X=SECOND.X;

The preceding example, for a /eft ouferjoin, would result in
the retrieval of all of the rows which have matching values in
the columns named X in both tables, plus all of the non-
matching rows from the first-mentioned (/eft) table, which is
named FIRST, in the FROM clause. Notice that the ON
clause is used to specify the matching condition in an outer
join, instead of a WHERE clause.

Here is a similar example for a right outerjoin, which would
include all rows from the Cartesian Product with matching
key values, plus all of the non-matching rows from the right
table in the FROM clause:

/’ RIGHT OUTER JOIN OF TABLES */
PROC SQL;

SELECT *
FROM FIRST RIGHT JOIN SECOND
ON FIRST.X=SECOND.X;

What follows is the code for a fu// outer join, which would
include all rows from the Cartesian Product with matching
key values, plus all of the non-matching rows from both
tables in the FROM clause:

/’ FULL OUTER JOIN OF TABLES “/
PROC SQL;

SELECT *
FROM FIRST FULL JOIN SECOND
ON FIRST.X=SECOND.X;

4

Now, an experienced SAS programmer might think that a
result set which includes all of the matching rows, plus all of
the non-matching rows from both of the tables would be
identical with the result set from an ordinary DATA step
merge using the X column for a BY-variable, since that
column is common to both tables. However, you must
remember that join operations combine data by
concatenating them in a side-by-side fashion. Therefore,
the result set for a join operation would have matching-
column values from @ of the tables which were joined. In
the preceding examples, the columns FIRST.X and
SECOND.X would not be combined (overlaid) to form a
single column in the result set.

If one desired to combine (overlay) the matching columns in
a full outer join, so as to produce the same result as a DATA
step merge, one would use the COALESCE function, as
follows:

/’ FULL OUTER JOIN
(USING COALESCE FUNCTION) “/

PROC SQL
SELECT

COALESCE(FIRST.X, SECOND.X) AS X,
YI,Y2,ZI,Z2,Z3

FROM FIRST FULL JOIN SECOND
ON FIRST. X= SECOND.X;

In this example, the SELECT clause specifies each of the
columns to be included in the result set, some from the table
FIRST, others from the table SECOND. The column named
X in the result set would be a composite of the columns
having that name in both tables.

Set Operations

Set operations combine information from two tables by
concatenating the information in a vertical manner. That is,
the data from one table are arranged above the data from
the other table in the result set.

There are four set operators:
● Intersect retrieves all unique rows which are common to

both tables,
. M retrieves all unique rows from both tables,
. Outer Union retrieves all rows from both tables, both

unique and non-unique,

● E&t?! retrieves all unique rows which are in the first-
mentioned table, but which are not also contained in the
second-mentioned table (this is a “difference” operator).

The default set operators line up the columns in the result
set according to the ordinal positions of the columns in the
tables which are being combined. Quite often, this will
produce a result set which doesn’t make any sense at all
(when columns in the same ordinal position of the two tables
represent dissimilar items). However, there is an optional
keyword, CORRESPONDING, which is used in conjunction
with the set operator keywords, and which remedies this
situation. Whenever the word CORRESPONDING appears
with a set operator, the columns in the tables are lined-up
vertically according to column-name, and not according to
their ordinal position.

Here are some examples of SAS code for various set
operations:

/“ INTERSECT SET OPERATION OF TABLES ‘/
PROC SQL;

SELECT * FROM FIRST

INTERSECT CORRESPONDING
SELECT * FROM SECOND;

/’ OUTER UNION SET OPERATION OF TABLES ‘/
PROC SQL;

SELECT * FROM FIRST
OUTER UNION CORRESPONDING
SELECT * FROM SECOND;

Set operations originated in mathematical set theory, but
they don’t seem to be as useful as joins, in the context of
data processing.

USING PROC SQL TO MANAGE DATA

Creating Tables (and SAS Data Files and Views)

There are several methods by which PROC SQL can be
used to create new tables (or SAS data files) and views
(virtual tables). The most common method is to create
tables or views using already-existing tables or views, by
defining the rows and columns from the result set of a
query.

Here is a general form for the CREATE statement, using
other tables or views:

CREATE VIEW view-name AS query-expression;
or

CREATE TABLE table-name AS query-expression ;
where query-expression is of the form:

SELECT column-1, column-2, .
FROM table-a, table-b, .
WHERE expression
ORDER BY column-r, column-s,

Here is a typical example of an inner join for a SAS view
PROC SQL ;

CREATE VIEW TPOUTL AS
SELECT S.TPNUM, S. OUTLET,

S. O_NAME, S. O_ADDR,
S. O_CITY, S. O_STATE,
s.o_zlP, s.o_slc,
T. TAXCD, T. OPSTATCD,
T. O_OOBDAT, T. O_PRMDAT,
T. O_FSLDAT, T. PERMSTAT

FROM MYLIB.TPOUTLET AS S,
MYLIB.OUTLPERM AS T

WHERE S.TPNUM=T.TPNUM
AND S.OUTLET=T.OUTLET

ORDER BY TPNUM;
This join would create a temporary view which combines
sales taxpayer outlet general information with outlet permit
information, matching rows from the two tables according to
taxpayer number and outlet number. It could just as easily
have been for a temporary table (SAS data file).

Another way to create a new table with PROC SQL would
be to define the columns and then to fill in the rows of data
later, using the INSERT statement. Consult a reference
manual to learn the details of this approach.

Modifying Tables and Views

PROC SQL has several statements which can be used to
modify tables and views which were created previously.
● The ALTER statement can be used to change one or more

of the columns of an already existing table. Using ALTER,

5

you can add new columns, you can change the formats
which are used to display column values, and you can
remove columns.

. The DELETE statement is used to remove one or more
rows from a table. You must use a WHERE statement to
specify a defining condition for the rows to be eliminated; if
you don’t, #of the rows will be deleted.

. To delete a table, the DROP TABLE statement is used.

. The INSERT statement inserts a new row into an existing
table.

. The UPDATE statement modifies the values of columns in
existing rows of a table.

Data Manipulation Using PROC SQL

We have discussed how to write PROC SQL statements

which create tables, how to create temporary columns

from existing columns, how to sort the rows which are

displayed in the result set, and how to associate labels,

and formats with columns. We have seen the usefulness

of summary functions to calculate statistics for the entire

table, and also for classification groups. It is easy to see

how knowledge of the use of these techniques is

important for programmers who spend much of their time

working with RDBMS data. These methods also could be

very useful for working with non-RDBMS data.

PROC SQL’S substantial data manipulation and
summarization capabilities could be used to replace many
DATA step, PROC SORT, and PROC MEANS steps in
traditional SAS code. Coding a PROC SQL step may
require fewer lines, and the PROC SQL code generally will
execute in less time, than the corresponding traditional SAS
code.

The following are simple examples of SAS code which
produces reports, from a SAS data file which contained
advance registration information for the 1996 South-Central
Regional SAS Users’ Group Conference.

Here is the traditional SAS code:
DATA A;

SET MYLIB.SC96REG;
AMTDUE = TOTAL - AMTPAID;
KEEP CITY COMPANY STATUS AMTPAID;

PROC SORT DATA=A;
BY CITY COMPANY PAID;

PROC MEANS DATA=A N NOPRIN~
VAR AMTDUE;
BY CITY COMPANY STATUS;
OUTPUT OUT=STATS SUM(AMTDUE)= ;

PROC PRINT DATA= STATS;
RUN;

The following PROC SQL step produces essentially the
same report as the preceding traditional code:

PROC SQL
SELECT CITY, COMPANY, STATUS,

FREQ(STATUS) AS NUMTYP,
SUM(TOTAL - AMTPAID) AS AMTDUE

FROM MYLIB.SC96REG
GROUP BY CITY, COMPANY, STATUS
ORDER BY CITY, COMPANY;

In the preceding examples, the traditional SAS program
contains more lines of code, and requires 2.6 times as much
CPU time to execute, than the PROC SQL step. Replacing

customary SAS code with PROC SQL lines generally will

result in less programming time and greater computer

efficiency.

The SQL Pass-Through Facility

Another method for accessing DBMS tables from a SAS
session is the Pass-Through Facility of the SQL Procedure.
The SQL Pass-Through Facility allows programmers to
embed DBMS code within SAS SQL expressions. The
program can specify exactly what processing should take
effect on the DBMS side and make use of any special
features that the DBMS offers.

The SQL Pass-Through Facility uses a SASIACCESSC3

interface to establish connection to the DBMS, and it sends
native SQL statements to the DBMS. The idea behind SQL
Pass-Through is to push as much work as possible into the
DBMS, since its query optimizer knows all about the storage
structure of the tables that are in the DBMS. Because of
this, when you are selecting data from multiple tables, the
DBMS generally is able to return the result set more quickly
than if you did everything from within the SAS System, using
SAS view descriptors.

Here is an DB2 example of SQL Pass-Through:
PROC SQL;

CONNECT TO DB2 (SSID=DSNT) ;
CREATE VIEW COUNTY AS

SELECT * FROM CONNECTION TO DB2
(SELECT * FROM

COMBCOD.VCOUNTYOI) ;
O/oPUT&SQLXMSG ;
DISCONNECT FROM DB2 ;

QUIT ;
PROC PRINT DATA= COUNTY ;
RUN ;

Observe the SELECT clause which is enclosed in
parentheses, following the “SELECT * FROM
CONNECTION TO DB2° clause. It is written using the DB2
version of SQL. Using SAS table names and SAS column-
names would not produce the desired result.

CONCLUSION

PROC SQL processes SQL statements that read and
update tables. Besides being used for retrieving and
updating data in relational tables and databases, PROC
SQL also has substantial data manipulation and
summarization capabilities. PROC SQL statements could
be used to replace much traditional SAS code (DATA step,
PROC SORT, and PROC MEANS steps), resulting in less
programming time and greater computer efficiency.

REFERENCES:

. SAS Guide to the SQL Procedure, Usage and Reference,
Version 6, First Edition

. Getting Started with the SQL Procedure,
Version 6, First Edition

● “The SQL Procedure”, Chapter 37 of SAS Technical
Report P-222, Changes and Enhancements to Base SAS
Software, Release 6.07.

● Alan Dickson, and Ray Pass, “Select Items from
PROC.SQL Where Items > Basics”, Proceedings of the
Nineteenth Annual SAS Users Group International

6

Conference (1994), pp. 1440-1449; and Proceedings of
the Twentieth Annual SAS Users Group International
Conference (1995), pp. 432-441.

● Kim L. Kolbe Ritzow, “An Introduction to PROC SQL”,

Proceedings of the Twenty-First Annual SAS Users Group
International Conference (1996), pp. 327-335.

. Kirk Paul Lafler, “Using the SQL Procedure”, Proceedings
of the Seventeenth Annual SAS Users Group International
Conference (1992), pp. 555-560.

● Kirk Paul Lafler, “Diving Into SAS Software With the SQL
Procedure”, Proceedin~s of the Twentieth Annual SAS
Users Group International Conference (1995), pp. 1076-
1081.

SAS and SAS/ACCESS are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. @ indicates USA
registration.

DB2 is a registered trademark or trademark of International Business
Machines Corporation.

AUTHOR INFORMATION:

Thomas J. Winn, Jr.
Audit HQ, Comptroller of Public Accounts
L.B.J. State Office Building
111 E 17th Street
Austin, TX 78774

Telephone: (51 2) 463-4907
E-Mail: twin504@cpa.state. tx. us

0007095870@ mcimail.com

	Main TOC

