
OLE and the SAS System for Windows Release 6.12

Jennifer Clegg and Carol Rigsbee, SAS Institute Inc., Cary, NC

ABSTRACT

This paper describes the OLE support
within the SAS System for Windows
Release 6.12. This support includes
OLE container, OLE automation con-
troller, and OLE automation server func-
tionality. OLE container and OLE con-
troller support is available in SAS/AF

FRAME entries and SAS/EIS applica-
tions. OLE automation server support is
available with base SAS software.

INTRODUCTION

This paper provides an overview of the
OLE support in the SAS System. For
more details on OLE in general, see the
documentation for the Microsoft Win-
dows operating environment. For further
details on OLE support within the SAS
System, refer to the online documenta-
tion for the SAS Companion.

OLE facilitates the exchange of informa-
tion between applications. OLE contain-
ers include objects and controls from
other applications. Through OLE auto-
mation, OLE controllers script objects in
other applications. OLE servers are the
applications that provide these objects.

OLE functionality within the SAS Sys-
tem falls into three categories: basic
container support, OLE automation sup-
port, and OLE controls support. Each
section of this paper discusses the par-
ticular OLE feature followed by specific

information about its use within the SAS
System.

BASIC CONTAINER SUPPORT

Overview of OLE
The SAS System’s basic container sup-
ports the creation of Linked and Embed-
ded objects, drag and drop, and visual
editing.

Objects can be Linked or Embedded de-
pending on your needs. Use Linked ob-
jects when you want the data in the con-
tainer to update dynamically when the
source changes. Use Embedded objects
if you want to edit the object within the
container or if a link would be unavail-
able later.

Drag and drop provides an easy way to
create an Embedded or Linked object
within a container. Drag and drop sup-
ports keyboard modifiers to alter the be-
havior of a drop. By default, dragging
an object moves the object. To copy an
object, hold down the Ctrl key when you
drop the object in the container. The
cursor will change to an arrow with a
box and a plus (+) sign. To create a link
to the object data, hold down the Ctrl
and Shift keys when you perform the
drop. The cursor will become an arrow
with a box and an equals (=) sign. If the
target area is not a valid drop site or the
operation is not supported, the cursor
will change to the not (∅) sign.

2

Visual editing allows you to edit an ob-
ject within the context of its container.
The container takes on the user interface
of the server. The menus, toolbars, and
status line switch to the ones normally
provided by the server. Below is an ex-
ample of a Microsoft Word object being
visually edited in the SAS container.

Not all servers support visual editing.
Some servers may support open editing
where the server launches as a separate
application and all editing occurs in that
application’s window. By design, Linked
objects only support open editing. Em-
bedded objects may support visual edit-
ing or open editing depending on the
server.

Overview of OLE and the SAS System
There are multiple ways to create Em-
bedded and Linked objects with the SAS
System. First, you need to bring up the
SAS BUILD:DISPLAY window so you
can create a FRAME entry that will
contain your OLE objects. To do this
submit the following statement:

proc build c=sasuser.ole.demo.frame; run;

To create OLE objects you can select
FILL or MAKE from the frame’s popup
menu. To access the popup menu, posi-
tion your mouse in the BUILD window
and click the right mouse button. When
using FILL, you must first drag out a re-

gion to designate the size of the object.
When using MAKE, the server determines
the default size of the object. For bitmaps
and other objects that do not scale well,
MAKE is preferable because the object re-
tains its appearance.

The SAS System creates HSERVICE
entries in SAS Catalogs to store the nec-
essary information about Linked and
Embedded objects. These entries are
only portable to other Windows plat-
forms.

Creating OLE Objects in FRAME
One of the ways you can create OLE
objects in FRAME is to use the Insert
Object dialog. To access this dialog, se-
lect MAKE or FILL from the frame’s
popup menu. Scroll through the list of
items and select OLE - Insert Object.
The dialog is below.

Notice that there are three radio buttons
in this dialog. The first one is Create
New. Selecting this button will display a
list of available object types. This list
will vary based on the OLE-capable ap-
plications on your machine. Selecting an
object type from this list and pressing OK

will result in the creation of an Embed-
ded object. Since this is a new instance
of an object, the server starts the object
in edit mode, either visual editing or open
editing, depending on what the server
supports. Click outside the object, else-

3

where on the frame, to end visual editing.
Exit the server to end open editing.

If you select the second radio button,
Create from File, the dialog allows
you to create an object based on the
contents of a file. The dialog prompts
you for the filename. The Insert Object
dialog with this option selected is below.

If you do not know the filename, you can
browse for the file to use to create this
object. Using this method will create an
Embedded object based on the contents
of the file. To create a Linked object,
click the Link check box to select it.

The OLE Controls section describes the
third radio button, Insert Control.

Another way to create a Linked or Em-
bedded object is to use the Paste Special
dialog. This dialog is available from the
MAKE or FILL menus as OLE - Paste
Special.

The Paste Special dialog allows you to
create an object based on data from the
clipboard. You may create objects of the
following types: Embedded, Linked,

Metafile, Device Independent Bitmap, or
Bitmap. Select the desired choice and
click the Paste button to create any
type of object except Linked. You must
select the Paste Link radio button to
create a Linked object. Metafile, Device
Independent Bitmap, and Bitmap are all
static data representations of an object.
You may view these objects in a con-
tainer but not edit them.

Another way to create an object is to
read an existing object from a SAS cata-
log. To read an object from a catalog
select OLE - Read Object from the
MAKE or FILL menus. Enter the
HSERVICE entry name of the object
you want to read. Reading an object
from a catalog is equivalent to copying
an object. This method allows you to ac-
cess objects in other frames. You must
change the name of the HSERVICE en-
try in the Object Attributes dialog after
you create the object if you want to save
the object as a separate catalog entry.

You can also use drag and drop to create
a new object based on an existing object
or data in an application.

OLE Verbs
One important feature of OLE objects is
that they expose verbs. Verbs are ac-
tions that can be performed on an object.
Each OLE object has a default verb as-
sociated with it. Most objects expose
“Edit” as the default verb. Some objects,
such as media clip, expose “Play” as the
default verb. The default verb is impor-
tant because double-clicking an object in
TESTAF executes this action. Most ob-
jects have more than one verb.

To access all the verbs for an object in
BUILD, click on the object with the right

4

mouse button to access the frame’s
menu. The name of the OLE object is
the last item on the menu. This menu
contains a list of selections available with
this object. Below is a fragment of the
frame’s menu showing the object’s menu.

The first set of selections (before the
separator) is the list of verbs. The first
selection is the default verb. You can
select any of these verbs to execute that
action. Additional selections available
from this menu include the Links and
Convert dialogs.

You can also view the list of verbs for an
object by invoking the Object Attributes
dialog and selecting the Associated
Verbs item. Using SCL, you can pro-
grammatically execute verbs using the
EXECUTE method. An example is
below:

call notify(’oleobj’,’_EXECUTE_’,’Edit’);

The Links and Convert Dialogs
The Links dialog provides important
functionality for the maintenance of OLE
Linked objects. One particular function
is the ability to repair broken links. Bro-
ken links may occur when you move a
file that is the link source for an object.
With the Links dialog you can change the
location of the physical file that the link
refers to, thus repairing the link. In the
Links dialog you can also force an up-

date of a link, edit the source of a link, or
break a link. Breaking the link will
change the object to a static representa-
tion. The Links dialog displays all
Linked objects in the current frame. You
can access the Links dialog by typing
DLGLINKS on a command line or by using
SCL to pass DLGLINKS as a verb to the
object using the _EXECUTE_ method.
In BUILD you can also access the Links
dialog from the object’s menu.

The Convert dialog allows you to specify
an alternate editor for an object when the
original server is unavailable. If you
convert an object, it permanently be-
comes an object of the new type. You
can also use this dialog to activate an
object as an object of another type. The
storage for the object is unaltered and all
objects of this type on your system will
now use the new application for editing.
Conversion and activation support de-
pends on the servers installed on your
system. One way to access the Convert
dialog is to select an object and type
DLGCONVERT on a command line. You
also can use SCL to pass DLGCONVERT as
a verb to the object. Additionally, in
BUILD, you can access the Convert
dialog from the object’s menu.

OLE AUTOMATION

Automation allows an application to
script another application. An OLE
Automation Server is an application that

5

exposes objects for scripting. These ob-
jects are OLE Automation Objects. Ap-
plications that access these objects are
OLE Automation Controllers. Control-
lers provide a mechanism such as a script
language to access automation objects
and program automation servers.

You can control an OLE Automation
Object through its methods and proper-
ties. Methods are functions exposed by
an object. Properties are variables ex-
posed by an object. The server’s docu-
mentation describes its objects and their
methods and properties.

SAS OLE Automation Server
The SAS System’s automation server
exposes one automation object to allow
access to some features of the SAS Sys-
tem. The SAS System’s automation ob-
ject supports the following methods and
properties:

Methods
Command

executes the text as if it were
entered on the command line of
the SAS System session

Submit
submits text to the SAS automa-
tion server for execution by the
program editor

Quit
ends the SAS automation session

QueryWindow
determines whether a specified
window exists within the SAS
automation session

Top
makes the SAS automation session
the topmost application

Properties
Visible

controls the visibility of the
automation session

Title
specifies the text for the main
title bar

Busy
indicates whether the automation
session is currently doing work
and is unable to process addi-
tional Command or Submit requests
immediately

Wait

determines when control will be
returned to the caller

CommandWindow
specifies the title of the win-
dow, e.g. “Program Editor”, that
will receive the command state-
ments specified in the Command
method

CommandWindowVisible
determines the visible status of
the CommandWindow, if it is
specified

RC
contains a return code that is
set in the SAS System session us-
ing the “setrc” user written
function

ResultString
contains some text that is set in
the SAS System session using the
“setrc” user written function

Parent
specifies the parent window of
the SAS application session

X
x position of SAS session window

Y
y position of SAS session window

Width
width of SAS session window

Height
height of SAS session window

See Appendix A for a Visual Basic ex-
ample that scripts the SAS System auto-
mation server.

The SAS System installation process up-
dates the registration database with in-
formation necessary for the automation
server. To start the server from an
automation controller, you need its
ProgID (programmatic identifier). The
identifier for the server is
“SAS.Application.612”. Automation
server support is available with base SAS
software and is supported only on the
Windows 95 and Windows NT plat-
forms.

It is possible to have multiple automation
controllers accessing one instance of an
automation server. In Visual Basic, for
example, the mechanism for accessing an
existing instance of an automation server
is GetObject, instead of creating a new
instance with CreateObject.

6

One caveat is that the SAS System
automation session will not close down
until all the automation controllers that
are accessing it have issued Quit re-
quests or have closed down. For this
reason, if the SAS System automation
session is visible, be careful before manu-
ally shutting it down by double clicking
the system icon or selecting Exit from the
File menu. There is no way for the SAS
automation server to notify controllers
that the SAS automation session is going
away, and the automation controllers
may continue attempting to access it.

SAS OLE Automation Controller
As an OLE Automation Controller, the
SAS System must provide a way to ac-
cess OLE Automation servers and their
OLE Automation Objects. SAS/AF pro-
vides the following SCL methods for this
access:

NEW
creates an OLE Automation object

_SET_PROPERTY_
sets the value of a property

_GET_PROPERTY_
gets the value of a property

DO
invokes method that does not
return a value

COMPUTE
invokes method that does return a
value

_GET_REFERENCE_ID_
returns SCL reference identifier
for the object

See Appendix B for an SCL example that
uses these methods. You can also auto-
mate Linked or Embedded objects that
exist in your FRAME by using these
same SCL methods.

Many applications support Visual Basic
to automate OLE servers. For example,
you can use the macro recorder in Excel
to capture the Visual Basic commands
necessary to perform some functions.
This code quickly translates into SCL.

See Appendix C for an example of
equivalent SCL and Visual Basic com-
mands.

OLE CONTROLS

OLE controls, OCXs, are Embedded OLE
objects with additional functionality. The
main additions are support for ambient
properties and events. Ambient proper-
ties allow communication between a con-
tainer and an OCX for notification of
property changes such as fonts and col-
ors. For example, if the font in the con-
tainer changes, the container will notify
the OCX so it can change its font if ap-
plicable. Events are notifications gener-
ated by the OCX to the container. For
example, a push button control might
generate a click event.

Like Linked and Embedded objects, an
HSERVICE entry within a SAS catalog
stores the object information. When dis-
tributing a catalog that contains an OCX,
you must copy the catalog as well as the
OCX.

To use an OCX in a frame, you use the
Insert Object dialog that was discussed
earlier in the basic container section.
From within this dialog select the Insert
Control radio button. The dialog with
this option selected is below.

7

The list of controls displayed will vary
based on the controls installed on your
machine. You can register new controls
by selecting the Add Control button.
Select a control from the list and click
OK to create an instance of it in the
frame. Alternatively, you can drag and
drop a control in the frame from another
application or paste one in from the clip-
board using OLE - Paste Special.

OCXs provide a property sheet for ac-
cess to some of the control’s properties.
To access the property sheet in BUILD,
select the Properties verb from the ob-
ject’s menu. To access the property
sheet using SCL, you send the Properties
verb to the object using the
EXECUTE method.

To access all the properties and methods
of a control, you use a subset of the SCL
methods provided for automation. The
SCL methods _GET_PROPERTY_ and
_SET_PROPERTY_ access the proper-
ties of a control. The _DO_ and
COMPUTE SCL methods invoke
methods of a control. You must know
the names of the properties and methods
for the object as well as any arguments.
The documentation for the OCX should
include this information.

OCXs generate events that you can re-
spond to in your SCL code. In the SAS
System you can view and map these
events using the Event Map dialog. This
dialog is below.

To access this dialog invoke the Object
Attributes dialog from the frame’s popup
menu and select Event Map. You may
now select an event and specify the name
of the SCL, FRAME, or PROGRAM
source entry and (if applicable) the SCL
label where the event-handling code re-
sides. You can edit the SCL for the
event from this screen by pressing “Edit”.
When you map an event, you must com-
pile the SCL outside of the frame in
which the control exists.

CONCLUSIONS

This paper summarizes the support for
OLE within the SAS System for Win-
dows Release 6.12. Both OLE container
support and OLE automation server sup-
port facilitate the exchange of informa-
tion between SAS and other applications.
OLE container support allows the use of
third party developed objects within
SAS/AF and SAS/EIS applications.
OLE automation server support allows
other third party applications to access
some features of the SAS System.

8

REFERENCES

SAS, SAS/AF, and SAS/EIS are regis-
tered trademarks or trademarks of SAS
Institute Inc. in the USA and other
countries. indicates USA registration.

Other brand or product names are regis-
tered trademarks or trademarks of their
respective companies.

Jennifer Clegg
SAS Institute, Inc.
100 SAS Campus Drive
Cary, NC 27513
(919) 677-8000
e-mail: jbc@unx.sas.com

Carol Rigsbee
SAS Institute, Inc.
100 SAS Campus Drive
Cary, NC 27513
(919) 677-8000
e-mail: sasczw@unx.sas.com

9

APPENDIX A

This Visual Basic example creates an instance of the SAS automation server, submits code
to the server, and closes down the server.

REM Create a button to invoke an automation server instance.
Private Sub StartBtn_Click()
 Set SASObj = CreateObject("SAS.Application.612")
 SASObj.Title = “Hat Graph”
 SASObj.Visible = TRUE
End Sub

REM Create a button to perform the calculations.
Private Sub ComputeHat_Click
 SASObj.Submit ("data hat;do x=-5 to 5 by .25;")
 SASObj.Submit ("do y=-5 to 5 by .25;z=sin(sqrt(x*x+y*y));")
 SASObj.Submit ("output; end; end;")
 SASObj.Submit ("proc g3d data=work.hat;plot y*x=z/ctop=red;")
 SASObj.Submit ("Title 'Cowboy Hat';run;quit;")
End Sub

REM Create a button to end the automation server instance.
REM Visual Basic requires that you set the object holder to Nothing to
REM break the connection.
Private Sub EndSAS_Click()
 SASObj.quit
 Set SASObj = Nothing
End Sub

APPENDIX B

This SCL example invokes Microsoft Excel, opens a worksheet, selects a range of cells,
and charts them.

length rangeid $80;

/* create excel automation object */
hostcl = loadclass(’sashelp.fsp.hauto’);
call send (hostcl, ’_NEW_’, excelobj, 0, ’Excel.Application.8’);
call send (excelobj, ’_SET_PROPERTY_’, ’Visible’,’True’);

/* open worksheet */
call send(excelobj, ’_GET_PROPERTY_’, ’Workbooks’, wbsobj);
call send(wbsobj, ’_DO_’, ’Open’, ’sales.xls’);
call send(excelobj, ’_GET_PROPERTY_’, ’ActiveSheet’, wsobj);

/* create a chart object */
call send(wsobj, ’_COMPUTE_’, ’ChartObjects’, chobjs);
call send (chobjs, ’_DO_’, ’Add’, 144, 13.5, 287.25, 240.75);
call send (chobjs, ’_DO_’, ’Select’);
call send(excelobj, ’_GET_PROPERTY_’, ’ActiveChart’, chartobj);

/* get the range of cells to chart */
call send(wsobj, ’_GET_PROPERTY_’, ’Range’, ’C5’, ’D8’, rangeobj);
call send(rangeobj, ’_GET_REFERENCE_ID_’, rangeid);

/* chart the cells */
call send (chartobj, ’_DO_’, ’ChartWizard’, rangeid, -4098, 6,
 1, 0, 0, 1, ’Automation Demo!’, ’Column’, ’Value’, ’Row’);

10

APPENDIX C

Visual Basic Code OLE Automation with SCL
‘Launch Excel and make it visible
Private Sub LAUNCHXL_Click()
 set excelobj =
 CreateObject (“Excel.Application.8”)
 excelobj.visible = TRUE
End Sub

LAUNCHXL:
hostcl = loadclass(’sashelp.fsp.hauto’);
call send(hostcl, ’_NEW_’, excelobj, 0,
 ’Excel.Application.8’);
call send (excelobj, ’_SET_PROPERTY_’,
 ’Visible’, TRUE);

‘Create a new worksheet
Dim wbsobj, wobj As Object
Set wbsobj = excelobj.Workbooks
wbsobj.Add
set wsobj = excelobj.ActiveSheet

call send(excelobj, ’_GET_PROPERTY_’,
 ’Workbooks’, wbsobj);
call send(wbsobj, ’_DO_’, ’Add’);
call send(excelobj, ’_GET_PROPERTY_’,
 ’ActiveSheet’, wsobj);

‘Set the value of a cell
wsobj.Cells(row+1, col).Value = var r = row+1

call send(wsobj, ’_COMPUTE_’, ’Cells’, r, col,
 retcell);
call send(retcell, ’_SET_PROPERTY_’, ’Value’,
 var);

‘Close Excel
Private Sub EXITXL_Click()
 excelobj.ActiveWorkbook.Close(“FALSE”)
 excelobj.Quit
End Sub

QUITXL:
call send(excelobj, ’_GET_PROPERTY_’,
 ’ActiveWorkBook’, awbobj);
call send(awbobj, ’_DO_’, ’Close’, ’FALSE’);
call send(excelobj, ’_DO_’, ’Quit’);
call send(excelobj, ’_TERM_’);
return;

	Main TOC

