
1

FRAME IT: THE NUTS AND BOLTS OF RADFRAME IT: THE NUTS AND BOLTS OF RAD
Marty Brown, CommScope, Inc., Claremont, NCMarty Brown, CommScope, Inc., Claremont, NC

INTRODUCTIONINTRODUCTION

The road to finishing a quality
application does not have to be a long and
confusing one. With the advent of object
oriented programming(OOP), that road has
become much shorter and more direct. In
addition to the benefits of the OOP
approach, SAS/AF software has made
programming the users' environment more
straight forward by providing fundamental
methods for several top level classes.
Additionally, these methods are made
available to each of their subclasses
through inheritance. Methods necessary to
provide functionality specific to each
child class are provided at the child
level. Methods needed to provide all of
the routine functionality for all widgets
are already included in the software.
This fact alone reduces the time necessary
to develop a quality application.

Application design is a step by step
process that consists of seven distinct
elements. The following are the steps
essential to the development process:

+ Concept Documentation+ Concept Documentation
+ Module Design+ Module Design
+ Screen Design+ Screen Design
+ Functionality+ Functionality
+ Debugging+ Debugging
+ Documentation+ Documentation
+ Release+ Release

These steps, combined with the power of
the SAS/AF development environment will
ensure smooth travel to top quality
applications in a short period of time.

The intent of this paper is to
describe and discuss each step so that the
reader can develop the methodology
necessary to take a project from
conception to release as smoothly and
quickly as possible.

CONCEPT DOCUMENTATIONCONCEPT DOCUMENTATION

The first step to successfully
developing an application is to determine
exactly what the application will do.
Surprisingly enough, this step in the
development process is most often the one
left out. It is impossible to develop an
application without first knowing what the
end result will be. This is the step that

involves the most people. It should
include all potential users, the
developer, the project manager(if
applicable), and, depending on the scope
of the project, management.

Depending on how formal a company or
the developer is, a functional
specification can be written. A
functional specification is an official
document describing the project. It
should include the nature of the
project(e.g., data manipulation, data
analysis, etc.), specific functionality,
specific operating systems, screen
designs, colors, etc. It could also
specify cost limitations, and time
constraints. A functional specification
need not specify how to get from the
beginning to the end; that is the job of
the developer.

The developer should not begin work
on the project until he/she is sure of the
desired outcome. If no formal
specification is required, the developer
should note his/her ideas on paper and
submit them to the appropriate personnel
for their approval. Doing this will
inevitably save time and avoid redoing
work.

MODULE DESIGNMODULE DESIGN

Once the purpose of an application
is understood, it is then necessary to
divide the project into small modules. By
doing this the developer can organize
himself/herself by breaking the entire
project into small, attainable portions.
This is the step where a rough draft of
the layout of the application is designed.
The draft can either be mental or a layout
on paper of the functional modules or
screen navigation. The actual layout of
each screen need not be developed at this
phase. Instead, the goal is to break the
application into small pieces that are
more readily programmed and are more
easily worked with by the users.

For example, let's say that we have
the following functional specification:

1) 1) The application should accept input
 from users regarding criteria for
 subsetting a master data set.

2

2)2) The data must be subset by date as well
 as by one of two types.

3)3) It should run a program that obtains
 the subset data and then manipulates it
 to form a smaller data set for
 displaying the data in graphical form.

4)4) It should provide the users with
 the capability to see the specific data
 that made the graph only upon request
 from the user.

5)5) It should display the number of
 observations that made up the data.

6)6) The application must be accessed
 through the SAS toolbox.

From the specification, it seems that
there are three logical modules. The
first is a screen that accepts input from
the user regarding the subsetting of the
master data. Second, there is a screen
that displays the data in a graphical
format with functionality for retrieving
the data based on user's request.
Finally, there is a screen that displays
the actual data from the users selection.

The modules are arranged in this way
chiefly to make the flow of the program
natural to the user as well as make
programming more simple in that each
module can be tested for its particular
functionality without having the other
modules in place. Obviously, there must
be additional programming after the
modules are finished in order for them to
work together, but that is not a concern
at this point.

Creating these modules is a great
tool that aids in the visualization of the
finished application. No longer is the
developer creating screens, writing code,
and testing, only to scrap it all and
start over. Now that the modules have
been decided upon, it is time for the next
step.

SCREEN DESIGNSCREEN DESIGN

Aside from functionality, screen
design is the most import aspect of the
application from a user's perspective.
The design of the screen(s) can have an
impact on the success of the project.
Screen design affects the users decision
about the project through an intangible
factor called perceived quality.
Perceived quality can be low among the

users even though all of the functionality
that was requested is present and working.
Therefore, it is at this step that at
least some of the users become involved
once again in the development process.

Users do not care about how an
application is programmed, nor are they
impressed by "slick" bits of code to
provide the application's functionality.
What they are interested in, however, is
can they use it, is it comfortable, and
does it work. Screen design focuses on
the `can they use it` and `is it
comfortable` aspects of the user's
concerns.

There are several key factors to
consider when developing screens. One is
to know the users' mean level of computer
experience. If the majority of users are
computer novices, then the screens should
be designed as straight forward and self
explanatory as possible. If, however,
most users are computer literate, then
just providing good labels on widgets is
probably enough. Another factor to
consider is that of the operating
system(s) that the users commonly use.
Try to write the application on that
operating system if possible. Also,
understand that users form generalities
about screen layouts of the operating
system in which they are accustomed to
using. People who "fly" through
applications they use regularly do so
because they know where things are, not
because they read labels and messages.
For instance, if the users are accustomed
to using Microsoft Windows, then place
widgets on the screen in the same
locations as similar widgets on the
operating system. Doing so will enhanced
perceived quality immensely. Thirdly,
make things as simple as possible. Do not
make users go through ten menus to get the
answer to a simple question. Instead, try
to get the necessary information in two
screens at most. Finally, do not crowd
things into screens. It is better to
design interfaces such that there is some
white space on the screen but also be
careful not to have too many empty areas.

After designing each of the screens,
submit them to the users for approval.
Keep in mind that at this point there is
no functionality. The goal is to see if
users understand the screens and to get
feedback regarding the correctness of the
modules or the functional specification.
Once this is complete, incorporate any
feasible suggestions from the users and

3

move on to implementing functionality.

Figure 1A Figure 1A Screen One

Figure 1BFigure 1B Screen Two

IMPLEMENT FUNCTIONALITYIMPLEMENT FUNCTIONALITY

After you and the users have settled
on screen design, it is time to make the
application do what the specification
required. Since the application has
already been broken into modules, it
should only be a matter of writing some
screen control language(SCL) to make the
application work. Here again the goal is
to make the modules work independently of
each other unless it is absolutely
necessary to make them work together.
Since OOP can use widget names as labels
in SCL, it is often not necessary to have
a "main" section in the program. However,
if no "main" section exists, then only the
section of the program corresponding to
name of the selected widget runs unless
another labeled section is called through
a link statement. If a "main" section
does exist, it is executed every time any
widget is selected.

Let us take the example mentioned
earlier. The first module's program
accepts input from the users and runs code
that subsets and manipulates a master data
set. A list box was put on the screen to
make it simple for the users to select
common dates. Also, a selection was
included to let the user enter any date
they wish. That selection is accompanied
by a text entry field for the entering of
the dates. The label shows the format
that the user should use. A radio box
gets the type selection from the user.
Since a submit button is attached, there
need not be any functionality to the
program until the user clicks the button.
The exception is the functionality
provided through the attributes of the
widgets. Once the submit button is
activated, the program section with the
same label executes the SCL required to
subset the data. Depending on the type of
manipulation of the data to be done, the
data can be either subset through standard
SCL functions or through the data step as
executed through a submit block. Either
way, the data must end up in a form that
the graphics object on the next screen can
use.

The next module calls for a screen
to display the subset data in graphical
form with the ability to retrieve specific
data upon request. The specification did
not declare what type of graph or what
statistic the chart should display. Since
SAS/AF provides for dynamic graph type and

4

statistic selection, it was relatively
simple to add these features via radio
boxes while keeping the basic
functionality in place. The SCL behind
this screen basically has three labeled
sections. One changes the graph type
based on the selection on the first radio
box. The second changes the chart
statistic based on the selection of the
second radio box. The last one tests to
see if a bar chart is displayed and, if
so, gets information about the bar that
was activated, and further subsets the
data for display on the next screen. This
module also has a graphic text object to
display the number of observations in the
first subset of the master data set.

The final module contains a data
table for displaying the detailed data
based on the bar the user clicked on the
previous screen. It receives information
from the graphics screen and populates the
data table. It also contains a command
push button to return to the previous
screen. The functionality of this module
is minimal because it only has to display
data that is passed to it through the call
display routine from the graphics screen
and the entry statement on the data table
screen.

Once the functionality has been
implemented for each module and the
developer has tested it for obvious bugs,
they should be submitted to at least some
of the users for approval. The users
should look for functionality, bugs, etc.
They could also make suggestions for
increased functionality if the developer
has time and does not have to make major
overhauls to accommodate them. Once the
users approve the modules, it is time to
put them together into a package and
continue to the next step, debugging.

DEBUGGINGDEBUGGING

Debugging is an essential step in
application development in that it is much
better to discover potential problems
before releasing an application to users
than it is to patch an application that
has already been distributed. Not only is
it easier to do this, it maintains
users/management's confidence in the
developer to submit quality applications
to the users.

In the debugging process, the
developer should do everything in his/her
power to try to make the application fail.

This includes typing in dates in the wrong
format, navigating screens contrary to the
intended sequence, going back to start
over, etc. Doing these and other things
will surely find bugs if any exist. This
step could involve some recoding or
redesign. After completing this, the
application should be sent back to the
users for further testing. This cycle of
debugging and testing should continue
until the developer is satisfied that the
application is error free.

DOCUMENTATIONDOCUMENTATION

The next step in the process is
documentation. Documentation has two
components. First, documentation of the
code in order for the developer or other
developers to understand it later. Also,
documentation of the program and what it
does. This could come in the form of a
memo or in the form of an official report.
The second component of documentation once
again involves the users. The document
should be reviewed by the users for
clarity and completeness. It is this
document that future users will use in
order to be trained to use the
application. Also, if a company is
certified by an organization such as
ISO9000, then this documentation may be
required to comply with certification.
Finally, it is time for the release of the
application.

RELEASERELEASE

The final step in the application
development life cycle is the release of
the application. Once this step is
complete, the only thing left is to
maintain the program and perhaps train
current and future users. Although this
seems to be a trivial step, it can be
difficult depending on how the users
invoke the application. In the case with
our example, the release is relatively
simple. The functional specification
called for the program to be accessed
through the SAS toolbox. This is
relatively easy in that the toolbox allows
for editing by both system administrators
as well as end users. Since users
typically have their own toolbox defined
in their own unique profile catalog, it
would be more efficient to send a memo to
all users of the new application
describing the steps to take to modify
their toolbox to be able to launch the new
application. Whatever the method of
release is used, once the users have the

5

application, the last step of the
development life cycle is complete.

SUMMARYSUMMARY

Application development is a step by
step process. It has defined steps and
small reachable goals. It is important to
include all relevant personnel in the
development throughout the process. After
all, it is really the users that must be
pleased with the released application.

Breaking the project into modules is
key to eliminating guess work in
application development. Once the modules
have been set and the screens have been
designed, it is time to get the users
involved. Functionality is important, but
too many options may get in the way when
the goal of the application is to do a few
relatively simple and routine tasks.

Testing and debugging will always
benefit the developer in the long run in
terms of reduced maintenance of the
finished product. Once debugging is
complete, documentation and release are
all that are left to finishing the
project.

The following is a flow chart of the
life cycle of application development. It
was created using the Process Flow Diagram
available in release 6.11 of SAS/AF
software.

Figure 2 Figure 2 PDF Of Life Cycle

NOTESNOTES

SAS and SAS/AF are registered trademarks of
SAS Institute, Inc., Cary, NC in the USA and
other countries.

6

	Main TOC
	FRAME IT: THE NUTS AND BOLTS OF RAD FRAME IT: THE NUTS AND BOLTS OF RAD
	INTRODUCTION
	CONCEPT CONCEPT DOCUMENTATION
	MODULE MODULE DESIGN
	SCREEN DESIGN
	IMPLEMENT FUNCTIONALITY IMPLEMENT FUNCTIONALITY
	DEBUGGING
	DOCUMENTATION
	RELEASE
	SUMMARY
	NOTES

