
How Symbolic Variables Can Reduce Code in a Graphics Environment

Monique Bryher / MRI Consulting, Inc., Los Angeles, CA

ABSTRACT

This paper discusses how to g enerate a series of 4-
way bar charts that are replayed in SAS/GRAPH®

when the list of possible values assigned to the
independent variable is changeable. Macro language
coding removes the necessity of maintaining a hard-
coded list that might have to be modified during the
reporting period, e.g., monthly, by having SAS
assign each value of the independent variable to a
symbolic variable, which is then resolved during the
production of the graph. This eliminates the need for
writing code to create each graph, resulting in a
program that is shorter and easier to maintain. Last,
examples of code will be given which illustrate the
power of using double and triple ampersands derived
from data variables to supply information required
by graphics language expressions, such as names,
labels, titles, and footnotes.

INTRODUCTION - A PROGRAM TO
GENERATE 4-WAY GRAPHS FOR A
UTILITY PLANT

The concepts presented in this paper will be
illustrated by referring to a program that produces
graphs on a monthly basis. The program graphically
displays the number of open work orders for
construction trades at a municipal utility plant by the
following categories:
1) The current status of each work order (e.g.,

whether the work order is in the planning stage or
has been scheduled).

2) The “age” or length of time since the work
order became opened/active, expressed in
number of days, which are divided into four (4)
categories.

3) Data are displayed for the current month and the
four prior months so that potential sources of
backlogs can be detected.

The desired output will contain one (1) trade per
page, with each of the four status code categories
being represented by its own graph. For each status

code/graph, the past five (5) months of work order
activity will be displayed in vertical bar chart format,
along with the number of days the work orders in
that status category have been open (refer to the
attached sample output).

There are three (3) basic techniques this program
will address:

1) Build a table of names and titles which will
be used in place of hard-coded values in the
graphs. This will free us from creating a
graph for each trade and status code. In the
original application, this would have required
up to 40 graphs to be coded; using symbolics
reduces that number to 1.

2) Use of the CALL SYMPUT function to link
the trade with its description, or title;

3) Use of multiple ampersands (&) and the
period (.) symbol and their meaning in SAS
macros;

STEP 1:

The first requirement is to establish a series of macro
(or symbolic) variables which will describe the
facility name, valid trades, status codes, and the age
of work orders. Here is the code to set-up those
symbolics:

*******************************;
* SET SYMBOLIC VARIABLES ;
*******************************;
*;
DATA _NULL_;
 %let plant = METROPOLIS POWER PLANT;
* ;
 %let msgca = CARPENTER;
 %let msgel = ELECTRICAL;
 %let msgin = INSTRUMENT;
 %let msgma = MACHINIST;
 %let msgme = MECHANIC;
 %let msgpl = PLUMBER;

* ;
 %let stat1 = 1;
 %let stat2 = 2;
 %let stat3 = 3;
 %let stat4 = 4;
* ;
 %let msg1b = STATUS 20,30,40;
 %let msg2b = STATUS 50;
 %let msg3b = STATUS 60;
 %let msg4b = STATUS 70-80;
* ;
 %let msg1a = WORK IN PLANNING;
 %let msg2a = WAITING FOR MATERIALS;
 %let msg3a = WAITING TO BE SCHEDULED;
 %let msg4a = SCHEDULED OR IN PROGRESS;
 RUN;

STEP 2:

The second step - building a list of the trades to be
used in the current run - requires reading the data set
and using the FIRST. feature found in Base SAS to
select each trade:

*****************************;
* CREATE LIST OF TRADES ;
*****************************;
* ;
DATA TRADELST(KEEP = TRADE);
 SET NEWDET;
 BY TRADE;
 IF FIRST.TRADE;
 RUN;

Next, we need the trades arranged so that a loop can
be established to create one graph for each trade
when the macro is run. The list should look
something like this (if there were data on all of the
trades):

TRADE1 = CARPENTER
 TRADE2 = ELECTRICAL
 …
 TRADEn = PLUMBER

where “n” is the last trade found on the data set. In
our example, only one (1) trade existed on the data
set for the month we are illustrating; hence, we will
have only

TRADE1 = TRADEn = ELECTRICAL

In order for us to be able to access the trade
assignments anywhere in the program, we will need
to place them in a symbolic variable by using the
CALL SYMPUT function:

TRADENAM =
 ‘TRADE’||TRIM(LEFT(PUT(CTR,2.)));

CALL SYMPUT(TRADENAM,TRADE);

In our example, the name TRADE1 will be placed in
the variable TRADENAM. The CALL SYMPUT
function will then place the name of the current trade
(in this case ‘EL’ for ELECTRICAL) in a macro
variable called TRADE1. If there were more trades
in our data set, e.g., ‘IN’ then we would have a
variable TRADE2 = ‘IN’, etc.

STEP 3: The Driver Macro

The next step in our project is to write a macro
which will generate or “drive” the generic chart
macro which we will assemble in STEP 4. This
macro will need to print four (4) charts for each
trade, each one representing a status code category.
The total number of trades is contained in the
&maxctr symbolic variable.

*************************************;
* macro to drive charts and replay macros ;
*************************************;
* ;
%macro driver;
 %do ctr = 1 %to &maxctr; ←← # trades
 %do num = 1 %to 4; ←← 4 status codes
 %charts; ←← our generic bar chart
 %end;
%replay; ←← replay each 4-way chart
%end;
%mend driver;

STEP 4: The Chart Macro

The %chart macro illustrates powerfully the amount
of code that can be reduced by exploiting the Macro
Facility:

*****************************;
* macro to create charts by trade ;
*****************************;

3

* ;
%macro charts;
 GOPTIONS RESET = GOPTIONS
 DEVICE = WINPRTC
 ROTATE = LANDSCAPE
 HSIZE = 4 IN
 VSIZE = 5.25 IN
 BORDER
 NODISPLAY
 NOCHARACTERS
 ;
 TITLE1 H=.25;
 TITLE2 H=1.7 "&&msg&num.a";
 TITLE3 H=1.5 'AGE ANALYSIS'; ➊
 TITLE4 H=1.0 "&&msg&num.b";
 FOOTNOTE1 j=r "CHART&num&&trade&ctr";
➋
 FOOTNOTE3 H=.15 ' ';
 LEGEND ACROSS=2 LABEL=NONE;
 PATTERN1 COLOR=BLACK VALUE=E;
 PATTERN2 COLOR=BLACK VALUE=L1;
 PATTERN3 COLOR=BLACK VALUE=R1;
 PATTERN4 COLOR=BLACK VALUE=X1;
 AXIS1 ORDER=(1 TO 5)
 VALUE=

➌ ("&dtl1" "&dtl2" "&dtl3" "&dtl4" “&dtl5)
 label=(' ');
 AXIS2 LABEL=('# STEPS');
PROC CHARTDATA=NEWDET
 GOUT =TRENDA;
 FORMAT AGECODE $AGEFMT.;
 WHERE TRADE = "&&trade&ctr" and ➍
 STATUS = "&&stat&num";
 VBAR RUNCTR /
 ➎ NAME = "CHART&num&&trade&ctr"
 SUMVAR = WO_CTR
 SUBGROUP = AGECODE
 MAXIS = AXIS1;
 RAXIS = AXIS2
 LEGEND = LEGEND
 WIDTH = 7
 ;
 RUN;
%mend charts;

➊ Controls the description of the status code for
each quadrant/graph and the codes themselves.

➋ Each quadrant/graph is assigned a unique
name, which is posted to the bottom right.

➌ Macro variables for the most recent five (5)

time periods.
➍ WHERE clause to indicate the trade and

status code for that quadrant/graph.
➎ Name of the catalog entry (same as ➋ above).

STEP 5: The Replay Macro

*********************************;
* macro to replay charts in a template ;
* -- by trade ;
*********************************;
* ;
%macro replay;
GOPTIONS HSIZE=0 VSIZE=0;
PROC GSLIDE GOUT=TRENDA
 NAME="CHART5&&trade&ctr"; ➏
 TITLE1 H=1.5
 'WORK ORDER BACKLOG AGE ANALYSIS

AS OF ' "&SYSDATE";
 TITLE2 H=1.5
 'TRADE - ' "&&&msg&&trade&ctr"; ➐
 FOOTNOTE1 h=1.5 "&plant";
 FOOTNOTE2 h=.8 ' ';
 GOPTIONS DEVICE = WIN
 TARGETDEVICE = WINPRTC
 RESET = TITLE
 BORDER
 DISPLAY
 NOCHARACTERS
 ;
 PROC GREPLAY IGOUT = TRENDA
 GOUT = TRENDB
 TC = TEMPCAT
 NOFS;
 TDEF FIVEWAY
 1/LLX=6 LLY=48
 ULX=6 ULY=89
 URX=47 URY=89
 LRX=47 LRY=48

 2/LLX=53 LLY=48
 ULX=53 ULY=89
 URX=94 URY=89
 LRX=94 LRY=48

 3/LLX=6 LLY=7
 ULX=6 ULY=48
 URX=47 URY=48
 LRX=47 LRY=7

4

 4/LLX=53 LLY=7
 ULX=53 ULY=48
 URX=94 URY=48
 LRX=94 LRY=7

 5/LLX=0 LLY=0
 ULX=0 ULY=100
 URX=100 URY=100
 LRX=100 LRY=0
 ;
 TEMPLATE FIVEWAY;
 TREPLAY 1:"CHART1&&trade&ctr"

 2:"CHART2&&trade&ctr"
 3:"CHART3&&trade&ctr" ➑

 4:"CHART4&&trade&ctr"
 5:"CHART5&&trade&ctr"
 ;
 RUN;
QUIT;
%mend replay;

➏ Name of the GSLIDE chart catalog entry.
➐ Description of the trade, e.g., CARPENTER
➑ Name of the catalog entry for the four charts

and the GSLIDE chart.

STEP 6: Running the Program

Now for the fun part - let’s see how the symbolic
variables resolve when the macro DRIVER is
started:

 1) The variables CTR and NUM are both set to 1
and the %chart macro is executed.

 2) The TITLE2 statement is translated as follows:
 ① ②

&&msg&num.a ➔ &msg1a ➔
“WORK IN PLANNING”

 ① During the first stage of translation, the macro
compiler resolves &num to the number 1 and
removes the first & from &&msg. The text
resolves to ② &msg1a. This is a recognizable
symbolic, which is finally translated to the
literal “WORK IN PLANNING”.

Note the use of the period (‘.’) in the text
string; it’s use is to indicate the end of a macro
variable name to the compiler. In this case,
there is no macro variable called &numa,

but there is one called &num.

 3) The TITLE4 statement is similarly translated:

&&msg&num.b ➔ &msg1b ➔
“STATUS 20, 30, 40”

 4) The FOOTNOTE1 statement gives a unique
name to the quadrant/chart. This is how it
resolves:

 CHART&num&&trade&ctr ➔ CHART1&trade1
 ➔ CHART1EL

 5) The macro variables &dtl1 through &dtl5 were
set using CALL SYMPUT statements earlier in
the program, where &dtl1 is the oldest reporting
period and &dtl5 is the most recent.

 6) The WHERE statement determines the selection
of data by trade and status code. The status code
determines which quadrant/chart is being
produced, e.g., upper left. These are the steps in
the translation process:

&&trade&ctr ➔ &trade1 = CARPENTER
&&stat&num ➔ &stat1 = 1 (status 20, 30, 40)

 7) Finally, a catalogue entry name that is identical to
the footnote at the lower right of each chart is
created.

The above seven (7) steps will occur four (4) times
for each trade, assuming that there is activity on all
status codes.

After the charts for the first trade are created, the
%replay macro is entered. The first portion utilizes
PROC GSLIDE to draw a frame around the four
charts and place the following super-titles over them,
the second of which contains a 3-level deep
translation:

TITLE2 H=1.0
 “TRADE - &&&msg&&trade&ctr”; ➔

 “TRADE - &&msg&trade1” ➔
 “TRADE - &msgel” ➔ ELECTRICAL

5

The remainder of the macro variables from the
PROC GSLIDE and PROC GREPLAY are easily
resolved according to the above examples.

CONCLUSION
This paper has been a brief look at the benefits of
writing macros and creating symbolic variables. By
using the techniques described, programmers will
reap a number of benefits:

1. Greatly reduce the size of the code by combining
repetitive code into macros and using symbolic
variables. Less code means less clutter too.

2. Concomittantly decrease syntax and typing errors
by changing symbolic variable values defined in a
list or table instead of having, as in the original
application, up to 40 separate PROC GCHART
paragraphs.

3. Standardization due to having to come up with a
common routine.

References
SAS® Guide to Macro Processing,
 Version 6, 2nd Edition
SAS® Macro Facility: Tips and Techniques,
 Version 6, 1st Edition
SAS®/Graph Software, Volumes 1 and 2, Reference
 Version 6, 1st Edition
The How-To Book for SAS/GRAPH® Software,
 by Thomas Miron, 1995

Acknowledgements
Belated thanks to Larry Landers for having
introduced me to some of the concepts utilized in this
paper.

Author’s Address
Monique Bryher, MSPH
MRI Consulting, Inc.
6043 Shirley Avenue
Tarzana, CA 91356
(818) 774-0043

INTERNET: rebwest@aol.com

Please feel free to send your comments, suggestions,
and experiences.

SAS and SAS/GRAPH are registered trademarks of
the SAS Institute, Inc., Cary, NC

6

WORKORDERBA[K1OCACEANAIYSISAS OF 27AUM
[lNT RICA1

WAlllNC FORMATIRIA1$
AC[j~AjlJ$lS

‘“w

100

100

0
96/08 Kill 96/06 9t/05 !$/04

n <= 10MYS Em 11-10OATS
Em 21-U DAYS C?m I 30 OAY$

Cbarll(

SCHEOU1[OOR INPROCRIS$
AM~A/YYIS

/$l\gj

200

100

0

96/08 !6/07 96/06 9i/05 36/04

n <= 18OAYS ESsll11-20Oir$
m II-n OAYS rlm) 30 QA!$

Cborllt

IvIITROP(NIS

	Main TOC

