
1

An Introduction to Developing Applications
with SAS/AF Software FRAME Entries®

Vincent L. Timbers
The Pennsylvania State University, University Park, Pa.

ABSTRACT

Frame entries in SAS/AF use graphic display devices that
enable application developers to easily build interfaces
which permit users to point and click their way through
applications. The functionality of frame entries allow
end-users with limited computer experience to easily
perform activities such as data entry, data processing, and
data analysis/reporting.

This paper briefly explains frame entry concepts and
demonstrates the steps used in building a sample reporting
application with frame entries. 1

INTRODUCTION are for submitting the report for processing, printing the

SAS/AF frame entries allow developers to build graphic-
oriented applications by placing objects such as icons,
push buttons and list boxes in a window with the different
objects having different functions. Graphic text and text
label objects display text which can not be changed by the
user. Text entry objects accept user input and display
information or program output. Icon and push button Before starting the sample application, a brief review of
objects are used for making selections or executing frame entry terminology and logic may be helpful. For a
functions. List box objects display lists of text from which more in-depth explanation see the listed references.
users can make selections. These are only a few of the
objects available and application developers may also When building a frame entry, objects are selected from
create their own objects. Frame entries are controlled by templates known as classes and put in the frame. Classes
associated Screen Control Language (SCL) entries which identify the actions which objects can perform. These
contain SCL programming. actions are known as methods. Classes also identify the

The following step-by-step sample application was object. These attributes are stored in what are called
developed to illustrate the basic steps used in building instance variables. Each type of object, such as an icon or
applications with frame entries. This example provides a push button has its own class, icon class and push button
working application designed for developers who have class. These classes are subclasses (or children) of a
little or no experience with frame entries. Although the parent class called the widget class, which is a subclass of
techniques used in the example are very basic, they the object class. The importance of the class hierarchy is
provide a basis for developing more complex applications. that subclasses inherit the attributes and methods of their

The sample application produces two reports. One report their own. Note that objects such as icons and push
provides a proc means of student loans for a specific level buttons are often called widgets - a widget being a
of enrollment and the other report produces a proc means displayable object. However, in this paper displayable

for student grants for a specific level of enrollment. The
application includes two frame entries and their associated
SCL entries. The first frame is the opening menu, which
includes the application title and three icons. Selecting the
first two icons will branch the application to a report
frame from which information for the report is collected
and the report is submitted for processing. The third icon
exits the application.

The second frame entry is used for producing both
reports. This frame contains five push buttons, one list
box and one text entry object. One button displays a list
box from which the level of enrollment is selected to
subset the data for the report. The other four push buttons

output, clearing the output window, and going back to the
opening menu. The text entry object displays the level of
enrollment selected for the report.

FRAME ENTRY OBJECT TERMINOLOGY AND
LOGIC

object attributes such as the name, color, and size of the

parents and may have additional methods or attributes of

objects will simply be referred to as objects.

The sample application presented in this paper1

was developed with SAS Release 6.11 for the Windows®

operating system.

2

BUILDING THE SAMPLE APPLICATION

The first step in building the application is to invoke the
AF Build procedure by issuing the BUILD command
from the command line. This command will open a
window containing the library, catalog and entry lists as
seen in Figure 1.

Figure 1: Build Library, Catalog and Entry list
window

To create a new catalog for the frame and SCL entries in
this example, highlight the SASUSER library and from place the new region in the upper middle of the screen
the menu bar choose FILE, NEW and CATALOG . In
the Catalog window, enter the name SUGI22 and select
OK .

MAIN MENU FRAME

The first frame entry is created by highlighting the
SUGI22 catalog and choosing FILE, NEW and ENTRY
from the menu bar. In the New Entry window, enter the
name MENU , select the entry type FRAME and select
OK to open the Build: Display window for building the
Menu.Frame entry. When a frame entry is first created,
the Build: Display window only contains a master region
bordered with solid or broken lines which encompass the
entire window. The objects put in a frame entry are
contained within regions which are placed inside the
master region. The Build: Display window for the
Menu.Frame entry is displayed in Figure 2, as it will look
after the objects are placed in the frame.

Figure 2: Menu.Frame Build Display window

The Menu.Frame entry in this sample application contains
two graphic text objects for the title of the application and
three icon objects, which upon selection go to a report
frame or exit the application.

The first graphic text object containing the first line of the
title is created by selecting MAKE , GRAPHIC TEXT
and OK from the master region pop-up menu. After
making these selections a new region outlined with broken
lines will appear in the master region. Using the mouse,

with a mouse click. After placing the object, a Graphic
Text Attributes window will appear as shown in Figure 3.

Figure 3: Graphic Text Attributes window

The object attributes such as the object name, text and
color are entered in this window. For the first graphic text
object in this example, enter the following attributes.

Name Text
Title1 SAMPLE

After entering the attributes select OK to exit the Graphic
Text Attributes window.

Note: If you need to re-open an Object Attributes window
select OBJECT ATTRIBUTES from the object region
pop-up menu. Open the pop-up menu with a right mouse
click in the object's region.

3

The second graphic text object, containing the second line
of the title, is created the same way the first graphic text
object was created using the following attributes.

Name Text
Title2 Reporting Application

Creating the icon objects for the Menu.Frame entry is very
similar to creating the graphic text objects. The only
differences are choosing ICON from the selection list
instead of graphic text and selecting a specific icon from
the attributes window. To create the GRANT icon select
MAKE , ICON and OK from the master region pop-up
menu. After placing the icon, enter the following name
and label attributes in the Icon Attributes window as
shown in figure 4.

Name Label Icon Number
Grant MEAN OF GRANTS 124

Figure 4: Icon Attributes window

To choose the icon, click the Current Icon area of the Icon
Attributes window. (Different areas of an Attributes
window are bordered with a single line and identified with
the name in the upper left corner.) Once in the Select an
Icon window you can scroll through a list of numerically
identified icons and make a selection or enter the number
of the icon you want (124 for this icon). Then select OK
to exit the Select an Icon window and OK again to exit
the Icon Attributes window.

Repeat the process used for the GRANT icon to create the
LOAN and EXIT icons using the following attributes.

Name Label Icon Number
Loan MEAN OF LOANS 124
Exit EXIT 111

The EXIT icon requires an additional step. After entering
the name and label attributes and selecting the icon an
additional attribute needs to be entered to tell SAS what
command to execute when the icon is selected. Choose
COMMAND PROCESSING from the Additional
Attributes area of the Icon Attributes window. This will
open the Command Processing window where you will

type CANCEL in the Execute SAS Commands on
Selection area. Select OK to exit the Command
Processing window and OK again to exit the Icon
Attributes window.

Now that the Menu.Frame entry in this example is created,
the SCL entry that controls the frame can be created.
Select LOCALS and EDIT SCL SOURCE from the
menu bar. In the Build: Source window that opens, enter
the following lines of SCL.

INIT:
return;

GRANT:
 name='meangrnt';
 call display('report.frame',name);
return;

LOAN:
 name='meanloan';
 call display('report.frame',name);
return;

MAIN:
return;

TERM:
return;

Notice that the Menu.SCL entry has five sections, INIT,
GRANT, LOAN, MAIN and TERM. Each section begins
with the section name followed by a colon and ends with a
return statement. The INIT, MAIN and TERM sections
are the three basic sections which many but not all SCL
entries may have. The INIT section contains programming
that is executed when the frame entry is initiated and the
TERM section contains programming that is executed
when the frame entry is terminated. The MAIN section
will execute any time the Enter key is pressed or an object
in the frame is selected with the mouse. However, these
sections do not contain any programming because it is not
needed for the Menu.Frame entry of this application.
When there is no programming in these sections, they do
not need to be included in the entry. The GRANT and
LOAN sections are executed when the corresponding
icons in the frame are selected. Both sections contain two
lines of code. The first line sets the variable name equal to
the name of the report being requested. The second line,
call display('report.frame', name), calls the
Report.Frame entry which will be created next. Notice the
parameter name. This passes the variable name to the
frame being called. The GRANT and LOAN sections of
this SCL entry are typical of program sections which
correspond to frame objects. When an object is selected
the section of SCL with the same name is executed.

4

After typing in the SCL, compile the program by selecting
LOCALS and COMPILE from the menu bar. After the
compile is completed, a message will appear at the bottom
of the Build: Source window reporting the results of the
compile. If there are errors they will be recorded in the
Message window. When the SCL is successfully
compiled, exit the Build: Source and Build: Display
windows and return to the main Build window.

REPORT FRAME

Now that the frame entry and corresponding SCL entry for
the main menu of the sample application are created, the
entries for the report frame need to be created. The
Report.Frame entry is created the same way as the
Menu.Frame entry. With the SUGI22 catalog highlighted, Attributes window will appear as shown in Figure 6.
choose FILE, NEW and ENTRY from the menu bar. In
the New Entry window enter the name REPORT, select
the entry type FRAME and select OK . The empty Build:
Display window for the Report.Frame entry will appear.
When complete this frame will contain five push button
objects, one text entry object and one list box object as
shown in Figure 5. The push button labeled LEVEL
displays a list box for choosing the level of enrollment for
the report while the text entry object displays the level
selected. Prior to the selection of a level the text entry box
displays "REQUIRED" indicating a level of enrollment
selection is required. The buttons labeled RUN, PRINT,
CLEAR OUTPUT and GO BACK do just what their
labels indicate.

Figure 5: Report.Frame Build: Display window

Objects in this frame are created the same way objects
were created in the previous frame. Select MAKE , the
type of object (PUSH BUTTON, TEXT ENTRY , or
LIST BOX) and OK from the master regions pop-up
menu. Use the following attributes for the push button
objects.

Name Label
Levelpb LEVEL
Run RUN
Print PRINT

Clear CLEAR OUTPUT
Goback GO BACK

Like the EXIT icon in the Menu.Frame entry, additional
information needs to be entered in the attributes window
to tell SAS what command to execute when the GO
BACK push button is selected. As before, choose
COMMAND PROCESSING from the Additional
Attributes area, then type CANCEL in the Execute SAS
Commands on Selection area of the Command Processing
window. Select OK to exit the Command Processing
window and OK again to exit the Push Button Attributes
window.

When creating the text entry object the Text Entry

Figure 6: Text Entry Attributes window

Enter LEVELTE as the Name attribute for this text entry
object. Now an initial value needs to be assigned to the
object. From the Additional Attributes area of the window
select INITIAL VALUES/FORMATS . In the Initial
Values/Formats window as shown in Figure 7, enter
 REQUIRED in the Value area of the window and
select CHARACTER in the Data Type area of the
window. Select OK to exit the Initial Values/Formats
window and OK again to exit the Text Entry Attributes
window.

Figure 7: Initial Value/Formats window

Select MAKE, LIST BOX and OK from the master
regions pop-up menu to create the list box object. After
placing the object, the List Box Attributes window will
appear as shown in Figure 8.

5

Figure 8: List Box Attributes Window

In the Attributes window enter the following attributes.

Name Title
Levellb LEVEL

There are many methods of populating list boxes which
include entering the values as attributes or telling the list
box to populate itself from another source such as a SAS
data set or a SCL list. In this application we are going to
use a SCL list (to be created later). Populating the list box
is done by clicking on the down arrow to the right of
Enter values ... in the List Box Population area of the
List Box Attributes window. Then select SCL list... to
display the SCL List window as shown is Figure 9.

Figure 9: SCL List Window

Enter LEVELIST as the list name and select OK to exit
the SCL List window and OK again to exit the List Box
Attributes window.

As with the other frame entry in this application, after the
objects are created the SCL needs to be entered in the
SCL entry for the frame. Open the Build: Source window
by selecting LOCALS and EDIT SCL SOURCE from
the menu bar and enter the following SCL.

ENTRY NAME $ 20;

INIT:
levelist=makelist();
rc = insertc(levelist, "UNDERGRAD", 1);
rc = insertc(levelist, "GRAD", 2);
rc = insertc(levelist, "MEDICAL", 3);

 call notify('levellb','_hide_');
 if name='meangrnt' then

call notify ('.', '_set_title_', 'PROC MEAN OF GRANT
AID');

else if name='meanloan' then
call notify ('.', '_set_title_', 'PROC MEAN OF LOAN
AID');

return;

LEVELPB:
call notify('levellb','_unhide_');

return;

LEVELLB:
call notify('levellb','_get_last_sel_',row,issell,levelte);
call notify('levellb','_hide_');

return;

RUN:
if levelte='-REQUIRED-' then do;

msg='You must select a level before running the
report!!';
return;

end;
msg=’Please wait while your request is processed.’;
refresh;
call display(‘means.scl’, name, levelte);

return;

PRINT:
rc=woutput ('print','sasuser.profile.default');
rc=woutput ('clear');

return;

CLEAR:
rc=woutput ('clear');

return;

TERM:
rc=woutput('clear');

return;

The Report.SCL entry contains the line ENTRY NAME
$; and seven sections of code labeled INIT, LEVELPB,
LEVELLB, RUN, PRINT, CLEAR and TERM. The first
line is necessary for passing the variable name between
the Report.SCL entry and the previous SCL entry,
Menu.SCL. The first line in the INIT section creates a
SCL list named LEVELIST and the following three lines
insert items into the list. A SCL list is an ordered
collection of data. SCL lists are very powerful data
structures which can be used for many purposes. In this
application the SCL list is used to populate the
LEVELLB list box with the level of enrollment values.

Earlier it was mentioned that objects can perform actions
which are known as methods. The next three statements
contain method calls. The line call notify (‘levellb’,
’_hide_’); calls the list box method , _hide_, which
instructs the list box to hide itself. All call notify
statements take this form. The first element inside the
parentheses is the name of the object being called and the
second element is the name of the method to be executed.
The second and third statements with method calls check

6

the value of the variable name (received from the
previous SCL entry) and notifies the current frame entry
to set the text in the title bar. Notice that the first element
of the call notify is ‘.’ . The period identifies the current
frame entry as the object to be notified, while _set_title_
is the method and the third element is the parameter
containing the text for the frame title.

The LEVELPB section is executed when the push button
named LEVELPB is selected. This section contains a line
which tells the list box named LEVELLB to unhide itself.
The LEVELLB section contains two lines of code which
retrieve the list box selection and hide the list box when
the selection is made.

The RUN section is executed when the RUN push button
is selected. This section first checks if a level of
enrollment is selected and warns the user if not. If a level
has been selected the program sends the user a message
indicating the report is being processed. Finally, the SCL
entry containing the programming to produce the report is
called with the variables containing the report name and
level of enrollment being passed.

The PRINT section prints the contents of the output
window and then clears the output window. The CLEAR
section clears the contents of the output window and the
TERM section clears the output window when the frame
is terminated.

After typing in the SCL, compile the program by selecting
LOCALS and COMPILE from the menu bar. When the
SCL is successfully compiled, exit the Build: Source and
Build: Display windows and return to the main Build
window.

MEANS.SCL ENTRY

The last entry for this sample application is the SCL entry
from which the reports are produced. This entry is not
associated to a frame entry and is called with a call
display statement from the Report.SCL entry previously
created (last line of the RUN section). This SCL entry is
created the same way the previous frame entries were
created. With the SUGI22 catalog highlighted, choose
FILE, NEW and ENTRY from the menu bar. In the New
Entry window enter the name MEANS, select the entry
type SCL and select OK .

Enter the code listed below in the Means.SCL Build
Source window and compile the program by selecting
LOCALS and COMPILE from the menu bar.

ENTRY NAME LEVEL $ 10;

INIT:
if name='meangrnt' then do;

submit continue;
OPTIONS PAGENO=1;
TITLE;
TITLE1 'PENN STATE OFFICE OF STUDENT
AID';
TITLE2 'MEAN GRANT REPORT';
PROC MEANS DATA=SASUSER.TEST;
WHERE LEVEL="&LEVEL" AND GRANT>0;
VAR GRANT;
RUN;
endsubmit;

end;

else if name='meanloan' then do;
submit continue;
OPTIONS PAGENO=1;
TITLE;
TITLE1 'PENN STATE OFFICE OF STUDENT
AID';
TITLE2 'MEAN LOAN REPORT';
PROC MEANS DATA=SASUSER.TEST;
WHERE LEVEL="&LEVEL" AND LOAN>0;
VAR LOAN;
RUN;
endsubmit;

end;
return;

This SCL entry contains an entry statement and an INIT
section. The entry statement is used for passing the name
and level variables between this and the previous entry.
The INIT section contains the code to be submitted for
processing for both reports. The appropriate programming
is submitted based on the value of the name variable. As
mentioned before, this SCL entry is not associated with a
frame entry. Therefore, any code to be executed must be
in the INIT section, TERM section or called from the
INIT section. Again, the INIT section is executed when
the entry is initiated. Another important part of this entry
is the submit blocks containing the code which produces
the reports. The submit blocks begin with SUBMIT
CONTINUE and end with ENDSUBMIT statements. The
code between these to statements is submitted to the SAS
System for processing.

After the code is compiled, exit the Build: Source
window to go back to the main Build window. From here
the application can be tested by highlighting the
Menu.Frame entry and selecting LOCALS and TESTAF
from the menu bar. The Testaf procedure is similar to
running the application, however the reports will not be
submitted for processing. The Testaf procedure will
record any errors in the application in the Message
window.

7

When the application building and testing is completed
close the Build window and return to display manager.
The application may be invoked by issuing the command
AF C=SASUSER.SUGI22.MENU.FRAME from the
command line.

This sample application uses a SAS data set named TEST
in a SAS library named SASUSER. The data set contains
student observations with the variables loan, grant and
level. The loan and grant variables contain the amount of
loans and grants each student has and the character
variable level contains the students level of enrollment
with the values GRAD, UNDERGRAD and MEDICAL.
To use the sample application as presented in this paper, a
SASUSER.TEST data set must be created prior to
submitting the reports for processing.

SUMMARY

This step-by-step sample application illustrates the basic
steps used in building a data reporting application with
SAS/AF frame entries. The application could be
described as an interface that collects user input to create
SAS programming that is submitted for processing. While
the techniques used in the application are very basic, they
provide the basis for developing more complex
applications. For more in-depth information on SAS/AF
frame entries and Screen Control Language, see the
following references.

REFERENCES

SAS Institute Inc. (1993). SAS/AF Software: Frame Entry
Usage and Reference, Version 6, First Edition, Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (1993). SAS Screen Control Language:
Reference, Version 6, Second Edition, Cary, NC: SAS
Institute Inc.

SAS and SAS/AF are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries.
® indicates USA registration.

Other brand and product names are registered trademarks
and trademarks of their respective companies.

The author may be contacted at:

The Pennsylvania State University
314 Shields Building
University Park, PA 16802
Phone: (814) 863-0700
E-mail: VLT@PSU.EDU

	Main TOC

