
Using 00P to Enhance the SAS System:
An Adhoc Reporting System using SAS Batch, 3D Graphics, and SAS/VVeb

Interfaces

Charlie Bastnagel & Kevin Gates,
Healthsource Provident, Chattanooga TN

Abstract

One of the nice features of the SAS System is that if you
need functionality that is not currently provided, then
using SAS (strangely enough) you can create that
functionality yourself and make it appear as if it is apart of
the SAS System. Such functionality as

● An Adhoc Reporting Tool that encompasses main
SAS Procedures
and runs in batch mode

● Structured batch submission from local clients to
remote servers

● Macros that create 3D Graphics for Hbar, Vbar,
Tables etc...

● Automated Remote Signon

can be developed and added to the SAS System that your
users use.

This paper discusses the design features of the Adhoc
Reporting System. In particular it focuses on the
development of new software components written in the
SAS AF & Macro Languages that make an object driven
Adhoc Reporting System possible.

Introduction

Our Adhoc Reporting System required features such as:

● A single tool that provides most of the basic features
of the SAS System and yet doesn’t require the user to
travel across dozens of screens to accomplish basic
tasks.

● A simple method to provide and maintain multi-
ciient to multi-server access to SAS Unix
Servers.

● Printable Reports and Graphs that contain 3D Hbar,
Vbar, Tables, etc... with no limitations to placement
and aspect ratio as occurs when using SAS Graph
Templates.

● Batch Submission to Local and Remote Servers
using Interactive SAS.

Based on our experience with SAS many of the above
features were too complicated and time consuming for
average users to perform using SAS. All of the features
listed above were considered CORE to the adhoc
reporting needs of our company.

Environment

Our SAS environment consists of Clients running
Windows (3.1, NT, and 95), 0S2, and Unix(Aix 4.1),
utilitizing SAS servers running Unix(Aix 4.1) and MVS, as
well as a Unix Server that holds a Redbrick Data
Warehouse. The total volume of Data we use SAS to
access is 1.2 Terrabytes (700 gig in SAS Data
Warehouses, 500 in the Redbrick Data Warehouse).

We employ SAS version 6.11 on all platforms other than
MVS. We are currently moving away from MVS and while
some of the enhancements we have made, do work in
SAS under MVS, our current production environment is
Windows, 0S2, or Unix Clients using Local or Remote
Unix Servers that we connect to using SAS Connect
Software.

Design Requirements

What was the business problem that prompted the need
for the Adhoc Reporting System?

● Allowing Free Range use of SAS was costly in terms
of training, time, and potential for harmful mistakes
due to lack of experience. (i.e. Merging Datasets that
contained Duplicates in both sets of by variables and
ignoring the warning in the SAS log.).

● Signing onto the various remote servers(Unix and
MVS Mainframe) and figuring out which server was
active was too confusing to many of our users.

● There was no automatable method for creating 3-D
graphs. Users had to use other software like
Freelance and Powerpoint to get quality 3-D graphs
that we could PRINT— .

● Most importantly Users spent too much time on the
clock waiting for jobs to run. Waiting 2-12 hours for a
program to complete is unreasonable and severely
dampens productivity.

Although not an initial requirement, it soon became
apparent that non-SAS users would need to be able take
advantage of the Adhoc Reporting System using Web
technology. This meant that the Adhoc Reporting System
would have to be accessible from our Company’s Intranet
and potentially to the outside world.

The Web scenario ran like this: A user starts up Netscape
and asks for a pre-defined report, adhoc report, or data
subset from our SAS or Redbrick Data Warehouses.
When the job completes they would be able to retrieve
reports, graphs, and data extracts that could be

Page 1

downloaded for use with other software like MS Access,
MS Excel, Paradox, etc

Design Implementation

The requirement that adhoc requests could come from
both within SAS and outside of SAS via the Web meant
that the software we developed, had to mainly be non-
Visual and object oriented, so that regardless of the GUI
Interface, the software would work the same. In other
words, our object oriented enhancements to SAS would
have to be capable of serving as the muscle under the
hood regardless of the car driving it.

Design Methodology

The methodology we used in Creating the Adhoc
Reporting System will be addressed them based on the
features that needed to meet the design requirements.

Feature 1- The SAS GUI Interface

Description: A single tool that provides most of the
basic features of the SAS System and yet doesn’t
require the user to travel across dozens of screens to
accomplish basic tasks.

The goal of this interface was to allow the user the ability
to create an adhoc request using widgets like listboxes,
radio boxes, checkboxes, text entry viewers, and some
composite widgets we created ourselves. When the user
was done with their request, they would be able to save
their request, so that it could be retrieved and executed
later on. In this model, even where clauses were made
separate objects, so that they could be used with other
reports and applications.

The substance of the adhoc request is less TASK
oriented than what SAS Assist requires and instead is
PROCESS oriented. SAS Assist and the Query Window
which are the main Adhoc GUI tools that come with
production SAS, focus mainly on accomplishing one task,
a summary of a dataset, a query where you calculated
the mean for the dollar variables by state, or where you
merged two datasets.

In our business, Healthcare Data Analysis, most of the
projects users were tackling rarely stopped with just one
merge or query. Using the Query window, they would run
a query, then run another query..., and then go to the
program editor to get the data the way they really wanted
it and finally print their series of reports. Using SAS Assist
was abandoned very early on, due to the fact that it was
extremely confusing To do a simple proc summary, you
might have to travel 4 to 5 screens and if you forgot to
sort, well then you got an error. Another problem with
using SAS Assist was due to the volume of our libraries
and SAS Assist’s reliance on SQL Views to the
Dictionary .Tables. It might take up to a minute just to
bring up a list of available datasets.

What the users needed was a way to string together a
serious of tasks and when they are ready send the entire
request to run. By allowing them to save their requrests
then we could allow them to come back at a later time and
make changes to patilcular tasks. They could run either
the whole request or just parts.

We have learned over our two year stint with SAS that
users struggle with applications that require them to go
from screen to screen to screen. They get lost, not sure
where they are at.

For the developer, the use of multiple frames complicates
the application because most often parameters must be
passed to each frame. Enhancing your application thus
becomes more complicated: If you add a new parameter,
you will have to change each frame and SCL entry and
then recompile each of the frames.

The METHODOLOGY we decided to employ was to use
one main AF Frame that the user would recognize as the
Adhoc Reporting System. If a certain request required a
new frame we would either pop up a small dialog type
frame, or we would swap out various objects on the main
frame and using the _new_ method in the CLASS. CLASS
create new widgets as needed. Creating Widgets on the
fly is documented in the Class Class section of the Frame
Class Dictionary (order number 551 46). This manual is
pretty much a requirement for doing this kind of
development, I also strongly recommend Jeff Cartier
00P Class at the Cary Institute.

The rule for creating new objects at run time what we call
FLYING OBJECTS, was that all widgets that were not
displayed on the frame but would beat some point, would
be created using the _new_ method and then swapped
out during the initialization of the frame. When the widget
was needed, it would be swapped in, Widgets that would
only be used in special cases, would be created and
terminated as they were needed.

Below is an example of creating a Iistbox inside a
container box named mcontbox that already exists on the
frame.

MAKELBOX:

I*
MAKE List BOX

first make sure widget doesn’t already exist. If so and you
try to recreate it without first deleting then you will get an
error.
*1

if Iistlen(lboxwid) >0
then call send(lboxwid, ‘_TERM_’);

I*
Create an Attribute List and prepare to store ListBox
attributes in it.
*I
attrid=makelisto;

I*

Page 2

Set the Region List Parameters for the Listbox
*I
regionid=makelisto;

rc=setnitemc(regionid, ‘C’, ‘UNITS’);
rc=setnitemn(regionid, 2, ‘uIx’);
rc=setnitemn(regionid, 2, ‘uly’);
rc=setnitemn(regionid, 24, ‘Irx’);
rc=setnitemn(reg ionid, 18, ‘Iry’);
rc=setnitemc(regionid, ‘CONTBOX’, ‘_PARENT_’);

I*
Insert the Region List and Instance Variables into the

Attribute List, Load the Class, Create the Object
*I

rc=setniteml(attrid, regionid, ‘_REGION_’);
rc=setnitemc(attrid, ‘LISTID’, ‘LOCATE’);
rc=setnitemc(attrid, ‘SCL_LIST’,

‘_POPULATE ‘);
rc=setnitemc(attr~, LISTBOX , ‘NAME);
rc=setnitemc(attrid, ‘LISTBOX’, ‘LABEL’);
lbox_class=loadclass(sashelp.fsp.listbox.cIass');

call send(lbox_class, ‘_NEW_’, Iboxwid, attrid);

P to get a list of a widgets properties do

tempid=makelisto;
call send(’LISTBOX’, ‘_GET_PROPERTIES_’,

tempid);
call putlist(tempid, ‘List Box Properties List’, 1);

Once you have your bearings you could build a library of
widgets and turn this whole process into a method.
*I

RETURN;

The Key component behind the Adhoc Frame is the use
of the Dictionary library. The Dictionary library contains
tables which you can best access through SQL. These
Tables are quite incredible: They give you information
about Libraries, Datasets, Catalogs, Macros, External
Files, etc... Needless to say they are a key component in
any flexible Table driven application.

Dictionary .Coiumns is a table we use most often in the
Adhoc Frame. It contains information about SAS
Datasets, like variable names, formats, labels, etc... Here
is an example.

Let’s say our user wants to do an adoc query or report
against a dataset USERDATA.CIAIMS stored on our
ASIMOV unix server. In our SCL this is the code to get all
the information about that table and then load certain
pieces of it into SCL Lists which populate Listboxes on our
Frame. The example below creates 4 lists, a list of
variable names, and then a list each for the variable
types, variable labels, and variable formats. Note you
could use Ivarlevel to do this with less code but there may
be performance problems. Here’s the code:

GETINFO:

lib=’USERDATA’;
dsn=’CLAIMS;

submit continue remote;
proc sql;

create table work. datastru as
select name, type, label, format
from dictionary .coiumns

where libname=upcase(’’& lib) and
memname=upcase(’’&dsn”);

quit;

proc download data=work.datastru
out=work.datastru
status= no;

run;
endsubmit;

dsid=open(’work. datastru’,’i’);

if dsid=O
then do;

put ‘Dataset Cannot be Opened.’;
return;

end;

varlid=makelisto;
typelid=makelisto;
Iablid=makelisto;
fmtlid=makelisto;

do while (fetch(dsid) ‘= -1);
name=getvarc(dsid, varnum(dsid,’NAME));
type=getvarc(dsid,varnum(dsid,’TYPE));
label=getvarc(dsid,varnum(dsid,’LABEL’));
format=getvarc(dsid,varnum(dsid,’FORMAT’));

rc=insertc(varlid, name, -1, name);
rc=insertc(typelid, type, -1, name);
rc=insertc(lablid, label, -1, name);
rc=insertc(fmtlid, format, -1, name);

end;

if dsid >0 then rc=close(dsid);
RETURN;

Using this method you can build very flexible AF Frames.
(See Frank Dilorio’s various SUGI papers for more on the
Dictionary Library).

Feature 2- Remote Connectivity (The %REMOTE
macro)

Description: A simple method to provide and
maintain multi-client to multi-server access to SAS
and Redbrick Data Warehouses.

As mentioned in the Environment section, we use 0S2,
Windows, and Unix Clients with Unix and MVS remote
servers. Before we developed YoREMOTE an average
user would have to issue the following to sign on to a

Page 3

MVS and a Unix Server setting the SAS Connect options
for each server.

While the SAS Connect code is not all that complicated to
an experienced SAS Connect User, to a Data Analyst this
is a bit much to expect. Plus for every Unix Server you
have, and we have 3, there will have to be a separate
Unix Script File for each. Every time you have to change
that script file you will have to change all 3 of them.

This dilemma gave birth to the idea for a macro program
that would use a SAS Dataset called SYS_PROF (system
profile) to manage all of our remote connectivity. To add
a new server we would just add a new record to it. This
would provide us with a centralized methodology for
managing remote connectivity. We wrote the %remote
macro to handle our Remote Server Connectivity.

A call to YoREMOTE signing onto the Asimov Unix Server
would look like the following:

The above information is used by YoREMOTE to supply
macro variables to the TCPAUTO.SCR connectivity script,
which is a modified copy of the TCPUNIX.SCR script
which comes with SAS.

Feature 3- 3D Graphs and Presentation Quality
Reports

Description: Printable Graphs and Reports that
contain 3D Hbar, Vbar, Tables, etc... with no
limitations to the number of graphs or other objects
on the page

Creating a library of 3D graphic objects and developing
our own Report Class, was a very difficult process. We
knew early on after playing around with ANNOTATE that
DSGI (Data Step Graphics Interface) was the way to
develop our graphic objects. We are currently developing
3-D Pie Charts and our own Report Class; The objects
that are completed are:

O/OREMOTE(remote= asimov); Hbar
Vbar

We developed an AF Password Frame which serves as Stack Hbar
an Interface to the remote macro. Stack Vbar

LinePlot
The password frame, which looks like any other signon Table Draw (for column seperated tables)
type frame, could either be called directly through SCL or Logo Builder (for creating logos)
if you call YoREMOTE, it would invoke the password frame Text Drawer (for creating Title Pages and miscellaneous
for you if the user was not already signed on. images)

O/OREMOTE(remote= asimov); What I mean when I say that Hbar and the others are
objects is that the Hbar macro, ‘%hbar, is independent and

This password frame is used instead of the SAS Connect yet can be used along side other graphic objects or inside
signon. This means that you can use YoREMOTE for them if need be. Our Graph Objects do not use proc
signing on in batch mode, or if you are in an interactive gchart or any other SAS Graph feature except for DSGI.
session you can use the Password Frame. In either case In other words there is no hard-coding. All of our objects
it is the ‘YoREMOTE macro that does all the remote are developed to run on any platform that is running SAS
connectivity work. 6.11.

How does %REMOTE work? I am going to mainly focus As an example, if in a report exhibit I need Two 3D Hbar
on the Unix Server part of this. For MVS ?40REMOTE Charts and Two Shaded Tables, along with a fancy logo
merely submits the APPC settings and then issues a at the top left corner, then the exhibit (this is what we call
signon. a report with graphs) would look like this.

O/OREMOTE uses a SAS dataset SYS_PROF to create
the necessary variables to supply to SAS Connect and
then issues a signon. It also will look in the user’s
SASROOT directoty and if it tinds a file named after the
server such as ASIMOV.SAS, it will submit that as an
Autoexec.SAS file once it has made the connection.

Adding new servers is very easy. To give access to
another server, add a record to the SYS PROF
dataset.Here is a partial put statment lis~ng of the
SYS_PROF Dataset;

REMOTE=ASIMOV
SERVDESC=HS Provident Unix, TN - ASIMOV
DNS_NAME=ASIMOV
COMAMID=TCP
uNlxDIR=/HoME/sAs611

‘%hbar(...parametersl ,2,3..);
%hbar(...pararnetersl ,2,3..);
%tbledraw(...pararnetersl ,2,3..);
%tbledraw(... pararnetersl ,2,3..);
‘%logo(...parametersl ,2,3..);

Each of the graphic objects contains mostly the same
parameters. Here are some of them.

show= Display YIN
insert=lf the graph already exists. Insert this

current graph into it.
in_lib=input data library
in_dsn=input dataset name
gr_lib=store graph in this library
gr_cat=graph catalog
gr_name=graph name
gr_desc=graph description
effect= how much 3D effect.

Page 4

autosize=Auto-Resize the graph if too big
scale=Size of the Object
lmargin=Where to begin left corner of object
tmarign=Where to begin top of object
logo=The logo to use for this graph

One of the most difficult standards to maintain was the
Insert feature of all of these objects. If a graph already
existed and the Insert parameter was set to Y then the
new object would be placed on the existing graph. The
method we used is this: It is like running a sheet of paper
on a conveyor belt. Whenever one of our graphic objects
is called and the insert flag is Y, that object stamps the
new object onto the existing graph. Due to our flexibility
concerns we wanted the sheet of paper to be like a
canvas. If the user needed 100 objects on a page, then
the graphic objects would put a 100 objects on that sheet
of paper, even if they wrote over one another.

There is only one way to do this kind of insertion in DSGI.
DSGI will not allow you to insert a graph named graphl
into the same graph graphl. Instead you have to rename
graphl to something else and then insert it into a graph
called graphl. When you are done you will have two
graphs on one sheet.

Because SAS Graph does not store GRSEGS by the
name you give them, but rather by the datetime stamp
of when they were created, it does no good to rename a
graph to some consistent name like GR_COPY and then
insert it. No, you have to rename the entry to a datetime
stamp name that is legal in SAS and yet is unique within
that catalog. If you try to name a graph something that
already exists in the current graph catalog SAS will give
you its own name like graphl 1 and not the one you want.

How did we get around this? First of all we wrote a Macro
called GRMANAGE that manages our Graph Catalogs for
us. In that macro we converted the current name of the
graph into a datetime stamp name: this means we took
the date and time and converted as follows:

Convert Datetime into a legal SAS Name:

Month - A letter A-L for the month Jan=A Dec=L
Day of the Month - ex. 09 for the Jan 9th
Hour of the Day - A letter for Hour A-X
Minute of the Hour - ex. 30 for 12:30 on Jan 9th.
Second of the Minute - ex. 58 for 12:30.58

For Example: Jan 8 at 12:30:58 becomes A09N3058

Even with the advent of SASS New Adhoc Reporting Tool
that is to be released sometime early 1997, we will still
have to have use our own in house developed objects,
due to the fact that SAS’s new tool will not run in batch
mode. You have to run it interactively. We are hoping that
perhaps we can subclass certain parts of the New Adhoc
Tool if it is truely object driven, but as it is, it will not meet
our company’s reporting needs so the months of
development effort were not wasted and our graphic
objects and new report class will probably be needed for
at least the next two years.

Feature 4- SASBATCH Job Submission

Description: Batch Submission to Local and Remote
Servers using Interactive SAS.

Since we do not run SAS interactively on any of our Unix
Servers, we use the SAS Connect Product to give us
connectivity from our 0S2, Windows, and Unix Clients to
the various Unix Servers. What this means is that when
a user submits a program they must wait on the clock for
that job to finish before they can continue. With 1.2
terrabytes of data, two and three hours on the clock per
submission is not acceptable.

This prompted us to develop the SASBATCH macro
(%SASBATCH). The goal of the SASBATCH macro is to
take SAS programs ~. SAS fles) or Source Entries
(/ibrafy.cata/og. enffy.source) and to submit them in batch
mode on any of the various Unix Servers. SASBATCH
keeps track of the batch job using a performance
database that has a record for each job submitted,
containing information like the userid, the program, how
long it took to run the job, how much memory it used, how
many sas users were on the system when the job was
submitted. When the job completes the user is notified by
email. The email message in the email will contain all the
information about the job including whether the job had
any errors.

To handle all this SASBATCH employs metaprogramming
techniques to write new programs that are uploaded to the
remote server and then executed.

The goal of SASBATCH is to write a program that when
executed on the remote server does the following:

● Begin the Performance Database
● Include the Users Program and Execute it.
● End the Performance Database and Send Email

Here is a call to SASBATCH:

O/Osasbatch(prgta ble=,
program=c:\programs\houses.sas ,
progloc= Ian,
Ioc= unix,
remote= asimov,
autoexec=lsasLsas611 Iautoexec.sas,
config= Lsaslsas61 llconfig.sas61 1,
options= -noterminal,
showlog= ,
project= North Carolina,
desc= Claims Analysis,
pdb= userdata.pdb,
notify=Y

);

Lets look at some of SASBATCH’S parameters: prgtable
is the name of a dataset that contains a list of programs to
be run, program is the name of a program to submit if
prgtable is blank, progloc is the location of the program,
Ioc is the location where the program should be executed,
pdb is a performance database that the user can use,

Page 5

notify is a flag that indicates whether an email is to be
sent when the job is complete.

The program table prgtable parameter will look for a
variable named program and submit all the observations
as separate jobs. Here is an example of how a developer
might create such a table.

data work. programs;
length program $80;
input program $ 1-80;
cards;
test. sasbatch.testprgl .source
test. sasbatch.testprg2 .source
test. sasbatch.testprg3 .source;
run;

One of the problems with running SAS jobs in batch mode
is that reports longer than one page are usually useless
because the reports are written to a text file and you lose
your pagebreaks. One way-around this is to set the
Pagesize to 32767.

We have written an interface to SASBATCH that is called
Batch Manager - BAT-MAN. BAT-MAN is an AF
Application that uses the Text Viewer Class, Toolbar
Class and Preview Window to give a user the ability to
create and edit SAS programs and Source entries, Submit
those jobs in batch mode, View and print the logs and
reports that are stored on the remote server, and give
them performance information about jobs that have been
submitted such as: Is the job done, if so how long did it
take etc

This paper has attempted to demonstrate that through the
use of Object Oriented Methodologies, the SAS System
can be enhanced in unlimited ways.

By developing our own SASBATCH component for SAS,
we have increased users productivity many times over.
The creation of our own 3D graphics objects makes the
development of reporting packages much easier, because
we don’t have to use other software to do our graphs and
build the link that would require. In Treating the features
of the Adhoc Reporting System as component objects we
have been able to improve our SAS use as a whole and
through Web technologies provide a path for our future
development.

Charlie Bastnagel can be reached via Email at
batnach(ijlhlthsrc.com

Kevin Gates can be reached via Email at gatesk@)hlthsrc. com

References

SAS Macro Language

SAS/AF Sof~are Frame Class Dictionary

SAS/AF SofWare Development Concepts

SCL Reference 2nd Edition

SAS, SAS/AF, SAS/CONNECT are registered trademarks or
trademarks of SAS Institute, Inc in the USA and other
countries.. @ indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

Feature 5- Web Interface

Description: Provide Capability of running Adhoc
Reporting System form the World Wide Web using a
Netecape browser.

This is really the same as Feature 1, the SAS Gui
Interface, except that we will not be able to use SASS
excellent AF products. Furthermore, because our
corporation cannot as yet implement a 32 bit standard, we
are writing the Web Interface using HTML and Javascript.
We are not using any tool that requires us to load new
software on the client or requires a certain Operating
System as does Java.

This means that the interface
is being developed using Netscape 2.02 +, HTML, and
Javascript. On the Unix side where the queries, reports,
and graphs will be created using the Adhoc Reporting
System, we are using Perl , Unix Scripts, and SAS. The
SAS Graph Grsegs will automatically be converted to
JPEG files using SAS’s new JPEG Conversion driver in
version 6.12. For whole packages of exhibits the SAS
Graphs will be converted into a single postscript file that
can be printed locally.

We would like to thank Mark Dalesandro and Di Meng who
helped in the development andpushed the envelope of SAS AF
development at our Company.

Thanks to John McCall at the Atlanta Institute for getiing us
started Thanks also to Jeff Cardier, Eric Walden bauer, Jude
Redmond, and Alex Fernandez at the Cary Institute for their
support in this madness.

Conclusion

Page 6

	Main TOC

