
Using SAS/AF as a Front End for Developing
 Report Program Skeletons

Jeff Hamilton, BS, and Jennifer Lester, MA, STATPROBE, Inc., Ann Arbor, MI

Abstract
With the growing demands being placed on information system
departments, the opportunity to off load “simple” programming tasks
to non-SAS® programmers adds efficiencies into the program
development life cycle. Using a SAS/AF application as a front-end
entry tool can build such efficiencies into program development.
Standardized reporting tools developed at STATPROBE, Inc. have
been designed to allow the programmer to make table shell
modifications very easily. These modifications have been automated
via SAS/AF allowing a non-SAS programmer to create table shells
with minimal involvement of the programming staff. Standard report
program “skeletons” are created by the user through AF Frames.
Essential program modules are then combined to create usable SAS
code. The SAS program created using SAS/AF produces a table
shell which can later be modified by a SAS programmer to populate
the table shell.

Introduction
STATPROBE is a contract research organization (CRO) that
currently serves the pharmaceutical, biotechnology, and medical
device industries and academia. Most of our clients employ
STATPROBE to produce either a Research Report or a Statistical
Report, both of which contain SAS-generated data listings,
summaries, and analyses appendices. Upon initiation of a project, a
statistician, medical writer, and programmer collaborate to produce a
“mock” report which includes a computer-generated “table shell” for
each data listing and summary appendix. These shells are
presented to the client as a first look at how their data will be
displayed. In the past, the process of developing table shells began
with a statistician or medical writer designing by hand each listing
and summary table shell. These specifications were then given to a
SAS programmer who would write the skeleton code necessary to
generate the table shells. This same code was later utilized in the
actual data-populated listing or summary program. Typically, two or
three review cycles between the designer and the programmer were
necessary to produce the final report table shells. There were three
obvious inefficiencies in this process.
• It is difficult to ensure that the designer had effectively

communicated all of his or her specifications to the
programmer.

• For many types of data, the designer must see the shell as
SAS output rather than as hand sketches, in order to develop
the most appropriate presentation of the data.

• Due to the STATPROBE standard report tools, writing the
SAS code for table shells is a very low-level programming task,
and it is not the most efficient use of an advanced
programmer’s time.

With these three items in mind, it was clear that the most expedient
way to produce a table shell was to remove the programmer from the
process. Unfortunately, most medical writers cannot program in
SAS, and, like the time of most SAS programmers, the time of a
statistician and a medical writer is better used in other capacities.
This led to the development of a graphical user interface (GUI) front
end using SAS/AF.

Rather than the user sketching out the table by hand, the GUI
prompts the user for all of the necessary specifications for each
table shell. The data entered into the user interface is structured as

a set of SCL lists and then saved to disk as SLIST entries. A
program-generator engine then utilizes the SLIST entries to produce
the SAS code for each table shell. These steps are transparent to
the user, and, with a simple mouse click, the user can preview the
table shell on the screen or execute the program to print out the table
shell. In the time it used to take the designer to sketch out the shell
by hand, he or she can enter into the user interface all of the
necessary information required and the SAS table shell program can
be generated.

STATPROBE Standard Report Tools
STATPROBE’s report programming system has evolved into an
extensive compilation of macros. A standard macro library exist
from which all projects can draw for pre-programmed and pre-
validated code. This macro library has in turn built many standards
into our programming techniques. These standards have resulted in
efficient, maintainable code that has the same modular look and feel
from program to program and project to project. Two of the primary
macros that attribute to the modular look and feel are LISTTOOL
and SUMTOOL. The framework of the DATA _NULL_ as a
reporting tool has been abstracted from the individual reporting
programs, standardized, and stored in the LISTTOOL and
SUMTOOL macros. This abstraction of the DATA _NULL_ to a
macro has reduced the individual programs to three basic
components:

• Data Preparation
• Report-Specific Macro Definitions
 - %Subhead
 - %Body
 - %Lefttext
 - %Foot
• Call to the LISTTOOL or SUMTOOL for Actual Report

Generation

It is this modular programming style that the user interface was
structured toward.

User Interface
The SHELL GENERATOR’s Initialization Frame (Figure 1) serves
two primary purposes. The first is to allow the user to select a
current client and project. Under this scenario the frame acts as a
navigational tool which, for the specified client and project, guides
the user to a more detailed frame where one can either view existing
shells, create new shells, or print shells. The second function of this
frame is an entry point for project title lines. A project title is the
specific three line title that appears at the top of each program-
generated appendix (see Appendix 1). These project title lines are
stored as SLIST entries and referenced at the time of program
generation.

2

Figure 1. Initialization Frame

Once a client and project have been selected from the Initialization
Frame the natural progression leads the user to the Program
Specification Frame (Figure 2). The primary function of this frame is
to act as an entry point for report specific title and reference lines.
Similar to the Initialization Frame where project specific titles are
entered, this frame allows entry of specific report titles that belong to
a given client and project. A hierarchical relationship exists between
the project titles and the report specific titles; one client and project
will have many reports. This frame, as the title indicates, is for
program specific detail. Thus, the program name and purpose are
captured to a SLIST for future reference by the program-generator
engine.

Figure 2. Program Specification Frame

The Table Shell Design Frame (Figure 3) is used for the detail
design of all projects’ table shells. This frame has replaced the
paper and pencil table specification design technique of yesterday.
A data table object has been placed on the frame as an entry point
for the user to design each report table shell. The data table object
functions similarly to a spreadsheet application in allowing the user
to design in a free form environment with the only limitation being
preset system defaults. The top down flow of this frame follows the
same sequence as the report table shell appearance. First the user
may enter an optional pre-header text entry. This field is solely for
cosmetic purposes during the report table shell generation.

Following the pre-header text the user will enter the column widths
and the column headers into the data table object. This gives the
user a rudimentary display of the report table shell. The same data
table object is used for entry of the body of the table shell. This
proves to be used primarily on the summary tables, but the
functionality exists for listing tables as well. This frame finishes the
top down design by allowing the user to enter additional footnote
lines. These footnote lines will be listed on the final table shell
output below the reference entry, captured on the Program
Specification Frame.

Figure 3. Table Shell Design Frame

The Shell Design Preview Frame (Figure 4) allows the user to view
the table shell design without the added overhead of the program-
generator engine. A visual sample of the table shell is constructed in
the extended text entry object by abstracting the SLIST entries
captured on the previous frames. From this frame the user can
quickly view all program shells for the currently specified project.
The user also has the option of printing the contents of the viewer
window by clicking on the ‘PRINT’ icon or returning to the Design
Frame for further modifications or new table shell designs.

Figure 4. Shell Design Preview Frame

The final frame to the SHELL GENERATOR system is used for
printed report generation (Figure 5). This frame allows the user to
select program entries to print via a mouse click in the listbox object

3

or via the ‘SELECT ALL’ icon object. Once the selection is made a
mouse click on the ‘PRINT’ icon object activates the program-
generator engine and issues the submit statements for each of the
selected programs. While the programs are being generated a
dialog box is superimposed on the frame indicating the event. A
similar dialog box is used to indicate the printing process. Once
printing completes, the system prompts the user to ‘Select additional
reports for printing’ or ‘Select a new project’.

Figure 5. Print Selection Frame

Program-Generator Engine
The launch of the program-generator engine executes a block of
SCL code which in turn creates the usable SAS program skeleton
code. These program skeletons are simply text files built from
SLIST entries captured by the user interface. Once a program has
been created it is stored in the project specific program directory and
can be submitted to produce the table shell output. An example of
the system generated program skeleton is displayed in Listing 1
(dynamic text in bold). The text files created by the engine are actual
SAS programs that, when submitted, will produce table shell output
similar to that displayed in Appendix 1. These programs can later be
modified to populate the table shell with data.

Aside from the obvious time savings in program development and
initial system setup, a few of the value added benefits of the
program-generator engine are as follows:
• Header comments are properly documented.
• New style standards can easily be built in.
• Standard macros are automatically included.
• All programs have the same look and feel.
• Writers can change table shell programs without programmer

involvement.

**;
*** Specification Section ***;
**;
*** Physical Specifications ***;
*** Project ID: 3C HEALTH IX-103-002 ***;
*** Program Name: AE.LIS ***;
*** Created: 09/30/96 ***;
*** By: JRL ***;
*** Derived From: NONE ***;
*** Input Data: NONE ***;

*** Output Data: NONE ***;
*** Operating Sys: OS/2, version 3 ***;
*** Language: SAS, version 6.11 ***;
*** Logical Specifications ***;
*** Purpose: The purpose of this program is to produce ***;
*** a listing of all adverse experiences. ***;
**;
**;
%Include “h:\3chealth\IX103002\ix103pgm\environ.mac ”;
%Include “h:\3chealth\IX103002\ix103ml\listtool.mac ”;

*** Retrieve report title lines and header information. ***;
%Let pgmname=ae.lis ;
%datapgm(&pgmname);

*** Assign column widths. Creates &c1 - &cn ***;
%colwids(15,10,30,15,15,15,15);

*** Program specific by variable controls ***;
%Macro header;
 Put @&c1 ‘CENTER NUMBER: ’;
%Mend header;

*** Program specific column header controls ***;
%Macro colhead;
 Put @&c5 ‘DATE’
 @&c7 ‘RELATIONSHIP ’
 / @&c1 ‘TREATMENT’
 @&c2 ‘PATIENT’
 @&c3 ’ADVERSE’
 @&c4 ‘ONSET DATE’
 @&c5 ‘RESOLVED’
 @&c7 ‘TO STUDY’
 / @&c1 ‘GROUP’
 @&c2 ‘NUMBER’
 @&c3 ’EVENT’
 @&c4 ‘(STUDY DAY)’
 @&c5 ‘(STUDY DAY)’
 @&c6 ‘SEVERITY’
 @&c7 ‘DRUG’;
%Mend colhead;

*** Program specific body text controls ***;
%Macro bodytxt;
%Mend bodytxt;

*** Program specific footnote text controls ***;
%Macro footer;
 Put @&c1 ‘* SERIOUS ADVERSE EVENT’;
%Mend footer;

%listtool(dsn=,sortvars=, prehead=header, subhead=colhead,
 body=bodytxt, foot=footer, tblnum=1);
Run;

Listing 1. Sample skeleton program

Conclusion
In its current state, this application has added several efficiencies
into the production of a “mock” Statistical or Research Report. SAS
programmers have been freed from the low-level task of
programming table shells, resulting in increased availability for more
complicated tasks. By the time the programmer is asked to produce
the data-populated appendices, the skeleton code for each program
is already in place. Also, the statisticians and medical writers have
complete control over table shell development and ultimately spend
less time on design and modification.

4

References
SAS Institute, Inc. (1993), SAS/AF Software: FRAME Entry, Usage
and Reference, Version 6, First Edition, Cary, NC: SAS Institute Inc.

SAS Institute, Inc. (1994), SAS Screen Control Language:
Reference, Version 6, Second Edition, Cary, NC: SAS Institute Inc.

SAS Institute, Inc. (1995), SAS/AF Software: FRAME Class
Dictionary, Version 6, First Edition, Cary, NC: SAS Institute Inc.

Savage, Jennifer (1995), Object-Oriented Reporting Tools,
Proceedings of MWSUG ‘95, 98-100, Cleveland, OH.

Acknowledgments
SAS is a registered trademark of SAS Institute, Inc. in the USA and
other countries. ® indicates USA registrations.

The author’s would like to thank Matt Becker and Carl Haske for
their creative influence and support.

Authors’ Address
Jeff Hamilton and Jennifer Lester
STATPROBE, Inc.
3885 Research Park Drive
Ann Arbor, MI 48108
(313) 769-5000

E-mail:
• 72700,1075@compuserve.com
• statprob@oeonline.com

Appendix 1. Example of a standard report table shell

AE.LIS June 21, 1996

APPENDIX D.32
(PAGE X OF X)

A RANDOMIZED, COMPARATIVE, PHASE III MULTICENTER TRIAL TO COMPARE
THE SAFETY AND EFFICACY OF TREATMENT A VERSUS TREATMENT B IN

PATIENTS WITH LUNG CANCER

LISTING OF ALL ADVERSE EXPERIENCES
ALL PATIENTS

CENTER NUMBER:
 DATE RELATIONSHIP
TREATMENT PATIENT ADVERSE ONSET DATE RESOLVED TO STUDY
GROUP NUMBER EVENT (STUDY DAY) (STUDY DAY) SEVERITY DRUG

REFERENCE: CRF PAGE 32 - ADVERSE EXPERIENCES
* SERIOUS ADVERSE EVENT

	Main TOC

