
1

Conversion Methods From Oracle Tables to SAS Data Sets Using SAS/ACCESS, SAS Macro Language,
and The UNIX Shell Script

Alex Gaber, Long Ngo
Ischemia Research and Education Foundation,

San Francisco, CA

1.0 Abstract

Massive clinical research data are stored in HP-UNIX
Oracle 7.1.6 with SQL/NET V2 tables and managed by Oracle
programmers who are unfamiliar with the SAS system. The data
need to be converted to SAS data sets for analysis and
presentation. Depending on the situation, there are different
methods of conversion. Different alternatives were investigated and
three methods were compared. This paper demonstrates the
following three conversion methods investigated by a SAS
programmer with some knowledge of the SQL language and UNIX
shell script :

- Using Base SAS , Oracle SQL/Plus, and HP-UNIX shell script.
- Using the available SAS/ACCESS module in menu-driven mode.
- Using the available SAS/ACCESS module in a batch mode.

For each of the above three methods of data conversion,
the advantages and disadvantages of each method will be pointed
out. The SAS code and the UNIX Shell script will also be presented
as well as relevant features of SAS/ACCESS and SQL. A real case
study will be used throughout as an example. No knowledge of
ORACLE is assumed for the readers. The goal of the paper is to
introduce the users to some methods of accessing and converting
data from Oracle to SAS depending on the availability of resources
and expertise.

2.0 Case Study Data

The following data are part of a large clinical research data base
stored in the relational data base system Oracle 7.1.6 in HP-UNIX
10.0. The data have been entered through an Oracle menu-driven
data entry system. The data describe the electrocardiograph
assessment done in each period on each of the patients in the
study. The objective is to port the data to a SAS data set for
statistical analysis. The data stored in Oracle are as follows :

Table 1 - Oracle Data

STUDY_ID
(varchar2(10))

PATIENT_ID
(varchar2(10))

ECG_PERIOD
(varchar2(10))

ECG_DATE_TIME
(date)

PROXIMATI3 801001 ICU 05-JUL-94:07:12

PROXIMATI3 801001 POD1 06-JUL-94:09:01

PROXIMATI3 801001 POD2 07-JUL-94:06:01

PROXIMATI3 801001 POD3 08-JUL-94:11:01

PROXIMATI3 801001 POD4 09-JUL-94:09:01

PROXIMATI3 801001 POD5 10-JUL-94:07:12

PROXIMATI3 801002 SCREEN 10-JUN-94:12:01

PROXIMATI3 801002 ICU 08-JUL-94:11:18

PROXIMATI3 801002 POD1 09-JUL-94:08:01

PROXIMATI3 801002 POD2 10-JUL-94:08:01

The Oracle data type for variables STUDY_ID, PATIENT_ID, and
ECG_PERIOD is VARCHAR2(10) indicating that these variables
are stored in Oracle as character type with maximum length of 10
spaces. This is equivalent to a SAS format of $10. For the variable
ECG_DATE_TIME , the data type DATE is equivalent to DATEw.
format in SAS.

To better understand the conversion process from Oracle to SAS, it
is helpful to be familiar with Oracle terminology and its basic data

base structure. First of all, the equivalence in terminology for some
of the main features between an Oracle table and a SAS data set
is described in the following table :

Table 2

SAS Oracle Note
Terminology Terminology
Data Set Table

Variable Column Name

Observation Record

Format, Informat Not Applicable In Oracle, there is no equivalence. The
data are stored as nonformatted values.

Length Not Applicable In Oracle, the length of the variable is
defined by the system through the assigned
Oracle data type whereas in SAS the length
refers to storage length.

Label Not Applicable In Oracle the column name has a maximum
length of 30 characters which also serve as
the variable’s label.

The objective is to convert the Oracle data (table 1) to a SAS data
set shown in table 3 below :

Table 3 - Converted SAS data set

V1
($10)
LABEL=
‘STUDY_ID(V1)’

V2
($10)
LABEL=
‘PATIENT_ID
(V2)’

V3
($10)
LABEL=
‘ECG_PERIOD
(V3)’

V4
(datetime13.)
LABEL=
‘ECG_DATE_TIME(V4)’

PROXIMATI3 801001 ICU 05JUL94:07:12

PROXIMATI3 801001 POD1 06JUL94:09:01

PROXIMATI3 801001 POD2 07JUL94:06:01

PROXIMATI3 801001 POD3 08JUL94:11:01

PROXIMATI3 801001 POD4 09JUL94:09:01

PROXIMATI3 801001 POD5 10JUL94:07:12

PROXIMATI3 801002 SCREEN 10JUN94:12:01

PROXIMATI3 801002 ICU 08JUL94:11:18

PROXIMATI3 801002 POD1 09JUL94:08:01

PROXIMATI3 801002 POD2 10JUL94:08:01

The format of the variable is indicated in the parentheses below the
desired SAS variable name. Notice that the label for the SAS
variable is from the Oracle table column’s name. Within the label
the SAS variable name is also embedded (e.g. ‘study_id(V1)’).

3.0 Method 1
3.1 Description
This conversion method illustrates how to convert Oracle data to
SAS data set using only base SAS language, Oracle SQL
language, and UNIX shell script commands. There are essentially
three steps all of which are automated by the UNIX shell script
program. First, the shell script program generates and executes
an SQL program which takes as input the targeted Oracle table.
The output from this SQL program is a flat file which contains the
structure of the Oracle table to be converted. For the data above ,
the output which describes the structure of the Oracle table is
stored in a flat file called ORDER.STR shown in table 4 below.

Table 4 - ORDER.STR

L:43
S:ecg
T:ecg

2

N:4
V:STUDY_ID:V1:VARCHAR2:10:
V:PATIENT_ID:V2:VARCHAR2:10:
V:ECG_PERIOD:V3:VARCHAR2:10:
V:ECG_DATE_TIME:V4:DATE:13:
E:

The flat file ORDER.STR contains the description of the maximum
length (L:43), source table (S:ecg), target name of SAS data set
(T:ecg), number of variables (N:4), V is the prefix for the converted
variables in sequential order from 1 to N (here V1 to V4), the Oracle
column name and data type and length are also obtained showing
for example the length of column name PATIENT_ID is 10
characters and in the SAS data set it will be converted to variable
name V2.

The shell script program to generate ORDER.STR is shown in the
appendix , part 1.

Secondly, ORDER.STR is used as an input file in the shell script
program to create an SQL program ORDER.SQL shown in table 5
below. Part 2 of the appendix shows the shell script program which
generates ORDER.SQL.

Table 5 - ORDER.SQL

-- do not display commands from a file
set termout off;
set echo off;
-- no lines between pages
set newpage 0;
-- number of spaces between columns
set space 0;
-- no margins
set pagesize 0;
-- do not show the number of records returned by a query
set feedback off;
-- no headings
set heading off;
-- default width for numbers
set numwidth 20;
-- start spooling to the file order.dat
spool order.dat;
-- records length
set linesize 43 ;
-- default width for date
column ECG_DATE_TIME format a13;
select
STUDY_ID V1
, PATIENT_ID V2
, ECG_PERIOD V3
,to_char(ECG_DATE_TIME,’ddmonyy:hh:mm’) ECG_DATE_TIME
from ecg ;
-- stops spooling
spool off;
exit;

Notice the SQL statement converting the column name
ECG_DATE_TIME from oracle date type to SAS datetime13.
format.
The shell script then executes this SQL program ORDER.SQL to
extract the data from the Oracle table ECG. The data are output
into the file ORDER.DAT which is shown in table 6.

Table 6 - ORDER.DAT

PROXIMATI3801001 ICU 05jul94:07:12
PROXIMATI3801001 POD1 06jul94:09:01
PROXIMATI3801001 POD2 07jul94:06:01
PROXIMATI3801001 POD3 08jul94:11:01
PROXIMATI3801001 POD4 09jul94:09:01
PROXIMATI3801001 POD5 10jul94:07:12
PROXIMATI3801002 SCREEN 10jun94:12:01
PROXIMATI3801002 ICU 08jul94:11:18
PROXIMATI3801002 POD1 09jul94:09:01

PROXIMATI3801002 POD2 10jul94:06:01

The third step is to have the shell script generate the SAS program
to read in ORDER.DAT and create the SAS data set ECG.SSD.
Part 3 of the appendix shows this section of the shell script
generating and executing automatically the SAS program which is
shown below in table 7.

Table 7 - ORDER.SAS

libname library ’/users/analysis/aig/oracle/sas1/basessd’;
libname epi2 ’/users/analysis/aig/oracle/sas1/basessd’;
data epi2.ecg (label=’ecg’);
infile ’/users/analysis/aig/oracle/sas1/order.dat’ linesize= 43 lrecl= 43 ;
input
V1 $ 1 - 10
V2 $ 11 - 20
V3 $ 21 - 30
V4 datetime13.
;
label V1=’STUDY_ID(V1)’;
label V2=’PATIENT_ID(V2)’;
label V3=’ECG_PERIOD(V3)’;
label V4=’ECG_DATE_TIME(V4)’;
format V4 datetime13.;
run;
proc contents data=_last_; run; proc print data=_last_ (obs=10) labels; run;

Notice that the SAS program contains as input the Oracle column
names’ characteristics which are used in the SAS’s INPUT
statement. The options LINESIZE and LRECL also have the value
of maximum record length 43 from the file ORDER.STR. The input
uses the column format with column values also derived from
ORDER.STR, the file containing the structure of the table. The
shell script also executes this SAS program and creates the
desired SAS data set shown in table 3.

3.2 Disadvantages
This conversion method requires some knowledge of Oracle SQL
and UNIX shell script programming language. Additional temporary
storage has to be available for the intermediary flat files. The
procedure could also be time-consuming due to the additional disk
I/O operations resulted from the creation of the temporary flat files.

3.3 Advantages
This procedure has five distinct advantages. First, it provides
flexibility as to how the variable names and characteristics could be
customized. Instead of the automatic generation of the sequential
variable names given a prefix (e.g. with prefix V, V1 to V5), the
program could be modified to have the desired variable names.
Second, the created flat files provide wider accessibility if the data,
instead of read into SAS, are to be read into some other software
such as Excel, Paradox, or word processors ... all of which can
read ASCII flat files. Third, this method requires only the basic
tools which are base SAS, SQL which comes as basic component
of Oracle, and the built-in UNIX shell script programming language.
As a result, the four advantage is cost-effectiveness since tools
such as SAS/ACCESS might not be readily available to some
segment of users. And lastly the fifth advantage is that the
conceptual model of this method could be easily applied to an
environment where for example in DOS, the batch programming
language could be used in place of the UNIX shell script language;
furthermore, SQL is a standard tool and native to most relational
data base system (RDBS); and base SAS is virtually compatible to
all operating system platforms. This method therefore could be
easily applied to an environment running Windows ‘95, Paradox,
and Windows SAS system.

4.0 Method 2
4.1 Description

3

If SAS/ACCESS is available then there is another method of
converting Oracle table data to SAS data set. Below is the step-by-
step procedure that the user could go through systematically to
create a SAS data set from an Oracle table :

- First of all, Oracle client software has to be preinstalled
on the UNIX workstation. The Oracle data base administrator
(DBA) has to assign access privilege.

The DBA has to give the SAS user a user name,
password, location or path of access to the specific Oracle table to
be accessed by SAS. Then a link between Oracle and
SAS/ACCESS has to be established . This step requires that the
UNIX environment variable SASORA be created. One can edit the
system file .cshrc to add the command ‘setenv SASORA V7’, or
one can just issue and submit the shell command ‘x setenv
SASORA V7’ from within the SAS program editor. Figure 1 shows
the X shell command and the creation of the location in which the
SAS/ACCESS-created files will be stored (libref CONVERT).

Figure 1

- Create an object called access descriptor. This step
could be done by going to the ACCESS option under the GLOBAL
menu (global, access, file, new, libref name). Figure 2 shows the
Oracle Access Descriptor Identification Window in which the user
has to input MEMBER which is the name of the object descriptor in
libref CONVERT. The value NO on the field ASSIGN NAME
means that no default SAS variables names be created because
we want the variables to be V1 to V4. The field TABLE has the
filled-in value of ECG which is the name of the ORACLE table to be
converted. USER NAME, PASSWORD, and PATH are the DBA-
assigned information that the user must have for these fields.

Figure 2

- This step shows the window containing the information
of the Oracle table ECG from which the user now must enter the

SAS variable names under SAS NAME and the corresponding
formats. Notice from figure 3 that only the first four wanted
variables were selected. When this step is finished, a file called
ECG.SSA01 will be created in CONVERT represent the access
descriptor object.

Figure 3

 - Figure 4 shows the final step which is the View
Descriptor Display Window showing the resulted SAS names and
formats. The output SAS data set can be created here by entering
the location for the library (in this case CONVERT) and the name of
the data set which is required to be different from the view
descriptor object name (ECG). In CONVERT the view descriptor
object is stored in the file ECG.SSV01. The SAS name in this case
is ECG1 and the physical name is ECG1.SSD01.

Figure 4

 4.2 Disadvantages

- Customized variable names and their formats have to be manually
entered in the ACCESS descriptor window.
- Software availability and support of SAS/ACCESS module and
Oracle client software are required.

 4.3 Advantages

- This method is very user-friendly due to SAS/ACCESS menu-
driven conversion procedure.

4

- Once the view descriptor object has been created, the Oracle
data could be accessed dynamically by SAS software so that the
whole conversion procedure does not need to be repeated entirely
even though the Oracle table data have been updated.
- With the availability of SAS/ACCESS and Oracle client software,
no other tools are needed so when the entire procedure is set up, it
is relatively easy to maintain and to train the users.

5.0 Method 3
5.1 Description
This method of conversion is similar to method 2. However, instead
of using the SAS/ACCESS menu-driven environment, the user
could use batch mode to carry out the same operations. The idea
is the access descriptor object and the view descriptor object can
be created in a SAS program using Proc Access directly. Table 8
below shows the SAS code for creating the access descriptor.

Table 8

libname convert "/users/analysis/aig";
X ’setenv SASORA V7’;
* define SAS/Access descriptor for the ORACLE table to be converted *;
proc access dbms=oracle;
 create convert.ecg.access; /*create the access descriptor object */
 user=aig; /*user name given by Oracle DBA */
 orapw=xxxxxxx; /*user password given by DBA */
 table=ecg; /*Oracle table name to be converted */
 path=’@mcspi00’; /*location of the Oracle table */
 list all;
run;

Notice that all the information needed to access the Oracle table
have to entered into the program just like they were required in
method 2 using the menu-driven SAS/ACCESS window
environment.

Next, the view descriptor object has to be created. Then the SAS
data set can be created from the view descriptor object. Table 9
shows the SAS code for creating both the view descriptor and the
SAS data set.

Table 9

* define the ecg table view descriptor - rename variables to valid sas names. *;
proc access dbms=oracle accdesc=convert.ecg;
/* call the access descriptor object */
 create convert.ecg.view;
 /* create the view descriptor object*/
 select study_id patient_id ecg_period ecg_date_time;
 /* selected wanted variables*/
 rename study_id=v1 patient_id=v2 ecg_period=v3 ecg_date_time=v4;
/*rename */
 list view;
run;
* creating the SAS data set from the view descriptor object;
data convert.ecg1;
 set convert.ecg;
 format v1-v3 $10. v4 datetime13.;
run;

5.2 Disadvantages
For this method, the disadvantages are the similar as in method 2.
- Customized variable names and their formats have to be manually
written into the SAS program.
- Software availability and support of SAS/ACCESS module and
Oracle client software are required.

5.3 Advantages
Similar to method 2, this procedure allows the user to use only SAS
tools to convert Oracle data into SAS. Once the view descriptor
has been created, SAS software can be used directly to access

Oracle table even though the Oracle table data have been updated.
One advantage of this method that method 2 lacks is that this
method allows the user to customize the conversion procedure by,
for example, taking as an input the name of an Oracle table and
pass it to the conversion programs as macro input parameter. This
method also documents the conversion steps in the programming
statements.

6.0 Conclusion
Essentially the most important difference which separates the three
conversion methods above is the availability of the module
SAS/ACCESS. Without SAS/ACCESS, a great deal of effort is
needed to develop customized conversion programs using tools
such as UNIX shell script and SQL programming languages as
shown in method 1. However, once developed this method 1
procedure allows a great deal of flexibility such as automating
sequential variable names which requires only the specification of
the prefix (e.g. V as in above). Some expertise in tools such as
SQL and shell script are also required to access and retrieve the
Oracle data. Method 2 and 3 are much more user-friendly but
SAS/ACCESS module must be available and Oracle client software
must be installed on the user’s machine. Once setup this procedure
allows the user to use only the SAS/ACCESS software to access
and retrieve Oracle data.

7.0 Reference

SAS/ACCESS Interface to ORACLE: Usage and Reference,
Version 6, Second Edition

SQL*Plus User’s Guide and Reference, ORACLE

HP-UX Reference, HP 9000 Computers, HEWLETT PACKARD

8.0 Authors address

Alex Gaber, M.S.
Long Ngo, Ph.D.Cand.
Ischemia Research and Education Foundation
250 Executive Park Blvd. #3400
San Francisco, CA 94134-3306
(415) 715-2319

APPENDIX

.ORDER.ORDER:
#
#!/bin/csh

echo "--------------------------------------" >> order.track
echo "EXTRACTION PROTOCOL" >> order.track
id >> order.track
pwd >> order.track
echo "ORACLE TABLE: $1 " >> order.track
echo "SAS DATA SET: $2 " >> order.track
echo "START TIME: " >> order.track
date >> order.track

keep table name in ORDER.NAM:
echo "S:$2" >> order.nam
echo "T:$1" >> order.nam

PART 1: GENERATE ORDER.STR

create sql order.sql and ask ORACLE to run it:
echo ’set termout off;’ > order.sql
echo ’set echo off;’ >> order.sql
echo ’set newpage 0;’ >> order.sql
echo ’set space 0;’ >> order.sql
echo ’set pagesize 0;’ >> order.sql
echo ’set feedback off;’ >> order.sql

5

echo ’set heading off;’ >> order.sql
echo ’set numwidth 80;’ >> order.sql
echo ’spool order.lst;’ >> order.sql
echo "describe $1 ;" >> order.sql
echo ’spool off;’ >> order.sql
echo ’exit’ >> order.sql
sqlplus -s aig/aig@mcspi00 @order

to get the structure of table into ORDER.VAR:
awk -f .order.awk < order.lst > order.var
rm order.lst
rm order.sql

create structure file ORDER.STR
sed "s/ //g" < order.var > order.tmp
wc -l order.tmp | awk ’{print "N:",$1-1}’ | sed "s/ //g" > order.var.number
awk -f .orderlength.awk < order.var | sed "s/ //g" > order.tmp1
cat order.tmp1 order.nam order.var.number order.tmp > .order.str
rm order.tmp order.tmp1 order.nam order.var order.var.number

PART 2: GENERATE ORDER.SQL

to get ORACLE table values into ORDER.DAT:
awk -f .orderdata.awk < .order.str > order.tmp
awk -f .orderdata1.awk < .order.str > order.tmp1
awk -f .orderdata2.awk < .order.str > order.tmp2
cat order.tmp order.tmp1 order.tmp2 > order.sql
rm order.tmp order.tmp1 order.tmp2
sqlplus -s aig/aig@mcspi00 @order
rm order.sql

PART 3: GENERATE ORDER.SAS

to create SAS program ORDER.SAS
awk -f .ordersas.awk < .order.str > order1.sas
awk -f .ordersas1.awk < .order.str > order2.sas
cat order1.sas order2.sas > order.sas
rm order1.sas order2.sas

run ORDER.SAS
sas order

echo "FINISH TIME: " >> order.track
date >> order.track
#awk -f .orderbyt.awk < .order.str > order.tmp1
#cat order.track order.tmp1 > order.tmp2
#cp order.tmp2 order.track
#rm order.tmp1 order.tmp2
#echo "--------------------------------------" >> order.track

grep -i error order.log >> order.track
if ($status == 0) then
 echo "SOMETHING WRONG WITH EXTRACTION DATA $2 FROM $1" >>
order.track
 echo "Please call Alex Gaber" >> order.track
else
endif
grep -i warning order.log >> order.track
if ($status == 0) then
 echo "SOMETHING WRONG WITH EXTRACTION DATA $2 FROM $1" >>
order.track
 echo "Please call Alex Gaber" >> order.track
else
endif
grep -i note order.log >> order.track
order.track
echo "--------------------------------------" >> order.track
echo "--------------------------------------" >> order.track

#cleaning
#rm order.dat .order.str
#rm order.log order.lst order.sas

#END

######### SUBPROGRAMS ############:

.ORDER.AWK
#
BEGIN {
FS=",[\t]*|[\t]+";
sasv=0;
}
{
$0=substr($0,2);
index_type=index($0," VARCHAR2");
if (index_type>0) {
 ++sasv;
 var_name=substr($0,1,(index($0," ")-1));
 sas_var_name="V" sasv;
 var_type=substr($0,index_type);
var_length=substr(var_type,(index(var_type,"("))+1,(index(var_type,")"))-
(index(var_type,"("))-1);
 if ((length(var_length) >= 3) && (substr(var_length,1,1) > “1”)) {
var_length=200; }
 var_type=substr(var_type,1,(index(var_type,"(")-1));
 print "V:",var_name,":",sas_var_name,":",var_type,":",var_length,":";
 }
index_type=index($0," DATE");
if (index_type>0) {
 ++sasv;
 var_name=substr($0,1,(index($0," ")-1));
 sas_var_name="V" sasv;
 var_type=substr($0,index_type);
 var_length="13";
 print "V:",var_name,":",sas_var_name,":",var_type,":",var_length,":";
 }
index_type=index($0," NUMBER");
if (index_type>0) {
 ++sasv;
 var_name=substr($0,1,(index($0," ")-1));
 sas_var_name="V" sasv;
 var_type=substr($0,index_type);
 (index(var_type,"("))-1))+1;
 var_length=20;
 var_type=" NUMBER";
 print "V:",var_name,":",sas_var_name,":",var_type,":",var_length,":";
 }
}
END {
print "E:";
}

#.ORDERLENGTH.AWK
#
BEGIN {
FS=":";
i=0;
}
{
i += $5;
}
END {
print "L:",i
}

#.ORDERDATA.AWK
#
BEGIN {
FS=":";
print "set termout off;";
print "set echo off;";
print "set newpage 0;";
print "set space 0;";
print "set pagesize 0;";
print "set feedback off;";
print "set heading off;";
print "set numwidth 20;";
print “set arraysize 1;”;
print "spool order.dat;";
}
{
if ($1=="L") {
 print "set linesize ",$2,";";

6

 }
if ($1=="V") {
 if ($4=="DATE") {
 printf ("column %s format a%s;\n",$2,$5);
 }
if ($4=="VARCHAR2") {
 printf ("column %s format a%s;\n",$3,$5);
 }
 }
}
END {
}

#.ORDERDATA1.AWK
#
BEGIN {
FS=":";
i=0;
}
{
if ($1=="N")
 {
 print "select ";
 }
if ($1=="V")
 {
 if (i==0)
 {
 if ($4=="DATE")
 {
 printf ("to_char(%s,’ddmonyy:hh:mm’) %s\n",$2,$2);
 }
 else
 {
 print $2,” “,$3;
 }
 }
 else
 {
 if ($4=="DATE")
 {
 printf (",to_char(%s,'ddmonyy:hh:mm') %s\n",$2,$2);
 }
 else
 {
 print ",",$2,” “,$3
 }
 }
 i=1;
 }
}
END {
}

#.ORDERDATA2.AWK

BEGIN {
FS=":";
}
{
if ($1=="T")
 {
 print "from ",$2,";";
 }
}
END {
print "spool off;";
print "exit;";
}

#.ORDERSAS.AWK
#
BEGIN {
FS=":";
print "libname library '/users/analysis/aig/oracle/sas1/basessd';";
print "libname epi2 '/users/analysis/aig/oracle/sas1/basessd';";
l=1;

s=0;
f=0;
}
{
if ($1=="L") { lrecl=$2; }
if ($1=="S") { dataset=$2; }
if ($1=="T") {
 tablename=$2;
 printf ("data epi2.%s (label='%s'); \n",dataset,tablename);
 }
if ($1=="N") {
 print "infile '/users/analysis/aig/oracle/sas1/order.dat' linesize=",lrecl,"
lrecl=",lrecl," ;";
 print "input";
 }
if ($1=="V") {
 s = s + l ;
 f = s + $5 -1 ;
 l =$5 ;
 if ($4=="NUMBER") {type=" "; print $3," ",type," ",s,"-",f; }
 if ($4=="VARCHAR2") {type="$"; print $3," ",type," ",s,"-",f; }
 if ($4=="DATE") {type=" "; print $3," ",type," ","datetime13."; }
 }
if ($1=="E") {
 print ";";
 }
}
END {
}

#.ORDERSAS1.AWK
#
BEGIN {
FS=":";
}
{
if ($1=="V") {
 printf ("label %s='%s(%s)'; \n",$3,$2,$3);
 if ($4=="DATE") { print "format ",$3," datetime13.; "; }
 }
if ($1=="E") {
 print "run;";
 print "proc contents data=_last_; run; proc print data=_last_ (obs=10) label;
run;";
 }
}
END {
}

#.ORDERBYT.AWK
#
BEGIN {
FS=":";
l=0;
n=0;
}
{
if ($1=="L") { l=$2; }
if ($1=="N") { n=$2; }
}
END {
printf ("NUMBER OF VARIABLES: %d, RECORD LENGTH: %d, BYTES:
%d\n",n,l,n*l);
}

	Main TOC

