Combining Display Manager and Batch Mode Under UNIX

John Blodgett, University of Missouri St. Louis

Abstract

The two classic methods of developing and running SAS® programs are
batch mode and intactive mode using the SAS Display Manager System.
Each of these methods has its advantages and disadvantages and most SAS
programmers have strong opinions about which is better. We describe a
method that we use for running SAS in a UNIX environment that allows us
to take advantage of both of these methods simultaneously. By the careful
application of a few coding standards and with the help of some custom key
definitions in display manager, we are able to utilize the features of the
interactive environment for editing our source code and reviewing the
results, while we virtually replace the standard SAS “submit” command with
our own “batch submit” prockire. We find that using this technique has
easily more than doubled our SAS productivity.

Overview of the Technique

The technique involves using the SAS Display Manager System to edit
your programs, and then submitting them to run as independent UNIX
background processes instead of using the display manager "submit"
command. Results of these batch runs -- SAS log and output files -- are then
reviewed using FSLIST (or BROWSE) windows in the foreground session
(so the method requires having the SAS/FSP® installed.) The basic steps
are:

1. Invoke SAS interactively with theMS option.

2. Edit your program using the SAS text editor in the Program window.

3. Write your program to an external file in the current directory using
thefile command..

4. Use the'x" display manager command ("shell to system") to invoke
a background process running SAS in batch mode with the program
just saved as the SAS source file.

5. Review the results of the batch run -- the .log and .Ist files -- using

FSLIST/BROWSE windows.
(Repeat steps 2-5 as necessary.)

Some Simple Coding Conventions

The key to making this method fast, reliable and powerful is the adoption of

some simple coding conventions and the strategic use of custom key
settings in display manager. Here is an example of a SAS program that

will be run in this "“interactive batch" mode (parenthesized line numbers
added for reference):

)
@)

(©)
4
©®)

(6)
0

x cd /myjobs/proj101; *<--point to directory for job--;
%let pgm=p101jobl; *<--store program “name” in macro variable--;

filename pgm “&pgm..sas”; *<--Always use pgm as fileref. Coding
convenience;

filename in /mydata/proj10l.indata’; *<--example of a filename stmt,
optional--;

libname sasout /myjobs/sasdata’;
optional--;

title 'Project 101, Job 1: Convert Raw Data to SAS';
... <rest of program goes here, to runatch only>....

*<--example of a libname stmt,

The first 3 lines are the most critical (actually, without the comments these
3 “lines” usually fit on a single line.) With these statements we accomplish
the following:

(1) Establish the current directory. This is important to simplify saving our
program and telling SAS where to store the program and, when
submitted for background processing, where titevihe SAS log and
output listing (.log and .Ist) files.

(2) Defining thepgmfileref with the filename statement makes it easy for
us to save our code, using the display manager comfitamym

<r>. Note that we need only specify the file name - the path is taken
care of by the cd command because of the special way that SAS
processes the cdstatement under UNIX .

The use of th&slet statement to establish a global parameter called
pgm with a value equal to our program name simplifies how we
initiate and review the results of the background process(es) we invoke
to run the program. This involves cusiaing some keys to make
things simpler and faster.

(©)

Custom Key Settings

A critical element in making this method quick, easy and reliable is the
ability to take shortcuts for the routine tasks that you need to repeat over and
over as you edit, submit and review your jobs. The method could be
employed without using these key shortcuts, but we're not sure we'd want
to use it then. You set up these special key definitions usually by using the
KEYS window, typing and saving the values (in yaasuser.profile
catalog.) We use four keys on the numeric keypad of our extended keyboard
but you can use any four keys that you prefer. Our custom key definitions
are:

KEY DEFINITION

kp-enter: X sas &pgm & (“Batch submit” key.)
kp-1: FSLIST &pgm..log (“Browse log” key.)
kp-2: FSLIST &pgm..Ist (“Browse output” key.)
kp-3: next FSLIST (“Swap log/list” key.)

Thekp-enterkey is used to submit the program. After entering the first few
lines of my program (as shown in the sample above) | submit those lines for
interactive processing. This establishes the pgm fileref and the value of the
&pgm global parameter. Optionally (but highly recommended) it establishes
the same data references (filerefs and librefs) for the interactive process as
will be used for the batch process. After submitting these lines from the
Program window of my foreground session, | immediatetall them so

they are also part of the batch program | am about to submit.

The commana sas &pgm &starts a subshell and runs the UNIX command
"sas &pgm&" - except that th&pgm reference will be replaced with the
name of the program. In our example this becorsas)101job®". The
trailing "&" tells the shell to run the program in the background. The
process begins and control is immediately passed back to the display
manager session. In fact when you hit the key that submits the job you will
typically not see anything happen if you are running in X-windows mode,
and will simply be prompted to hit enter to continue with your foreground
session otherwise.

Reviewing Results of the Batch Job

There is no built-in "notify" feature in SAS or UNIX to tell you when your
background job is completed but you casate your own. We use a utility
module that runs a short SAS data step whigbkas thesoundfunction
several times to provide an audible signal when the job has completed. We

have this short piece of code stored in a subdirectory which we name
sascodeand the program name imtify.sas. So, the last line of each
program that we run using this technique is

%include sascode(notify);
The source code for this program is included in Appendix A.

Of course, you can use a UNIX "ps" command to check on your job. Most
jobs finish in just a few seconds. When the job first starts up SAS creates
(or recreates, erasing the former contents, for reruns of the same job) the .log
file that it will be writing. By pressing therowse logkey (kp-1) you will

be invoking an FSLIST window and automatically loading therent
contents of the SAS log file associated with the background job. Wait for
the audible alarm indicating the job is finished before hitting this key.

The "next FSLIST" key (kp-3) is useful for swapping back and forth
between the log and output displays. It is importaninderstand that you
shouldnot use the FSLIST command to return to a window that you already
have open. If you do, SAS will open a new window and will display the file
in it, just as you'd expect. But now you will have multiple windows open
displaying the same file and this can lead to lots of confusion when you have
submitted the job 4 times and have 4 different windows open showing the
results of 4 different runs. When you are finished browsing a file with
FSLIST you should always close the window with the "end" command. Be
sure to do this with each FSLIST window you open using this technique,
especially when resubmitting the job. As an alternative you can implicitly
close it by issue thBROWSEcommand from a FSLIST window, which
closes the current window andvokes a new FSLIST window. To help
enforce this convention, we have defined the kp-1 and kp-2 keys for our
FSLIST window to issue the commands browse &pgm..log and browse
&pgm..Ist, respectively - i.e. we have replaced the FSLIST command with
BROWSE when we are issuing the command from inside an FSLIST
window.

Advantages of Running in Batch Mode

We will not go into all the advantages and disadvantages of batch vs.
interactive mode here, but one kegtor for applications that involve large

log or output files is the speed of execution. Writing these files to display
manager windows requires considerably longer (it checks for things and uses
colors and bolding to make these windows easier to read). A program that
produces several hundred lines of output in either or both of those windows
will run significantly faster in background. The FSLIST window does not
have all the nice color-coded features of the display manager LOG or
OUTPUT windows, but we find that for most of our applications it is just
fine. You cannot use thsaveor print commands from FSLIST but if you
need to do this it is easy to use the NOTEPAD window to bring in the .log
or .Ist file. Of course, you can easily send these files directly to a printer
using UNIX printer commands. And teavecommand is only relevant

if you decide to create an extra copy since with batch mode it is already
saved on a file -- the one you are browsing.

Another major advantage of batch mode is that it avoids some of the pitfalls
of the interactive display manager method, which can be particularly
troubling for display manager beginners. These include forgetting to save
(all) your program and having a step "hang" and losing all your work
because you have to "kill" the session. Another is forgetting to include a
"run;" statement at the end of your submitted code and having display
manager display the message "Data (or PROQXx) Step Running" when

in fact it is not (it is waiting for something to tell it the step is complete
before actually running it.) And, of course, there is the classic glitch of
trying to recover from having left off a closing quote or forgettidgraend
statement. The former is particularly common, and display manager
veterans learn how to cope with it (you submit a line such as

', run cancel; proc options option=jsrun;
hoping that the extra leading tic will balance off the quotes and let you then

recall, edit and try again; the "proc options" is a test to see if SAS is
processing statements again.)

This method is a good way to wean middle-aged "I've been doing it this way
for 20 years and | just prefer it" programmers away from less productive or
platform-dependent methods. Sometimes during the Iulls when they are
waiting for their batch jobs to complete they may get despeyate and
exploring the on-line help or the sample libraries.

Advantages of Using the Display Manager Environment

While we have focused on the fundamentals of how to access the SAS log
and output files, the real strength of using display manager as your batch
control environment is that it lets you easily examine gaiaas well as

your code and printed output. The FSBROWSE and FSVIEW windows can
be used to interactively explore either input or output SAS data. The
LIB-DIR-VAR window group can be an invaluable tool allowing you to
quickly verify names of SAS data sets and/or variables. You can also use
the full-screen SAS data browsing tools (FSBROWSE and FSVIEW--the
former is invoked when you type a “b” command in a DIR window) to
examine observations. This is why we encouraggnguall your filename

and libname statements at the top of the program (it's good coding form
anyway) and submitting those in the foreground as well as part of gtalr b
jobs. Doing this makes it very easy to view your data sets and data files
using the powerful display manager tools.

Using a USER Library to View Intermediate Results

If you have a job with many steps that creates a lot of intéatee8AS data

sets, it is a common part of debugging to be able to examine those
intermediate sets to make sure that things are what you expect. This
typically requires using partial PROC PRINT or sometimes PROC FREQ
steps to view partial contents of these data sets. But with this method an
alternative to this strategy is to define the spedarlibref. When this is

done all single-level SAS set references assume a first level of user instead
of work. So these data sets agtamed in the directory associated with the
user libref. If you submit thEbname user <directoryystatement in your
foreground session and it is also part of your batch jobs then when the batch
job completes you can examine the contents of all the intesteextits from

your foreground session using FSBROWSE and/or FSVIEW. This not only
saves time, but saves having to write a lot of temporary diagnostic code in
the programs. Of course, you need to be sure to delete all these temporary
files once the program is debugged. (Another advantage of this technique
is that if your program runs, say, 3 of 5 steps successfully, and the output of
step 3 is a “temporary” data set used by step 4, then you can “comment out”
the first 3 steps (by bracketing the code for them with “/*” and “*/") and
pick up with step 4 which will be able to read the “temporary” data set that
is still stored on the user library. This can be a major time saver.)

Interactive Session and Batch Session

This method allows you to work on an interactive session interleaved with
your background programs. Here you code your batch program and submit
it for background processing. While that is running you clear the
PROGRAM window and work on another program (possibly some new
steps that will eventually be incorporated into the batch program.) Any time
you want to check on the progress of the batch job jubtditselog key.

If you see you need to make changes and resubmit your batch program you
can use a NOTEPAD window. A good idea (especially if you use
NOTEPAD windows like | do for editing other files) is to specify a module
name when you invoke the NOTEPAD window. This name is added to the
title bar of the window and when you issue a save command in the window
it automatically saves the text (SAS code) as a source module with that name
in your profile catalog. Just use the commate &pgmto open the
window and establish the name of the source module you'll be editing. If an
“old” copy of the program is in the window (automatically copied for you by
SAS which looks for a source module of that name in your sasuser.profile
catalog) uselearto erase it from the window. Then tyfiec pgni' to load

the current version (the one you just submitted), do your editing,filgpe

pgm 1, hit your submit-to-background key, and return to the program
window and your interactive task. Of course, on subsequent submissions
of the program the source will already be in that NOTEPAD window - no
need to close it between submits.

Glitches and Gotchas

While we are generally very enthusiastic about this method, it is not without
its limitations and pitfalls. The limitations we can generally live with, the
pitfalls need to be understood and carefully avoided. We have been using
the system for about two years now, and the pitfalls are rarely a problem any
more. But they were a significant nuisance when we first started, and our
intent here is to forewarn new users of what to watch out for.

Most of the limitations of the method are theitations of batch processing

in general — no interactivity. If your application requires interactive user
input, this will obviously just not work (though you could probably use it to
debug portions of the task following the user input.) We have also noted
that the method will hang if you try to invoke an AF application with the
DISPLAY command - even if the application being displayed does not have
a window and does not require interactive input from the user. Also, since
your foreground SAS session is making active use of your sasuser.profile
catalog, your batch session will not be able to access it — and you'll see notes
on the log saying that the batch session was not able to opeattiay. So

you'll either need to devise a special scheme to use two different profile
catalogs - one for interactive and one for batch - or simply avoid using
sasusegs a place to store data and source code that may need to be accessed
by your batch jobs.

The pitfalls are generally simple and easy to avoid. You just have to be
careful. They include:

It's easy to assume that since you have entered the commands to
specify the arrent directory and the definition of thgmfileref that

SAS will somehowknowthis. Not unless you actually submit those
commands in your interactive session. If you forget to do this and then
typefile pgmit “works”, writing your arrent program to a file named
pgm.sas in the current (usually your home) directory. Trying to view
the results using the “fslist &pgm..log” command is not going to work.

The command to write your program to the file where your batch job
can access it ile pgm, notsavepgm. The lattedoeswrite your

code somewhere (to your sasuser.profile catalog) but not where you
want it.

You need to issue théle pgm r command before each batch
submission. Otherwise, you are just going to get a wasted rerun or the
old code.

You need to not onlgubmitthe commands to define the pgm fileref

, but you need twerify that those commands contained no syntax or
other errors. This is especially important if you are switching to a
new program and intend to change the definition of the pgm fileref.
Otherwise when you type the commaiilé pgm ryou could be
writing over your previous program. Our favorite way to make sure
we are going to save (file) our code where it belongs is to tyidera
command and verify the entry in the FILENAME window.

Once you have submitted a batch runrd modify the pgm file
before that batch run completes. It's perfectly all right to go d@mgd

the code in the window, perhaps coding step 2 while doing a test run
of step 1, but if you issue &ile pgm ¥ command while the
background job is still running, remember that the backgigrocess

is reading that file as its SAS source file. We used to get some very
strange SAS logs that made us think there was something
fundamentally wrong with SAS. What was happening, of course, was
that SAS was “losing its place” in the input file which was being
altered while it was being read (most operating systems would not let

you do this, but UNIX -- at least AIX -- will.) Note that this also
means that if you have a program that you want to runfa number o
times, just changing a few parameters forieaahmandgat
using this method. Since all the batch runs readb @ sannee
file, they cannot be running simultaneously. There are strategies for
getting around this, of course, using UNIX scripts.
Forgetting to close FSLIST windows in which you are viewing the
SAS log and output files can cause confusion. Its very easy to click on
one of these “old” windows and think you have the latest one. You'l
be scratching your head wondering what went wrong -- you could
swear you fixed that bug -- when in fact the window showing that your
program is now running just fine now has either not yet been opened,
or is opened but you just stumbled onto another one by mistake. This
is why we emphasize the importance of closing these windows
between submissions.

Other Platforms

We have really only used this method on a UNIX system with an X-
Windows interface. We have tried running something comparable under
Windows95 but with only limited success. Turns out many of the key
features that we rely upon do not work under Windows. For example, that
operating system does not like to let different programs (tasks) have the
same file open at the same time, something that happens all the time with
our method in UNIX. This requires you to carefully close all your
interactive browsing windows -- including the FSLIST/BROWSE windows
for looking at the log and output files as well as but also the FSBROWSE,
VAR, and FSVIEW windows which you may have open to check for
information about SAS data sets being used by the application. This also
means that if you have a program that is taking quite a while to complete,
you cannot go out and browse the log file to see what’s going on — you have
to wait for the whole job to finish.

A nice thing about running in windows is that you can specify the “-icon”
option when invoking thedich job. This causes an icon representing your
job to appear in your task bar menu across the bottom of your screen. When
that icon goes away, the job is finished.

Summary

We have found the methods we have described for running SAS jobs in
batch mode but with the SAS Display Manager mtéve environment as

the “control center” significantly improve the time required to develop our
programs. The system requires a relatively small number of coding
conventions and processing cycle steps that need to be carefully followed.
While it takes a few days to get familiar and then comfortable with these
conventions, doing so will save many man-days of programming
development time over the long haul.

Appendix A:
Source code for the sascode(notify) module:

options nonotes nosource; *--put "notify" msg on stderr file--;
options obs=max; *--in case of error obs=0 will be set;
options no$syntaxcheck;
%let se=&syserr;
data _null_;
call sound(1,1); call sound(1,1); call sound(1,1);
file log;
put "**** &pgm has compéted &sysday &sysdate &systime
Syserr=&se *rxxxt
file stderr;
put "**** &pgm has competed &sysday &sysdate &systime
Syserr=&se *xrxxt
run;

SAS and SAS/FSP area registered trademarks of SAS Institute Inc. in the
USA and other countries.

John Blodgett

Urban Information Center, Room 211 Lucas Hall
8001 Natural Bridge Rd.

St. Louis, MO 63121

(314) 516-6014

e-mail: c1921@umslvma.umsl.edu

	Main TOC

