Fuzzy Logic and SAS® Software - Do They Work Together?
Markku Suni, Sampo Insurance Company, Turku, Finland

Abstract

Reports typically contain observations according
to some criteria. An insurance company might
want to list customers paying over x dollars or at
most y dollars for an insurance policy. It might be
that marketing department needs a report showing
the customers with expensive car and boat - which
can be deduced by the insurance amount - and
insufficient life coverage. The problem is that no
matter how we set the amounts x and y we may
always miss some interesting (x+1) or (y-1) dollar
cases. This is unfortunate but cannot be helped as
programming logic is rather rigid. We are not
hopeless, however: There is fuzzy logic that offers
a lot of flexibility and there is data step that offers
us all the exiting possibilities of fuzzy logic. We
can combine SQL with fuzzy data step to see that
marketing department receives the report, the
whole report, and nothing but the report it needs.
In this paper we review fuzzy logic with SAS
programming and fulfil the wishes of the
marketing manager in a way he or she did not
think possible.

What is Fuzzy Logic Anyway?

The decade of 60's was in many ways a happy
one. Pollution and overproduction were not yet
invented, people were happy, happier, hippies.
Music was ever so good with Elvis, the Beatles
and so on. And there was a mathematician Lotfi
Zadeh thinking about ways of programming the
electronic equipment - radars and weapons - of a
warship in such a way that the equipment could
safely identify the oncoming airplane even though
the airplane might use some -electronic
countermeasures to distract identification [1]. In
such a case the information received is not
precise but rather fuzzy. This called for logic with
not only TRUE or FALSE but something that was
almost TRUE but somewhat FALSE. Or the other
way around. Thus Zadeh developed fuzzy logic to
deal with imprecise information as an extension to
traditional logic. As a matter of fact we use
imprecise information in everyday life without
much thought about it. We speak about new cars,
young women, tall men and so on. It is not
unusual for a craftsman to guide someone with
very imprecise wording: put the pie in hot oven
and roast until done and golden brown.

Fuzzy logic provides for ways to model human
reasoning with a computer program. In fuzzy logic,
exact reasoning is viewed as a limiting case of

approximate reasoning, everything is a matter of
degree (degree of truth for “red car’, “tall man”),
and the reasoning is done by calculating those
truth values. As it follows human reasoning, fuzzy
logic is suitable for uncertain or approximate
reasoning, especially for the systems with a
mathematical modei that is difficult to derive, and it
allows decision making with estimated values
under incomplete or uncertain information.

Fuzzy logic has a strong mathematical theoretical
background, but this paper will just scratch the
surface. To begin a logical deduction in a program
we think about a variable that has a value. In
conventional logic and programming this value is
precise: Fahrenheit 451, Pennsylvania 65000, 21
miles from Tulsa and so on. If we do not know the
exact value, we can not compute. In fuzzy logic we
think about fuzzy sets. A variable has a value that
belongs to the fuzzy set (say, "old men") with a
degree of membership. Degree 0 implicates no
membership, degree 1 implicates full membership
(sure cases). Everything in between implicates
uncertainty. This fuzzy set can be formulated in
many ways, depending on the problem at hand.
An example might be:

OLD(v) = 0, if v<20
(v-20)/40, if20<=v<=60
1, if v > 60

In this example we say that anyone under 20 can
not be regarded old. On the other hand, anyone
over 60 is surely old. For those in between we can
calculate the degree of "oldness" using the
formula above. For instance a person of 45 has
degree of membership of 0.625. In everyday life
he or she could be considered old by those under
20 but young by those over 60. This formula is
monotonically increasing for values between 20
and 60 and this sounds reasonable. Depending on
the decision maker this formula can be more or
less complicated. The main thing is that it gives us
a unique truth value that is between zero and one
and indicates the degree of truth. As mentioned, it
is the decision maker who defines the fuzzy sets.
In this way, we can say that in fuzzy logic the boss
is always right.

In traditional reasoning we have a number of rules.
For instance:

IF the customer's age is over 20 THEN
customer can rent a car.

Or:

IF the customer's age is over 20 and
customer's driver's license is more that one
year old, THEN customer can rent a car.

In conventional expert system there is usually just
one rule that applies (or "fires"). In fuzzy rule base
all rules fire to some degree (though possibly the
degree may be zero). Thus we have to calculate
the truth value as result for each ruie, then
combine the outcomes of each individual rule to
form overall system output. To form the outcome
of a rule we need a mechanism for implication: IF
a THEN b. There are several known and used
implication methods, for instance:

Larsen X -> y=xy
Lukasiewicz x -> y=min(1,1-x+y)
Mamdani X -=>y=min(X,Yy)

We read these as: the truth value of statement "x
implies y" (or “IF x THEN y”) equals the minimum
of truth values of x and y (Mamdani case). "Truth
value" and "degree of membership" can be used
meaning the same. Mamdani implication is very
often used because of its simplicity. Here we note
one big difference between fuzzy logic and
conventional logic. In conventional rule IF the
premise (the IF part) is true THEN we do exactly
as the rule says (the THEN part). In fuzzy system
we calculate the degree of applicability of the rule
as a whole (both parts). This is because there is
some degree of membership in the IF part and
there is some degree of membership in the THEN
part of a rule. This applies to each and every rule.
After calculating the truth values of the individual
rules we combine these somehow to achieve the
final outcome. We could take the minimum of the
individual truth values as this is equal to the
degree of satisfying all rules. We may want to
have the result of satisfying just one rule, in which
case we take the maximum of the individual truth
values. Or we may feel that it is more reasonable
to have some sort of weighted average. For
instance, we may have noticed that our four rules
give us truth values of (0.62, 0.20, 0.15, and 0.03).
We may want that the first rule very much - but not
totally - decides the outcome. The other rules have
some effect.

Fuzzy programming

We have learned to write programs based on
conventional logic. We can learn to write programs
based on fuzzy logic. It gives more work because
we need to do calculations to decide the degree of
membership, and somebody has to define the
membership functions for each possible linguistic
value (old, young, middie-aged and so on) and to
decide the "correct" form. We also have to do
some calculations for the THEN part of each

action as well; this can be difficult to understand
and do in the beginning. On the other hand, we
receive advantages for applying fuzzy logic: we
can formulate the problem more closely to spoken
language and follow the human reasoning more
closely, our program works smoother and is not so
prone to certain exact limits. Our parameters may
not be exactly "right" anyway; fuzzy logic is more

forgiving.

Fuzzy Logic in SAS

SAS is just another programming language, just
as APL, BASIC, COBOL, DIBASIC, EIFFEL,
FORTRAN, or some other. It has no particular
features to support fuzzy logic but then again, very
few - if any - programming languages have such
features. Dealing with fuzzy logic calls for some
extra programming and this calls for data step.
There is no particular difficulty in writing fuzzy data
step. A fuzzy proc step is almost impossible with
present SAS. Almost but not quite as PROC
REPORT allows data step statements within
COMPUTE blocks. Those statements can be just
as fuzzy as need be. Other than that, however, it
is hard to imagine adding fuzzy logic to a SAS
procedure by means of current PROC statements.

Having the theory, the problem is to implement it
practically, which calls for some thinking.
Companies often store their information in some
relational data base, say DB2® of IBM®
(trademarks). Our task is to write a report
selecting from DB2 tables those observations that
fulfill fuzzy constraints. We can read DB2 tables
with SQL using PROC SQL, or we can use data
step just as we were reading SAS tables. If we
use SQL, we cannot readily use fuzzy logic. Thus
it might be advantageous to use data step. If we
do not want to create new tables every so often,
we could use data step view. On the other hand, if
we have to read many tables combining rows, it
may well be that SQL is a better alternative. In that
case we have to select all those cases that might
be possible (having truth value more than zero)
and in a later fuzzy data step drop out those that
are not interesting. We can somewhat help our
programming with a set of macros to which we
describe the fuzzy sets and which generate the
SQL statements.

What did the marketing department want and
get?

Take an example. We work in an insurance
company the marketing manager of which wants
to increase the sales of life insurance. The
manager, J. Random Boss, formulates a simple

task: list the customers who have an expensive
car and boat, and at the same time have
insufficient life coverage. That is enough for her.
We have to discuss with her about what is
"expensive" and what is "insufficient"? This seems
to be calling for fuzzy approach. She comes to the
conclusion that the expensiveness of a car or boat
can be seen on the price or based on the annual
payment. it could be more complicated, but we
have to start somewhere. As for life insurance it is
clear that "insufficient” depends on the overall
situation of the client. One rule of thumb says that
life insurance should cover the person's debts,
about which we have no information. Another rule
of thumb says that life insurance amount should
reach or exceed one year's worth of gross income.
About that we do not store any information, either.
Could we estimate a person's income by the value
of car? J. Random Boss notes that it is not a
trivial problem. Finally she decides that for the
time being

- a car is surely expensive if it costs more than
30,000 dollars,

- a car is not expensive if it costs less that 15,000
dollars,

- a boat is expensive if it costs more than 40,000
dollars,

- a boat is not expensive if it costs less than
10,000 doliars,

- we take it that the customer's annual income
equals twice the price of the car,

- life insurance with cover less than annual income
is insufficient,

- life insurance with cover over two year's annual
income is sufficient

- anything in between those limits is partly
possible.

Having this we have to decide how to combine
these premises. The general practice is to replace
AND with a minimum (fulfills all rules) and OR with
a maximum (fulfills at least one rule). In other
words, take the smallest or iargest truth value and
take that as the final truth value. We do so to start
with. But now we have goiten J Random Boss
really excited. All these rules may not be of equal
importance:

- a car is a necessity, a boat is a hobby; so let us
give the car rule a weight of 3 and the boat rule a
relative weight of 1

- insufficient life cover is the main thing; let us give
it a weight of 6.

It might be a good idea to begin by trying either
way, compare the results, and then decide. After
this thinking we can formulate the fuzzy sets
needed:

expensive car(c) =
1, if ¢ >= 30.000
(c-15.000)/15.000,
if 15.000 <= c <= 30.000
0, if c < 15.000

expensive boat(b) =
1, if b >= 40.000
(b-10.000)/30.000,
if 10.000 <= b <= 40.000
0, if b<10.000

sufficient life cover(l) =
1, ifl>=2*c
(I-c)/c, fc<=l<=2*c
0, ifl<c

Thus we have the reasoning rules:
iF the car is expensive
AND the boat is expensive
AND the life cover is insufficient
THEN the customer is interesting.

For the report we could select the customers with
large enough truth value of interest. After studying
the resulting SAS program and the resulting
report, J. Random Boss cried out loud: "For crying
out loud! Can a SAS program do something like
this? And so easily! | thought this could only be
done using advanced programming languages.”

Fuzzy SAS Program

We can write the program having a data step to
read DB2-tables via views or use PROC SQL to
select from DB2-tables those observations with
truth value more that zero and a let a data step
carry on from that point. In our data base we have
five tables: car table, boat table, and life table all
having policy number and information about the
policy, a joint table having policy number and
customer number, and finally customer table
having customer number and information about
the customer.

PROC SQL;

create table crufty as

select car.polnr,
car.cprice,
boat .bprice,
life.lcover

from car, boat, life

where car.polnr-= boat.polnr

and car.polnr = life.polnr

and cprice >= 15000

and bprice >= 10000

DATA cuspy

(drop=weighc weighb weighl);
retain weighc 3
weighb 1
weighl 6 ;

set crufty;

/* have a case, check */

/* calculate each rule*/
link rulel;

link rule2;

link rule3;

/* combine the individual */
/* rule outcomes */
link total;

rule3:

total:

if b < 0 then b = 0;
return;

if lcover >= 2*cprice then 1=0;

else if lcover <= 0.5 * cprice
then 1 = 1;

else l=(cprice-lcover)/cprice;

if 1 < 0 then 1 = 0;

return;

/* Here we have two ways to combine

rules */

/* Way 1: AND - minimum */

alfal = min(¢, b, 1);

if 1 > 0; /* life cover 2? */ /* Way 2: weighed average */
if alfal > 0.4; /* select */ alfa2 =
if alfa2 > 0.4; /* some */ (c*weighc + b*weighb + l*weighl)/
output; (weighc + weighb + weighl);
return; return;
rulel: proc sort data = cuspy;
if cprice >= 30000 then ¢ = 1; by alfal;
else ¢ = (cprice-15000)/15000;
if ¢ < 0 then ¢ = 0; proc print data = cuspy noobs;
return; title "The customers selected";
rule2: run;
if bprice >= 40000 then b = 1;
else b = (bprice-10000)/30000;
The customers selected
POLNR CPRICE BPRICE LCOVER C B L ALFAl ALFAZ2
100 $21,100 $12,510 $20,742 0.41 0.08 0.02 0.02 0.14
171 518,093 $16,087 $17,739 0.21 0.20 0.02 0.02 0.09
149 $15,6009 $11,139 $7,998 0.04 0.04 0.49 0.04 0.31
105 $27,721 $11,304 $16,513 0.85 0.04 0.40 0.04 0.50
133 $24,008 $25,979 $22,101 0.60 0.53 0.08 0.08 0.28
101 524,870 $12,744 $20,667 0.66 0.09 0.17 0.09 0.31
121 $26,029 $12,810 $10,587 0.74 0.09 1.00 0.09 0.83
124 $19,565 $12, 905 $9,908 0.30 0.10 0.49 0.10 0.40
169 $25,633 $14,733 $22,485 0.71 0.16 0.12 0.12 0.30
109 $19,297 $14,031 $14,380 0.29 0.13 0.25 0.13 0.25
134 $33,779 $23,248 $27,964 1.00 0.44 0.17 0.17 0.45
132 $38,234 $16,291 $11,693 1.00 0.21 1.00 0.21 0.92
155 $25,349 $17,041 $1,663 0.69 0.23 1.00 0.23 0.83
177 $22,365 §18, 305 $13,996 0.49 0.28 0.37 0.28 0.40
112 $19,810 $19,326 $8,132 0.32 0.31 1.00 0.31 0.73
150 $26,575 $19,558 $13,352 0.77 0.32 0.50 0.32 0.56
137 $43,864 $24,160 $9,730 1.00 0.47 1.00 0.47 0.95

Fuzzy Conclusions

We note that we can formulate our programs more
closely according to the decision maker's wishes.
On the other hand, we now have to bother him or
her to think about the matter more carefully, which
may be something he or she does not want to do.
But as we do not need exact and final limits of x
doliars or so, we have a lot of flexibility. All in ail
we can say that we shall reach better and in a way
more exact results.

In this example case the price or the boat seemed
to be the problem point. In terms of our rules, the
boats here seemed to be of very reasonable price,
which is why our "expensive boat’ had rather
modest truth values. Maybe J. Random Boss
should think again about that question: what can
be regarded as “expensive boat” among the
customers of this company. Or should she be
interested in boats at all? Looking at our report we
note that the weighted average (ALFA2) seems to
give a result that feels intuitively right. On the list,
observations with ALFA2 > 0.5 are changed to
boldface.

In this example case the rules were very simple.
The code for fuzzy logic did not add a lot to the
program, which is easy to write and understand
once the basic principles are grasped. In real life
we may have much more complicated rules and a
lot more of them. Yet we notice that the added
programming effort for fuzzy reasoning is very
reasonable.

Fuzzy logic is a way of reasoning. Having solid
mathematical background it can be applied to all
sorts of logical problems. It has been shown that
any logical problem can be fuzzified. A fuzzy
reasoning mechanism can be implemented in a
SAS program with modest amount of effort. The
eventual problem lies in formulating the fuzzy sets
and rules of the problem, not so much in
programming per se. SAS as such is no better or
no worse for fuzzy reasoning than some other
programming language. Definitely better than
COBOL, anyway.

SAS programs are currently widely used in
different reporting-related tasks, where we select
observations from data files, combine and
manipulate those and finally produce a report.
Selecting the observations is a field where fuzzy
fogic can offer number of advantages compared to
conventional logic. Unfortunately we cannot add
fuzzy logic to SAS procedures, PROC SQL
especially included. Thus in order to apply fuzzy
logic we have to add data step programming to the
task - even in the case where PROC SQL and

PROC TABULATE would otherwise suffice, which
means some extra labor and costs. In many cases
the reward can exceed the costs included. The
reward is

- greater conformity with the original verbal
formulations of the problem :

- more flexibility to the programs

- we can follow the human cognitive processes
more closely

- our program works smoother and is not so prone
to certain exact limits

- we do not need to know exatc limits

- we allow certain amount of softness in the
reasoning

- our parameters may not be exactly right anyway;
fuzzy logic is more forgiving.

- we can work with imprecise, approximated, or
even missing, information.

Ali of this means that we shall probably hear more
and more SAS programmers crying not “XUZZY”
but “FUZZY”, and see more and more SAS
programs applying fuzzy logic.

References

[1] Robert Fullér: Neural Fuzzy Systems, Lecture
Notes, Institute for Advanced Management
Systems Research, Ser A:443, Abo Akademi,
1995.

There are zillion books about fuzzy logic. To start
with basic information one could think of the book
Fuzzy Thinking by Bart Kosko.

For further information, comment and discussion,
please contact:

Markku Suni
Consultant
The Sampo Group

P.O.B. 216
FI-20025 SAMPO
Finland

tel.: +358-10-514-2095
fax.: +358-10-514-2126

e-mail: markku.suni @sampo.fi

	Main TOC

