
1

Use of SAS/AF ® and the SAS/GRAPH ® Output Class Object to Develop
Applications That Can Return Scatterplot Information

Michael Hartman, Schering-Plough Corporation, Union, New Jersey

ABSTRACT

In today’s time of ‘interactive’ analyses, users expect to be
able to select data points of a graphic and obtain detailed
information about a selected observation. SAS/AF Frame
objects exist (e.g. GRAPHICS class object,) where a user
can get some information about a selected observation. This
class is good for basic use, but only the X and Y values can be
obtained upon ‘clicking’ on a point and users can only get
graphics within the scope of this class. For example, users
can display confidence intervals, but are restricted to a 95%
level. The SAS/GRAPH® Output class provides a mechanism
where scatterplots created using line-code SAS can be
displayed but, only limited information about the spot such as
SpotID, color, etc. can be obtained.

This paper describes the SAS/ GRAPH® scatterplot object and
how to develop SAS/AF® applications that allow the user to
select a component/spot of any scatterplot graph and
determine what part of the graph the spot is from. If the
activated spot is determined to be an observation, then one
can return detailed information about the selected observation.

Introduction

When a SAS/GRAPH is created, it remains ‘separate’ from the
dataset that was used to obtain the data for the graph. That is,
there was no linking of the data to the final graph.

A graph is created utilizing segments. Every segment
corresponds to a piece of the graph and these segments can
be activated (as HotSpots,) which can return information such
as the segment number (SpotID,) color, etc. Since the SAS
graph conforms to a structured design, the application
developer can determine an offset value. This value would be
subtracted from the SpotID value to obtain the correct
observation number of the dataset used to create the graph.

The _GET_INFO_ method of the SAS/GRAPH output class
can provide information about a hotspot (a user activated
segment on the graphics object.) The method returns a SCL
list that has information about the spot. Below is a summary of
what is contained in this SCL list:

List Item
Type
Description

Type Description

SPOT N A list defining the hotspot

SPOTID N The number of the graph segment of the
graph.

SPOTTYPE N A number of the type of Graph segment
selected.

TEXT C Contains the text of the graph segment, if text
exists in segment

X N X coordinate of selected object (in Pixel
units)

Y N Y coordinate of selected object (in Pixel
units)

TABLE 1: Parameters returned by _GET_INFO_ method.

While the _GET_INFO method returns useful information when
the user clicks on an observation, we are not able to tell which
observation of the dataset it is from. But, since we can get the
segment number (SpotID), one could get the actual
observation number of an activated observation spot if they
could relate the segment number to the observation number.

I will first discuss the SAS scatterplot’s structure and then
show an example application that can provide dataset
information about the observation of an activated point.

(I’m sure that other graph types also have a structured format,
but the focus of this paper is on scatterplots.)

The SAS/Graph ® Scatterplot Object

The SAS/GRAPH object has a structured format. When a
graph is created, every aspect of the graph (Titles, axis lines,
tickmarks, observations, lines, etc.) is added by adding
segments. The segments are added in a defined format,
starting with segment number 1. Below is a flow of how the
segments are added:

The SPOT ID settings are as follows:

Spot ID # Contents .
1 to a TitleN (Title1= SpotID #1,Title2=SpotID#2,...
(a+1) to b Footnote1 to b-a (Footnote1=SpotID#a+1)
b+1 Note from NOTE statement option.

[Any boxes around the Title(s), Footnote(s) and any Note (using
the BOX= option, count as an additional segment unit.]

b+2 Legend 1 Label (e.g. IDGROUP variable
name or label)

b+3 to b+c Key groups 2 to c=number of groups

b+c+1 to b+c+d Symbols or lines within each group, from left
to right and top to bottom, (within each
legend group any symbol types, 3 per group
are counted first left to right, and then any
joining line is counted)

The next Legend is done the same way, until all legend
components are accounted for in the graph. Total number of
segments (after any and all segments are added,) is now
identified by e.

Now the Axis information is implemented into the graph; The
primary (leftmost) Y-Axis is formatted first. The Major
Tickmarks, minor tickmarks, and labels are all involved in the
following manner.

Spot ID # Contents .
e+1 to e+f Y1 VREF lines 1 to f

e+f+1 Y-Axis Vertical Line
e+f+2 Major TickMark closest to origin

2

Spot ID # Contents .
e+f+2+1 to e+f+g One for each MINOR tickmark, where g= the

number of ticks specified in the ‘MINOR= ‘
component of the AXIS statement.

e+f+3+g+1 Second Major TickMark

.

. Follows same pattern until Last major

. TickMark is used.

Last Major Tickmark of the Y axis is at SpotID:
e+f+1+(m+(m-1)*w) Where m=#Major Tickmarks and w=#
Minor tickmarks for each segment.

For ease of notation, equate this SpotID to the symbol ΩΩ.

Spot ID # Contents .
ΩΩ+1 Y-Axis text Label, if one exists
ΩΩ+1+1 Y-Axis Major Tickmark Label, starting with
 to the Minimum tickmark, ...,
ΩΩ+1+v for each of v tickmarks.

ΩΩ+1+v is now equated to the symbol ΛΛ

Now the X-Axis information is implemented with SpotID’s. The
same format is followed as with the SpotID structure of the Y
axis.

Spot ID # Contents .
ΛΛ+1 X-Axis (HREF) reference lines 1 to t.
ΛΛ+t+1 X-Axis Horizontal Line
ΛΛ+t+2 Leftmost Major TickMark
ΛΛ+t+3 to ΛΛ+t+3+k One for each MINOR tickmark, where k= the

number of ticks specified in the ‘MINOR= ‘
component of the AXIS statement.

ΛΛ+t+3+k+1 Second Major TickMark
.
. Follows same pattern until Last major
. TickMark is used.
.

Last Major Tickmark of the X axis is at SpotID:
ΛΛ+t+1+(x+(x-1)*y) Where x=#Major Tickmarks and y=# Minor
tickmarks for each segment.

Equate this quantity to the symbol ∏∏

Spot ID # Contents .
∏∏+1 X-Axis Label, if one exists
∏∏+2 to ∏∏+x X-Axis Major tickmark labels from left to right.

Equate this final Major tickmark’s SpotID to ΦΦ.

Now if a second Y axis exists (called Y2,) then this information is
implemented...

Spot ID # Contents .
ΦΦ+1 to F+q Y2 Vertical reference lines (VREF’s) 1 to q
ΦΦ+q+1 Y2 axis vertical line

ΦΦ+q+2 First major tickmark closest to the x-axis
(does not have to be minimum if VREVERSE
option is used.)

Spot ID # Contents .
ΦΦ+q+2+1 One for each MINOR tickmark, where r= the
 to number of ticks specified in the ‘MINOR=‘
ΦΦ+q+r component of the AXIS statement.

ΦΦ+q+2+r+1 Second Major TickMark
.
. Follows same pattern until Last major .
. TickMark is used.

Last Major Tickmark of the Y2 axis is at SpotID:
ΦΦ+q+1+(mm+(mm-1)*ww) Where mm=#Major Tickmarks and
ww=# Minor tickmarks for each segment.

For ease of notation, equate this segment # to the symbol ΨΨ

Spot ID # Contents .
ΨΨ+1 Y2-Axis Label, if one exists

ΨΨ+1+1 Y-Axis Major Tickmark Label, starting with
 to the Minimum tickmark,...,
ΨΨ+1+v for each of v Major Tickmark labels.

ΨΨ+1+v is now equated to the symbol ∅∅, the offset value.

Then the curves are added, observation symbols first, then any
joining lines.

The Offset Value

This value ∅∅ is the offset needed to determine the correct data
observation. Let’s say we had a simple scatterplot with a
square symbol used to designate each observation. If the
user clicked on an observation, the observation number of that
data point would be equal to the SpotID-∅∅.

The information for this observation could be easily obtained
from the dataset used to create the graph (using SCL functions
such as FETCHOBS, VARTYPE, GETVARN, GETVARC, etc.)

The programmer could easily display the values of the other
variables of the dataset for a selected observation. The
activation of an observation can also trigger further processing,
such as diagnostic checks. Thus, a truly interactive system
can be developed in this manner.

A graphical representation of how the SAS graph is structured
is provided below:

Box=4
Y-Axis Line=6

26

27

28

Connection Line=29

X-Axis Line=16

Major tick line=7

Major tick line=9

Major tick line=11

Minor tick line=8

Minor tick line=10

13

14

15

17
18

19

20 21
23

24

25

3

Scatterplots with Multiple Curves:

Each curve is actually a collection of SpotID’s. The format of
your graph needs to be known in order to correctly track
additional SpotID offsets which may be needed to maintain
integrity of observation recognition.

The general structure of the data with respect to SpotID’s is as
follows:

• SpotID’s increment by curve in the order that they are
obtained in the dataset (no special sorting is done).

• Each SYMBOL of a curve counts as one SpotID. A

joining line is counted as one SpotID.

• The symbols take a segment id before the line (count the

symbols first.)

A Simple application describing how this works:

Let us build a simple application that will show us how this
works. We are going to need to build a frame with an Exit
button, which executes the CANCEL command when activated
and an SAS/GRAPH output class object (Make the name of
the SAS/GRAPH output object DISGRAPH.) Make this frame
as large as you can relative to the display type that you are
using. Place a protected CHARACTER text entry field labelled
TEXT. Place protected numeric text entry fields named X, Y,
OBSNO, and SPOTID on this frame. Also, place an
UNPROTECTED numeric text entry field name OFFSET. This
will be where the user can enter the appropriate offset value to
use. Of course, for actual applications, the SCL code would be
designed to determine the correct offset value, based upon the
parameters used to create the graph. Place appropriate label
fields next to each field.

Enter the below SCL code for the above frame (if the frame’s
name is WIDGET, then the SCL code program will have the
same name as the frame object (ie. WIGET.SCL):

/* This SCL Code will manage the DISGRAPH Frame */
/* The FRAME associated with this SCL member consists of */
/* the following objects: */

/* a SAS/GRAPH output object named 'GRAPH' */
/* TEXT ENTRY OBJECTS: */
/* SPOTID - numeric (from _GET_INFO_ list) */
/* SPOTTYPE - numeric (from _GET_INFO_ list) */
/* TEXT - character (from _GET_INFO_ list) */
/* X - numeric (X value from the data set) */
/* Y - numeric (Y value from the data set) */
/* OFFSET - numeric (user input value) */
/* OBSNO - numeric (observation number; spotid-offset */

 INIT:
 hsflg=0; /* indicates if a hotspot is currently activated */

/* specify name of graph. A user input graph name can be */
/* easily implemented by adding a text entry class object */
/* to the frame, with the name ‘CURGRAPH’ */

CURGRAPH = 'SASUSER.SUGIGRPH.TMP1.GRSEG';

/* set this graph to the name of the SAS/GRAPH output object */

CALL notify('DISGRAPH','_set_graph_',CURGRAPH);

RETURN;

DISGRAPH:
/* this section runs whenever the user activates a spot of the */
/* graph within the DISGRAPH SAS/GRAPH object by clicking */ /*
the left button of the pointing device with the pointing marker */
/* (e.g. Arrow,) is over the segment to be activated. */

obsno=0; /* set the initial observation number equal to zero */

/* get the information of the spot */
 call notify('pgngraph','_get_info_',infoid);

 /* get total number of spots for this graph */
 totspot=listlen(infoid);

/* get the number of the graph ID segment */
 spotid=getnitemn(infoid,'spotid');

/* 0 is returned if no segment existed where the user clicked */

 if spotid ^= 0 then do;

/* now get the type of spot that was activated and any possible */ /*
text in the segment. The spot types are summarized below */

spottype=getnitemn(infoid,'spottype');
text=getnitemc(infoid,'text');
 end;

 else do; /* otherwise, tell the use to click on a spot */
 msg = 'Click on an observation for detailed information.';
 spottype=0;
 end;

/* now make sure that a spot on the graph is for a data symbol */
/* the list of possible symbols is summarized below */

/* 25 dot
 26 rectangle fill
 27 pic
 28 polygon fill
 29 symbol - THIS IS THE ONE THAT WE WANT

TO DETECT
 30 text
 31 dashed lines
 32 polylines
 33 polymarkers
 34 rounded rectangle fill
 35 ellipse */

if spottype=29 then do; /* this indicates a symbol */

/* if a current hotspot exists, then delete it */
 if hsflg=1 then call notify('disgraph','_delete_hotspot_','hot1');

/* add a hotspot at this location */
 attrlist = makelist(); /* make an attributes list */

 rc=setnitemc(attrlist,'hot1','name');

 rc=setnitemc(attrlist,'blue','color');
 rc=setnitemn(attrlist,2,'filltype');
 rc=setnitemn(attrlist,spotid,'spotid');

4

/* add a hotspot where this activated point is using the values of the
attributes list */

 call notify('disgraph','_add_hotspot_', attrlist);

/* GET THE OBSERVATION NUMBER */
 obsno=spotid-offset;

 if obsno>0 then do; /* then an observation exists, so lets get
info */

 dsid=open('sasuser.sugi22');
 rc=FETCHOBS(dsid,obsno);

 xvar=varnum(dsid,'time');
 yvar=varnum(dsid,'result');
 setvar=varnum(dsid,'set');

 x=getvarN(dsid,xvar);
 y=getvarN(dsid,yvar);
 set=getvarC(dsid,setvar);

 end;

/* activate the flag which indicates that a hotspot exists */
 hsflg=1;

 END;

 else do; /* otherwise clear the other fields */
 x=.; y=.; set='';
 end;

 RETURN; /* END OF DISGRAPH SECTION OF CODE */

An example of what the frame should look like is listed below:

Note: The Graph will not be displayed until the frame is run and the
graph exists.

Below is an example dataset of which we will make a
scatterplot of:

data sasuser.sugi22;
input obs set $ time result;
cards;
 1 A 0 107.1
 2 A 3 103.7
 3 A 6 101.6
 4 A 9 99.9
 5 A 12 97.8
 6 A 18 95.7
 7 B 0 105.1
 8 B 3 101.7
 9 B 6 99.6
 10 B 9 97.9
 11 B 12 95.8
 12 B 18 93.7
;
run;

We want to make a graph using this dataset. Least-Square
regression lines need to be calculated for each SET of data.

Use the following SAS line code to produce this graph:

goptions goutmode=replace nodisplay;

Title1'SUGI 22 Example Graph';
Title2'(Linear Regression performed on each SET)';
Footnote1'Dataset Used: SASUSER.SUGI22';

SYMBOL1 value=square interpol=RL COLOR=RED LINE=1 R=1;
SYMBOL2 value=CIRCLE interpol=RL COLOR=GREEN LINE=2
R=1;

AXIS1 order=(0 to 18 by 3) major=(number=7)
minor=(number=2);

AXIS2 order=(85 to 110 by 5) major=(number=7)
minor=(number=4);

proc gplot data=SASUSER.SUGI22
gout=SASUSER.SUGIGRPH;
plot RESULT*TIME=SET /NAME='TMP1' haxis=axis1 vaxis=axis2
vref=90 lvref=1 cvref=blue;
run;
quit; run;

This will produce a graph with the name
SASUSER.SUGIGRPH.TMP1.GRSEG.

Using the Application

Based upon our counting system to determine the correct
offset, the offset value would be 77. So, subtracting this value
from the returned SpotID of our frame will give us the correct
observation number.

Run the SAS/AF application, specifying the frame that was just
built:

(command line command:
AF c={sasuser.sugifrme.graphtst.frame})

5

Put the offset value of 77 into the appropriate field.

The graph will be displayed within the frame. Any time that the
user selects a valid component of the graph, the frame’s text
entry fields will be appropriately updated.

If a point on the graph is not activated, then the message bar
will tell the user to select an observation on the graph. If an
observation is selected on the graph, then the appropriate
observation ID value will be returned.

Note that the observation variable within the dataset is not
required for this to work. Also, the order of the observations is
based upon the order in the actual dataset (i.e. no additional
sorting is performed.)

Below is an example with the third observation activated:

Conclusion:

The SAS/GRAPH is definitely not as GUI as other window-
based programs. But, through application development using
SAS/AF Frame entry objects and SCL, one can develop
comprehensive systems to induce a much more GUI graphical
environment. Since information can be obtained for every
segment within a SAS/GRAPH, one can develop applications
that can activate other frames, programs, etc. depending upon
what segment has been activated.

Once the correct observation can be identified, the
programmer is able to obtain values for any variable in the
dataset for that observation number. The most difficult part for
the programmer is to develop applications that can effectively
determine the correct offset, based upon the changing
parameters used to develop the displayed graphs. Effective
design and development can ensure that the end-user will be
given an application that is capable of meeting their needs.

The sample application given in this paper can be used to
‘experiment’ with a number of different graph types. The
programmer can click on any component of the graph and get
the corresponding spot id segment number. Once a firm
understanding of the graph’s structure has been obtained, the
developer can expand on this basic code for use in their
applications.

Acknowledgments:

I would like to say thanks to all of the extremely
knowledgeable and helpful SAS employees that work with the
SAS Technical Support team. They are an invaluable resource
for working with the end-users for finding solutions to difficult
problems. A special thanks goes to Art Alexander, who has
given me insight to the SAS graphics structure that would have
been difficult to obtain otherwise.

SAS, SAS/AF, SAS/GRAPH are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Author Contact Information:

Michael Hartman
Schering-Plough Corporation
1011 Morris Avenue
Union, New Jersey, 07083
Phone: 908-820-6610
e-Mail: michael.hartman@spcorp.com

	Main TOC

