Using Survey Data—Tips to Pick Up Speed on the Road to Analysis

Cynthia L. Williamson, Technology Assessment Group, San Francisco, CA
Suzanne D. Kreutzer, Social Policy Research Associates, Menlo Park, CA

ABSTRACT

In this paper, we offer tips to help SAS® programmers get
to know their survey data, thereby ensuring that the road
to analysis is smooth. We will address techniques to
prepare for a survey, track questionnaire returns, ensure
accurate data input, check for data quality, and create a
data analysis file.

INTRODUCTION

Surveys are a standard research tool used to gather data
from many different types of respondents: patients,
employees, consumers, students, and other diverse popu-
lations. Despite the variety in the research questions to be
addressed through the use of surveys, the need for clean
and accurate data for analysis is paramount. Regardless
of the population to be surveyed or the types of questions
to be answered, programmers face similar issues; similar
strategies can be used to identify and deal with problems
of missing, inconsistent, or otherwise "dirty" data.

Before you begin analyzing your survey data, you will be
involved in at least one of the following tasks: preparing
the questionnaire, pretesting and fielding the survey and
getting results, entering the survey data, or preparing the
data for analysis. Although these tasks are usually
considered to be a linear process, they are much more
likely to be completed iteratively. As you become more
familiar with your data, you may find it necessary to step
back, reexamine your assumptions about the data, and
rerun some programs given what you learned about the
data. The figure below displays a path that might be taken
on the road to analysis.

o d Inconsistent
iz i
e = “" " data found

ROUGH during
ROAD analysis
DIP IN Missing CAUTION
ROAD data
Low
response
rate
Data
clean

Example of Path Leading to the Road to Analysis

In the example above, several problems are encountered
before the data are clean. Because there will always be
respondents who do not complete the survey as you
expect they would, your data will be imperfect. The best
time to find these problems is before you get to the data
analysis phase.

The rest of this paper is devoted to techniques that we
found helpful in smoothing out the inevitable bumps in the
road as we readied survey data for analysis.

PREPARING FOR THE SURVEY

The ideal time for the SAS programmer to be involved in a
survey is before the questionnaire is printed. No matter
how many times a questionnaire has been reviewed by
researchers, it is always useful to have a programmer
look it over. SAS programmers are the most likely to
identify problems such as faulty skip patterns, inconsistent
use of the same scale for different items, and other
problems that may make the analysis more difficult or may
even make it impossible to answer the research question.

If the population to survey is large, you will most likely be
involved in selecting a random sample for your survey.
The following code (from SAS Language and Procedures:
Usage 2, Version 6, First Edition, p. 235) makes it easy
for you to select a simple random sample of exact size:
kkdedokdkkdokkkdkddeddokdokdokdddkddodkdddedoddhdoddokkkkhdodedkddkd ik k
* SELECT A SIMPLE RANDOM SAMPLE OF EXACT SIZE *
Fkkkdkkdddkkdddkkkkkikkkkidkikihkhdkhhkkikdkihddkhhkkiikhks .

data wuss.sample (drop=k n);
#%% K IS THE NUMBER THE NUMBER TO SAMPLE AND #***:
#*% N IS THE POPULATION wEK
retain k 1200 n;
if _n_=1 then n = total;
set wuss.populatn nobs=total;
if ranuni(998877665) <= k/n then do:
output;
k=k-1;
end;
n=n-1;
if k = 0 then stop;
run;

FIELDING THE SURVEY

Mailing out questionnaires or conducting telephone
interviews are not SAS-related tasks so most of the tasks
related to fielding the survey are not likely to be performed
by you. However, you may be asked to prepare labels or
data files for vendors who will be conducting the survey;
you may also be asked to track returns and calculate
response rates.

Preparing Survey Materials

For a mail survey, you can use PROC FORMS to prepare

address labels or ID labels for questionnaires. To create

labels:
kkkkdkkkkkkkkkkikkkikikhhkhhkikkkhhkddkhkhikikkkikikikikkkik
* PREPARE LABELS: 1 INCH x 2-5/8, 3 ACROSS, 10 DOWN *
*********************k*************ﬁ*******************;
proc forms data=wuss.sample

width =33 lines =6 down =0
nskip =1 nacross =3 nbetween = 6
indent =0 ncopies =1:

line 2 id / indent=20;

line 3 name / lastname;

line 4 addrl / remove;

line 5 city state zip / pack;
run;
We created the above example using the SAS System,
version 6.10, for Windows. From the print setup menu, we
changed all margins to 0.1” and changed the font to 10-
point Letter Gothic (W1). If you use different sized labels
or a different font, you will have to experiment with the



options in PROC FORMS and in the print setup menu to
print the labels properly.

If your survey is being conducted by phone and you are
providing the sample to a vendor, you may be responsible
for data management issues such as writing data in a
machine-readable format or printing the data for the
vendor's use.

Tracking Returns

Keeping close track of the returned surveys is an
important part of survey coordination. Data kept in a
spreadsheet or database can be used to monitor
response rates as the survey is being conducted, to
identify individuals who require follow-up contact, and to
conduct analysis of response bias. A low overall response
rate is an indication that additional steps should be taken
to increase the response rate. If response rates are lower
for important subsets of targeted respondents (for
example, if men respond at a lower rate than women),
steps can be taken before surveying is complete to
ensure an overall representative sample. In addition, data
on response rates are necessary for any follow-up contact
with possible respondents. Identifiers with codes
indicating no response can be merged with the primary
address data set to prepare labels for follow-up mailings.
Finally, return dates can be used to evaluate levels of
response bias, as can demographic or other data merged
from available sources.

In tracking returns, you will need to capture the following
information, at minimum:

» All identification variables (i.e., those variables that
uniquely identify each member in the sample data set).

e The return code (see below for more information).
¢ The date the questionnaire was received.

You can use a DATA step with the WINDOW statement to
enter tracking information directly into a SAS data set. In
our example which follows, the tracking data set is initially
set up to include identifiers of all potential respondents,
with default return codes indicating no response. The user
is prompted for the identification number of each returned
survey and the status of the response. Return dates are
automatically tracked by assigning them the date of data
entry. Data entry is checked by comparing the listing of
each day's entries with identifiers from the questionnaire.
dkkdkkkkkdkkiekiokdkkdkdkkkikkdddkdiokikkkkkihdddddhhkkidokik ik
* 1. BACK UP STATUS DATA SET FIRST *
kkkdkddkkkdkkikkddkkddkidkhkihkkdhdkdohkdikdkdkddhkikiikikd .

data wuss.statbak:
set wuss.status:
run;
*hkkkkhkhkkikkkdhkikhhdhdohdddhdhhhkhdddokddddkiokikdkidhdir
* 2, START WITH AN INTRO SCREEN *
**************************—k*********‘k******************;
data _null_;
window start color=white
#4 @19 'STATUS OF WUSS QUESTIONNAIRES
#6 @7 'SUGGESTIONS -
#8 @8 '- If you make a mistake on the
#9 @8 RETURN CODE, re-enter: your Tast
#10 @8 ' entry for each ID will be saved.
#12 @8 '- If you make a mistake on the ID number,

#13 @8 remember to correct the RETURN CODE
#14 @8 for the incorrectly-entered ID,
#15 @8 e., NOT YET RETURNED

#16 @8 ' after checking Status Printout.
#19 @35 'PRESS ENTER TO CONTINUE
display start;
stop:
run:

Fededdededekdedededededededededekdeddededodeddededokdodkdedededekdedekdededededededededodedededede

* 3. UPDATE THE STATUS OF RETURNED SURVEYS *
Fedcdedd ootk ke de e dedcdedetededededededededededededededede dedede e dedededede

data ret code; '
window ret_code color=yellow
#5 @10 "ENTER ID NUMBERS OF QUESTIONNAIRES BELOW

#7 @15 'RETURN CODES: 1=RETURNED '
#8 @15’ 2=UNDELIVERABLE '
#9 @15 0=NOT YET RETURNED '
#10 @15 (CORRECTIONS) '

#12 @ 'ID NUMBER' @19 id best3.

#14 @5 'RETURN CODE' @19 code 1.

#20 @10 'After entering the last value, enter STOP’
#21 @10 'on the Command line (<home>/STOP) mstead

#22 @10 "of pressing ENTER '

do while (upcase(_cmd_) ne 'STOP')
display ret_code blank;
ret_date = today() :
output;
id = .;
code = .;
ret_date = ;
end;
stop;
run;
Fhkkdkdkdkkkdkiokikdkdkiohioddkdokddhdkdeokdedkioddkddoddehdokdok ik
* 4, DELETE ANY BLANKS/DUPLICATES *
Fekdedekkkddokdekhkkdkkdkdoddokdokdokdoddddedkdokdokdodedededok oo ddedek :
proc sort data=ret_code;
by 1id;
run;
data ret_code;
set ret_code (where=(id ne .)):

by id;

if last.id;
run;
Jekkkdedokdedodedededododok kdeddedekkddokdodekdddodokdk dededededededededodedekedededededede
* 5. LIST OUT RETURN CODE ENTRY (NEW) *
B
data null ;

set ret_code;
tday = date();
tm = time();
file print header=x;
put @15 id z3. @25 code @35 ret_date date7.;
return;
x: put @10 "Questionnaires Entered”
@35 tm hhmms. tday weekdate32. / /
@15 "ID' @24 'Code' @32 'Return Date /
@15 '---' @24 "----" @32 '-----eo---
return;
run;
Fdkkkdkhhkkikkkhkdhkhkhddhickkdhkhhkktortnkidodkddiokddriki
* 6. LIST OUT RETURN CODE ENTRY (PREVIOUS) *
Jekdokkkdekkdokdekdodokkddodokdokded ok gk dkddokkx

dekdekkdkkkkdokkkdkdkk .

data _null_;
set wuss.status;
tday = date():
tm = time();
file print header=x;
put @15 id z3. @25 code @35 ret_date date7.;
return;
x: put @10 "Questionnaires Entered BEFORE"
@42 tm hhmmb. tday weekdateld2. //
@15 'ID' @24 'Code' @32 ‘Return Date /

@15 @24 -2t @32 M- ;
return;
run;
dekkkdhkkddkdkdkkkikkkddkhikdkikddkhikkikdkdkhddikiikk
* 7. UPDATE STATUS DATA SET *

kkkkhkkkkhkhhkkkkk kkkkkkkkkkhkkkrkikkik *kkkdk .

data wuss.status;
merge wuss.status
ret_code;
by id;
run;



The following screens are displayed by the WINDOW
statements:

STATUS OF WUSS QUEST|ONNAIRES
SUGGESTIONS -

= If you make a mistake on the
RETURN CODE, re-sntar; your last
entry for each ID will be saved.

- If you make a mistake on the 1D number,
remember to correct the RETURN CODE
for the Incorrectliy-entered ID,
i.e., NOT YET RETURNED
after checking stitus Printout.

PRESS ENTER TO CONTINUE

The default return code every respondent starts with is not
returned/not completed. Other common return codes are:
(1) returned/completed, (2) undeliverable by post office
(mail survey), (3) incorrect phone number (phone survey),
(4) respondent refused to participate, and (5) respondent
unable o respond due to death, iliness, or other circum-
stances. You will probably need to add other codes
specific to your study. For example, you may be surveying
people about their participation in a program and they
may never have participated or respondents may not be
able to respond because they do not speak the language
used for the survey.

Additional ways to track returns include:
« Create a database using SAS/FSP®.

o Create a database in an application such as Microsoft
Access® and import the data into the SAS System.

¢ Type the information into a spreadsheet, word
processing document, or an ASCI! file and read that
data into a SAS data set.

* Manualily track using pencil and paper. (This is the least
flexible option for tracking; we do not recommend it.)

ENTERING SURVEY DATA

Unless you are lucky enough to have someone hand you
a disk with an easily readable data file, you will need to
have the data entered, either in-house or out.

Editing Data Prior to Data Entry

Your data will be more accurate if the data entry person
keys in what is seen on the page without trying to

remember special input rules. Therefore, it may be
beneficial to have some type of editing occur before the
data are entered. For example, what if your questionnaire
asks for a number (such as usual hours worked per week)
and the respondent enters a range (such as “40-50")? A
data editing rule would specify whether the response
should be edited to reflect the lowest value in the range,
the highest value, the midpoint, or set to missing.

The first step in developing data editing rules is to review
a few dozen questionnaires and then to develop rules
based on how the respondents answered the questions.
The person responsible for data editing should spot-check
a few questionnaires on an ongoing basis because
different types of problems will continue to pop up.

Entering Data In-House

If the data are entered in-house, you may be responsible
for setting up a data entry system. If so, you can consider
choices such as using a WINDOW statement within a
DATA step (as described in Tracking Returns above),
SAS/FSP, or database packages (e.g., Microsoft Access).
To ensure the best entry possible, you should keep these
points in mind:

¢ Lay out the data entry screen so that it looks as much
like the questionnaire as possible.

« Put formats on data entry fields, such as dates or Social
Security numbers, so that the data entry operator does
not have to spend time entering unnecessary
characters.

» Place range specifications on variables so that out-of-
range responses cannot be entered.

You will want at least some data entered twice to verify
the accuracy of the original data entry. At minimum, you
want all ID variables to be entered again in another file.
You should also have a sample (or, ideally, all) of the
questionnaires reentered into a data set with the same
variables as the original. Once the data have been
entered a second time, you can use PROC COMPARE to
identify any mismatches between the data sets. To
compare the original entry with the double data entry:
dkkkdkkkkdokkdkikkkkkiddkiikkikkikikkikkhhkikikkkikikhhikkkkk

* 1. SORT DATA BY ID VARIABLES (IF NOT ALREADY SORTED)*
et koo ook etk koo g e de etk dedede ek

**********;

proc sort data=wuss.survey;

by idl id2;
run;
proc sort data=wuss.doubsurv;

by idl id2;
run;
Fkkkkkikkhkkkhkkhkikkikkikihkkikihkhkihkikkihkhiikkkkhkikhkkiik

* 2. COMPARE ALL VARIABLES FROM THE SURVEY *

Fkdekkkkkkkkkikkkkkkkkikhkkhkkkkkkkikikkikihkihkkhkkkhkkiks .
proc compare

base=wuss.survey

compare=wuss . doubsurv

listall transpose;

id idl id2;
var ql-g5;
run.
The output from PROC COMPARE will list out any
mismatches between the original entry (base file) and the
double data entry (comparison file). Once the correct
response is identified and the appropriate data set
(original or double data entry) is updated, you can rerun
the same PROC COMPARE program to verify that the
corrections were entered accurately and everything
matches.



Out-Sourcing Data Entry

If you have a vendor enter the data, you will need to agree
on the format in which you want the data delivered (i.e.,
fixed column, delimited by a designated character, or
another format). If the data will be delivered in a fixed-
column format, you will need to provide a copy of the
guestionnaire with the exact positions for variable entry
indicated (sometimes called “card and column” locations).
We usually hand-write the card and column locations in
the margin of a copy of the questionnaire. When possible,
the data entry positions are typed in as a part of the final
guestionnaire sent to the printer.

If you are responsible for preparing a request for a bid
from data entry vendors, you should provide the vendors
with the following information:

» The date by which you want to receive the bid (which
should include sales tax, if appropriate).

 Size of questionnaire—either the total number of cards
and columns to be entered or the number of fields/
variables to be entered.

» Total number of questionnaires to be entered.
» The date the first questionnaire will be received.
¢ The date the last questionnaire will be received.

» The date you want to have the data returned. This may
be multiple dates if you request test data, any interim
data, and the final data.

¢ Any special instructions regarding data entry and how
you want them to handle problems (e.g., “flag” the
problem, enter the largest (or smallest or neither)
number if respondent indicated more responses than
can be entered).

» Your name and phone number as the contact person.

Special Issue: Circle-All-That-Apply Items

There are several ways to enter questionnaire items that
ask respondents to circle all responses that apply. An
example of a circle-all-that-apply item is:

Which of the following SAS procedures have you
used? (Please circle all that apply.)

PROC MEANS. ... 1
PROC GCHART ..ottt 2
PROC REG......cccormiiiiciiiiniencicns 3
PROC FABRICATE ....ccoviviiiniinncieniccrenee 4

You can have circle-all-that-apply items entered using the
methods below:

» Enter each category in its own column. For example, if
responses were entered in columns 74-77 and if
responses 1 and 4 were circled, a “1” would be entered
in column 74 and a “4” would be entered in column 77.

¢ Allow enough space for entry should a respondent
indicate all responses and have any responses entered
in the space left justified. Using the example above, “14”
would be entered beginning in column 74. (See Creating
Your Analysis File below for suggested code for reading
in data in this format.) This method minimizes the
number of key strokes.

* Enter a “1” in the specified column if the respondent
circled the response or enter a “0” if the response was
not circled. Using the example above, “1001” would be
entered beginning in column 74. This method is
probably the most prone to data entry error; therefore,
we do not recommend it.

Load Sample Data and Check

We think it is wise to enter a smalll batch of test data
(approximately 10-25 questionnaires). After you read in
the test data, carefully review frequencies and means; in
addition, print all the test data and check every variable
for a subset of questionnaires. Once you have verified
that your load program reads the data properly and that
data entry staff have understood any special instructions
you have given to them, you have significantly reduced
the risk that some of your questionnaires will not be
entered or read in properly.

PREPARING DATA FOR ANALYSIS

The key to preparing your data for analysis is getting to
know your data. This means that you need to read the
questionnaire, think about how respondents might
misunderstand the instructions and questions, make sure
you understand any skip patterns, and pore over any
frequencies, means, or univariates you have. You will
recoup the time that you spend getting to know your data
when you are in the analysis phase.

Cleaning Your Data

Before you begin creating your analysis file, you should
look for these undesirable characteristics in your data:
duplicate observations, blank questionnaires, out-of-range
responses, lack of internal consistency, and outliers:

« Duplicate observations. Sometimes a respondent
sends in more than one questionnaire or the same
questionnaire is entered into the database more than
once. To identify any problem cases:

dkkdkdekkdkkkkkiokkkdkkdhkkkkhkkdkidkkkkikhkkkkkikikikikkik

* 1. SORT DATA BY ID VARIABLES (IF NOT ALREADY SORTED)*
Heddek g ek ok ek ook deek etk e gk gt Rt SR dede Ak «

proc sort data=wuss.survey;

by idl id2;
run;
kkkkkkikkkikkikkikkkkkihkhkkikkihkkkkihkkihkikhkkkihdkikkkiikrk

* 2. QUTPUT 0BS THAT DO NOT HAVE A UNIQUE 1D *
ek ek ko ik ko gk oo

kkdokkkdokkkkkkkkdkkickikikik.
’

data dups;

set wuss.survey:

by idl id2;

if not(first.id2 and Tast.id2);
run;
Fhkikkkkkhkbhiihkikhihkkikihhihkidkihkhkkihirrkdkkkihihkhkkkkhkhik

* 3. PRINT OUT ALL VARIABLES FOR DUPLICATE OBS *
ke ko Ak ke s Rk ek ek ok koo etk ki koo

proc print data=dups;

id idl 1d2;

title ‘Identify Duplicate Observations’;
run;

If all variables for all observations are exactly alike, you
can safely delete any duplicates. However, if any
variables differ, you need to verify that the |D variables
for the questionnaires were entered accurately and, if
they were, you need a rule (e.g., questionnaire received
first) as to which questionnaire to keep.



¢ Blank questionnaires. Sometimes a questionnaire is
sent to data entry even though it is blank. For example,
the respondent refused to complete the questionnaire
but there is ID information on the cover page that is
entered. To identify any problem cases:
kkdkdikkkkkdkkkhkkikkkikkhhkihkikikkkkikikikkiikiiikikkiiky

* 1. CREATE A VAR TO COUNT NONMISSING DATA VALUES *
*******************************************************;
data anyblank;

set wuss.survey;

cnt_data = 0;

dhkkkdkdkikkikikkkikiokkkkikikkhkkikkkikikkikkkkikkikkik

* 2. CREATE ARRAYS OF ALL CHARACTER & NUMERIC VARS *

*****************************************************’

array charvars {*} _char_;

array numvars {*} _num_;

Fekdekfokdokdkkkkkdkkkkkkkkkkkkkihkidkkkkkkiikkihkirkikikhkkkk

* 3. INCREMENT COUNTER VAR FOR NONMISSING CHAR VARS *

dkkkkkhkkkkkkhkikkkihhikkkhkdkikkkkkikkkkkikkihkkkihkkik.

do i=1 to dim(charvars);

if charvars{i} ne '' then cnt_data = cnt_data + 1;

end;

Fekdedkkddokdkkkkdkkidkddddekdokkkkkidokdkkkkihkkkihkdkkkkkikyx

* 4. INCREMENT COUNTER VAR FOR NONMISSING NUM VARS *

*****************************************************:

do i=1 to dim(numvars);

if numvars{i} ne . then cnt_data = cnt_data + I;
end;
Tabel
cnt_data = ‘Count number of non-missing variables’;

run;
Fedkedkdkdokiokdkkkkdkkkkkkkkhihdokkdkdkhkkikihkddddkikkkkidkkkkik
* 5, GET A FREQUENCY ON THE COUNTER VARIABLE *
*******************************************************:
proc freq data=anyblank;

tables cnt_data;

run;
Sedekekededede ik ek koot ekttt et e de e dedede e ek
* 6. PRINT OUT IDS FOR BLANK QUESTIONNAIRES *

Fdkkkdkdkkkkkkikikihikikikikikihikikkhkkikihikhkkikikkkikki.
»

proc print data=anyblank noobs label double;
var idl 1d2 cnt_data;
where cnt_data <= 2;  ** 2 ID VARIABLES ONLY;
title 'Identify Blank Questionnaires’;

run;

Just to be safe, you should verify that the questionnaires
are actually blank before deleting the observations. You
may also want to update the return code in your tracking
data set, if applicable.

Out-of-range values. You should run PROC MEANS on
all numeric variables and PROC FREQ on all character
variables. Then check the minimums and maximums to
verify that there are no out-of-range values. However,
for some surveys, you may have to load and check
interim data several times until all the data have been
entered. Because it is tedious to review similar output
multiple times and you will have to write code to print out
problems anyway, you may want to program out-of-
range checks similar to the following:
kkkkkkikikkikkkkkkkhkkkikikikkkkhkhkkikkikkkkkkikkihkikkikk

* 1. MACROS FOR RANGES AND TO SET FLAG FOR OUT-OF- *
*  RANGE RESPONSES *
*******************************************************;
%let r0lto02 = .,1.2;

Zlet r0ltod5 = .,1,2,3,4,5;

¥macro probflag (varname,range);
if &varname not in(&&&range) then p&var = 1;
#mend probflag;

Kkkkdkkkkkiikkkikikkkkkkkkihkikkkikkikikikkkikkkhkkkkrkikkkik

* 2. SET OUT-OF-RANGE FLAGS FOR YOUR DATA *
ek ok etk ddedok ok ek ko ok dekekdod ek de el

Kk .

data outrange;
Tength
probname $100
tempprob $7:
set wuss.survey;

array allvars {*} ql-q5;
array probvars {*} pql-pab5;
kkkkkkkkkhhkihkhkkkkkikikkrhkkhkhikhkkikikihikkihkkhkikkhikkik
* 3, SET THE PROBLEM FLAGS TO ZERO *
****************************************************
do i =1 to dim{probvars);

probvars{i} =
end;
F*kkkkkkkdkkkkkkkikkikkkikikkkkikikidkikhkikikidkkkkikikk

* 4. IF VAR NOT IN RANGE, SET PROBLEM FLAG TO ONE *
Fededek etttk ek e e dedededededoedededededok e e

*******

** ARRAY ALL VARS;

#probflag (ql, r01to02);
Zprobflag (g2, r0lto05);
Zprobflag (q3, r0lto05);
#probflag (q4, r01to02);
Zprobflag (g5, r01to05);

kkkkkkdkkdkkkkkdkhkkkkddkkikkkikhkkkhihkkkkhdkikkkkikkkkiik

* 5, CREATE VARIABLE THAT IDENTIFIES PROBLEM VARS *
oo dedeededededededk ek de e de e dededededek

’

** CREATE PROBLEM FLAGS;

Jekedodekdokkdokedededokdeokokd .
’

doi=1to d1m(probvars);
tempprob
if probvars{1} 1 then do;
call vname(allvars(i).tempprob);
probname = trim(left(probname)) || * * ||
trim(left(tempprob)):
end;
end:
run;
Fehkdokhkkkkkkkdkickdhikikkkkkikkikhikkhkkhkikikihkikikkkiks

* 6. CHECK THAT PROBLEM FLAGS WERE CREATED PROPERLY *
Fededededeiehddoddek ook ook dedde e ek ek Rk dedededed ek de ek

proc freq data=outrange;
tables pgl*ql pg2*q2 pq3*q3 pgd*gd pqd*qb
probname
/ list missing;
title ‘Check Creation of Problem Flags':

run;
dokdededekdkkdkddokdokdddokkdoddddeddcdedodedk dokdkdeddok ok dokokdkdokdok ke kkodok

* 7. SUBSET DATA SO THAT YOU HAVE ONLY PROBLEM CASES *
etk ok dek ko ek Sededede

Fekdededokkkdokdokdcokdddkkkhddkkkkdkk .
’

data outrange;

set outrange;

if sum(of pql-pg5) > 0;
run;
Fkkdikkkkkhkhkkhkkhkkkhikhkkkkhkhkkkkkkhkkrkhkkkikhkkkihkhkkk

* 8. LIST OUT PROBLEMS *
Seddededrdedoddeddedededek et dededede etk Sedede et dededede ek

kkdekkkkkkkkkk.
’

proc sort data=outrange;
by idl id2 date initials;
run;
proc print data=outrange noobs uniform;
var probname ql-g5;
by idl id2 date initials;
title 'Print Qut Data with Out-of-Range Values':
run;

Someone could take the listing of problem cases,
compare the variable values printed with the question-
naire, and mark the correct responses on the printout.
After the corrections are made to the SAS data set, you
should rerun the program to verify the corrections.

Once you have verified that your program is working
accurately, checking for out-of-range responses after
more data have been added to the file is a very speedy
process.



o Lack of internal consistency. Data integrity can be
improved if you make sure the data "make sense."
Internal consistency checks (or multivariate checks),
where responses for individual observations are
evaluated based on responses to other items, can be of
help. For example, if your survey asks for pregnancy
information, respondents who are males should not
have data for that section of the questionnaire. Rules
regarding changes to inconsistent data (e.g., set
pregnancy information to missing for males) should be
developed and applied to all records programmatically.

A special set of internal consistency checks you should
write involve skip patterns. Respondents will sometimes
answer questions that they are directed to skip.
Decision rules should be developed as to whether data
in the questions that should have been skipped should
be set to missing or whether the response to the
question before the skip should be reset for consistency.

» Qutliers. Run PROC UNIVARIATE with the PLOT
option for continuous variables to identify extreme
values. Use the ID statement to display the ID variable
with the five lowest and highest values. You need to
determine if any outliers are valid values and, if so,
whether they should be included in analysis.

Creating Your Analysis File

Once you have checked your data and pronounced it
clean, you will create an analysis file. Unlike cleaning your
data, which is best done in a series of separate programs,
you may prefer to create your analysis file in one program.
The following modules may be a part of your analysis file
creation:

s Special missing values. There are many reasons why
a respondent does not answer a question. Oftentimes,
these “nonresponses” are purposely given out-of-range
values. When you conduct your analyses, you will not
want these out-of-range values included in means or in
frequencies. This is when the SAS special missing
values are invaluable. Common missing value codes we
have used are:

— .S for skipped.

— .Dfor don't know.

- .Rfor refused.

— .Nfor not applicable.

o Circle-all-that-apply items. The following macro can be
used to create dichotomous variables from circle-all-
that-apply items which are entered left justified:

Fhkkkkkdokkkkkhhkhhikhihkdkdkdkkdkkkhikkikikkkkhhihihkhkikit
* 1. CREATE YOUR MACRO. PARAMETERS ARE:

* ROOT = STEM OF THE VARIABLE NAME (E.G., Q6 IF

* YOU WILL BE CREATING VARS Q6 _1-Q6 5).

* N = FINAL NUMBER OF CIRCLE-ALL VARIABLES.

* 0 = NUMBER OF CIRCLE-ALL VARS ENTERED. MAY

* BE LESS THAN N IF ALL POSSIBLE RESPONSES
* WOULD NOT BE CIRCLED AND ENTERED.
*******************************************************;
%macro circle (root, n, 0):

**%x MAKE FLAG TO KEEP TRACK OF ANSWERS ***.

flagcirc = 0;

**% ARRAY THE FINAL CIRCLE-ALL VARIABLES ***;

array &root {*} &root. 1-&root.&n;

**% ARRAY THE CIRCLE-ALL VARIABLES ENTERED #***;
array t&root {*} &root.tl-&root.t&o;

*xk INITIALIZE FINAL CIRCLE-ALL VARIABLES TO NO #**;
do i =1 to dim(&root);

&root{i} = 0;

* Ok ¥ ¥ X ¥ %

end

*%% SET ANY YES VALUES FOR CIRCLE-ALL VARIABLES **+.
do i =1 to dim(&root);
do j =1 to dim(t&root):
if t&root{j} = 1 then do;
&root{i} =
flagcirc =
end; *D0OJ=1T0...;
end; *D0I=1T0...;
end;
#%% SET FINAL CIRCLE-ALL TO MISSING ***.
**% TF EVERYTHING IS NO #***;
if flagcirc = 0 then do I = 1 to dim(&root);
&root{i} = .;
end;
Zmend circle;

I — =

e Labels and formats. Even though it can be a boring
task, labeling variables and applying formats is
important. Labels and formats will allow end users to
more easily and accurately assimilate the data. In
addition, if you have to go back to the data after having
set it aside for some time, you too will benefit from
having more descriptive output.

Variable creation and recoding. it is always important
to verify that the creation of variables from survey
responses was done correctly. You can look at cross-
tabulations of variables using PROC FREQ with the
LIST option to display the input variables by the newly
created variable. SAS code that performs calculations or
manipulates one or more variables to create another
can be double-checked by printing out variables used in
the calculation and the created variable for a number of
observations and then performing hand calculations.
This may seem tedious, but is a good way to catch
inadvertent errors.

* Get the basics. Whenever you create a permanent SAS
data set, run PROC CONTENTS, PROC MEANS (for
numeric variables, including ID variables), and PROC
FREQ (for character variables).

CONCLUSION

Conducting surveys and preparing data for analysis can
be a bumpy road. Programmers can prepare for the twists
and turns by offering an important perspective to the
research team as surveys are designed and conducted.
Although programmers should expect detours along the
way, they help lay the foundation for quality research by
tracking the flow of survey traffic, paving the potholes of
missing and inconsistent data, and preparing a smooth
road to analysis.

REFERENCES

SAS Institute Inc. (1991), SAS Language and Procedures:
Usage 2, Version 6, First Edition, Cary, NC: SAS Institute
Inc.

ACKNOWLEDGMENTS

Kathryn A. Valdés, SRI International, developed the circle
macro presented in this paper.

We also thank Cyndi’s colleagues at Technology
Assessment Group for their ideas.

We especially thank Alex Stagner for his support.

SAS and SAS/FSP software are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.



	Main TOC

