
1

&&&, ;;, and Other Hieroglyphics
Advanced Macro Topics

Chris Yindra, C. Y. Training Associates

INTRODUCTION

SAS® macros are powerful tools that can create
reusable code modules to do a variety of
programming tasks. A good understanding of macro
variables and how macros can generate SAS
statements can aid in developing better and more
useful macros. This paper will address some more
advanced macro features such as the use of multiple
ampersands, double semi-colons and required RUN
statements.

REVIEW

The macro language allows the SAS user to:

1. Pass system variables to SAS code (i.e. put

SYSDATE in a report TITLE).

2. Introduce data values or variable names into

SAS code at run time.

3. Use macro variable values to selectively execute

 SAS code.

4. Pass data values from one SAS step to another

(i.e. pass the grand total computed in one step to

the next step to calculate the percent to total of

each detail item).

Assigning Macro Variables
Values can be assigned to user defined macro
variables in several ways. %LET allows for direct
assignments. Values can also be directly assigned
through user interfaces created with Macro windows.
The CALL SYMPUT function allows values to be
assigned dynamically within a DATA step or SCL
program.

Example 1 (CALL SYMPUT):

Pass the total salary to the global symbol table.

DATA _NULL_;
 SET IN.PAYROLL END=FINAL;
 TOTSAL + SALARY
 IF FINAL THEN
 CALL SYMPUT(‘TOTSAL’,LEFT(TOTSAL));

PROC PRINT DATA=IN.PAYROLL;
 TITLE “PAYROLL REPORT”;
 TITLE2 “TOTAL SALARY : &TOTSAL”;
 VAR SSN SALARY;
RUN;

Debugging tools
There are several options which can aid in tracing
macros and macro variable values.

OPTIONS:
SOURCE2 - Writes SAS code generated by
 %INCLUDE to the log.
SYMBOLGEN - Writes the resolved value of macro
 variables to the log.
MPRINT - Writes SAS statements generated
 by macro execution to the log.
MLOGIC - Traces macro execution and writes
 the trace information to the log.

STATEMENTS:
%PUT &variable - Allows the programmer to
 write macro variable values to the
 log.
%PUT <_GLOBAL_> <_LOCAL_> <_USER_>

writes user defined macro variables to the
log.

%PUT <_ALL_> <_AUTOMATIC_>
writes both user and system defined macro
variables to the log.

Resolving Macro Variables
How the SAS Language Works Without Macros:

The SAS Supervisor takes one word (token) at a time

and passes it to the SAS compiler. When a

semicolon is reached, the process pauses and the

compiler checks the statement for syntax. When the

end of the step is reached the SAS step is compiled

and executed. The token may be a literal, number,

name or special character, usually separated by a

blank. Strings in double quotes are analyzed for

embedded tokens (macro variables).

2

SAS Program
(The Input Stack)
 PROC PRINT DATA=PAY;
 TITLE ‘SALARY RPT’;
 ID DEPT;
 VAR LSTNAME SALARY;
 RUN;

SAS Supervisor
(Word scanner)

 TITLE ‘SALARY RPT’;

SAS Compiler
 PROC PRINT DATA=PAY;
 TITLE ‘SALARY RPT’;

When a step boundary (basically a RUN statement or
a new step) is encountered, the previous step is
compiled and executed (if no syntax errors were
found).

How the SAS Language Works With Macros:

When the SAS Supervisor recognizes a token

beginning with a percent sign (%) or an ampersand

(&) the token is passed to the Macro Facility instead

of the SAS Compiler (quoted strings with embedded

tokens must use double quotes). When the Macro

Facility receives a token it is checked for validity

(the percent sign or ampersand must be followed by

a non blank character and able to be interpreted).

The Macro Facility will substitute current values of

macro variables from the local or global symbol

table and pass the token back to the SAS Supervisor

for restacking. If the macro variable cannot be

resolved, the token will be returned unmodified.

When a RUN statement or the beginning of a new

step is encountered the SAS statements are executed,

after which control is returned to the current

processor.

SAS Program
(The Input Stack)
 PROC PRINT DATA=PAY;
 TITLE "SALARY RPT";
 TITLE2 "AS OF &SYSDATE ";
 ID DEPT;
 VAR LSTNAME SALARY;
 RUN;

SAS Supervisor
(Word scanner)
 TITLE2 "AS OF &SYSDATE ";

MACRO Facility

 Global Symbol Table

SAS Compiler
 PROC PRINT DATA=PAY;
 TITLE "SALARY RPT";

 TITLE2 "AS OF 01OCT96";

REQUIRED RUN STATEMENTS

Many times dynamic values from DATA steps or
system variables need to be reference within a
macro. A run statement can force the execution of a
DATA step so that values it passes can be
referenced.

Example 2

The following macro can be used to check for the
existence of a SAS data set.

%MACRO EXISTS;
 %GLOBAL EXISTS;
 DATA _NULL_;
 IF 0 THEN SET &DSN;
 STOP;
 RUN; required!
 %IF &SYSERR=0 %THEN %LET EXISTS =YES;
 %ELSE %LET EXISTS=NO;
%MEND;

%MACRO CHECKIT(DSN);
 %EXISTS;
 %IF &EXISTS=YES %THEN %DO;
 PROC CONTENTS DATA=&DSN;
 %END;
 %ELSE %DO;
 DATA _NULL_;
 FILE PRINT;
 PUT "THE DATASET &DSN DOES NOT
 EXIST";
 %END;
 RUN;
%MEND;

%CHECKIT(CYLIB.XXX);

&SYSDATE = 01OCT96

3

The macro variable &SYSERR is set by the last step
processed. A value of 0 means that the previous step
was successful. A value greater than 0 means that
the previous step generated an error or warning.
Because this value is referenced by the next macro
statement a RUN statement is required. If the RUN
statement had been omitted, the current &SYSERR
value would have been determined by step previous
to the DATA _NULL_ step. The DATA _NULL_
step would not execute until the next PROC or
DATA is encountered by the SAS Supervisor. This
is also true if the steps are in separate macros.

Example 3

The following macro will generate a report whether
or not there are any observations in a data set.

%MACRO TOTOBS(DSNAME);
 %GLOBAL NUMOBS;
 DATA _NULL_;
 IF 0 THEN SET &DSNAME
 NOBS=HOWMANY;
 CALL SYMPUT
 ('NUMOBS',LEFT(PUT(HOWMANY,8.)));
 STOP;
 RUN;
%MEND TOTOBS;

%MACRO PRINTANY(DSNAME);
 %IF &NUMOBS EQ 0 %THEN %DO;
 DATA _NULL_;
 FILE PRINT;
 PUT //// @20 "DATA SET NAME =
 &DSNAME"
 / @20 "NO RECORDS TO BE
 PRINTED";
 RUN;
 %END;
 %ELSE %DO;
 PROC PRINT DATA=&DSNAME;
 VAR LASTNAME SALARY DEPT;
 TITLE "EMPLOYEE LISTING DATA
 SET: &DSNAME";
 RUN;
 %END;
%MEND PRINTANY;

%TOTOBS(CYLIB.EMPLOY);
%PRINTANY(CYLIB.EMPLOY);

The RUN statement in the %TOTOBS macro is
required as the next macro %PRINTANY uses the

value of NUMOBS passed by the CALL SYMPUT.
If the RUN statement had been omitted, the value of
NUMOBS would not have been put to the symbol
table until after the beginning of execution of
%PRINTANY. Note: the %EXISTS macro could be
nested within %NUMOBS to initially determine if
the data set existed.

 MULTIPLE AMPERSANDS

Multiple ampersands can be used to allow the value

of a macro variable to become another macro

variable reference. The macro variable reference

will be rescanned until the macro variable is

resolved.

The following demonstrates how macro variables

with multiple ampersands are resolved.

Symbol Table

Macro Variable Macro Variable

Name Value

A FREIGHT

B PASSENGER

C SPECIAL

CODE A

Resolving a macro variable:

1st scan

1. &CODE A

 1st scan 2nd scan

2. &&CODE &CODE A

[&&] CODE On the first scan -
 && resolves to &, CODE held

 [&][CODE] as a token

3. &&&CODE &A FREIGHT

[&&][&CODE] On the first scan -

 && resolves to &, &code

 [&][A] to A.

4

Example 4 (&&&):

We would like to run a variety of reports for each
department on the data set and include the
department name and the department manager in the
title. DEPT is on the data set and the department
manager is accessed through a format.

PROC FORMAT;
 VALUE $DEPTHD
 'GIO' = 'JANE ANDERSON'
 'GPO' = 'STAN JOHNSON'
 'IIO' = 'CAROL SMITH'
 'RIO' = 'STEVE CONARD';

We can create macro variables that resolve to the
department head values with CALL SYMPUT;

DATA _NULL_;
 SET MEANDAT;
 BY DEPT;
 IF FIRST.DEPT THEN
 CALL SYMPUT
 (DEPT,PUT(DEPT,$DEPTHD.));

Notice that the CALL SYMPUT macro variable
name (DEPT) is not in quotes. The name of the
macro variable created will be the value of the SAS
variable DEPT. Hence the macro variable GIO will
resolve to JANE ANDERSON. Now we can refer to
the department for the particular report with a direct
assignment.

%LET DPT=GIO;

PROC PRINT DATA=MEANDAT NOOBS;
 WHERE DEPT EQ "&DPT";
 VAR LASTNAME SEX DEPT;
 TITLE "DEPARTMENT: &DPT DEPT HEAD:
 &GIO ";

The global symbol table resolves to:

Macro Variable Macro Variable

Name Value

GIO JANE ANDERSON

GPO STAN JOHNSON

IIO CAROL SMITH

RIO STEVE CONARD

DPT GIO

The log looks like:

1403 PROC PRINT DATA=MEANDAT NOOBS;
1404 WHERE DEPT EQ "&DPT";
SYMBOLGEN: Macro variable DPT
 resolves to GIO
1405 VAR LASTNAME SEX DEPT;
SYMBOLGEN: Macro variable DPT
 resolves to GIO
SYMBOLGEN: Macro variable GIO
 resolves to JANE ANDERSON
1406 TITLE "DEPARTMENT: &DPT
 DEPT HEAD: &GIO";

However we still had to refer to the macro variable

&GIO in the title statement. We could use an

indirect macro variable reference on DPT to produce

the same result without having to hard code &GIO

in the title.

PROC PRINT DATA=MEANDAT NOOBS;
 WHERE DEPT EQ "&DPT";
 VAR LASTNAME SEX DEPT;
 TITLE "DEPARTMENT: &DPT DEPT
 HEAD: &&&DPT ";

On the first scan &&&DPT resolves to &GIO
On the second scan &GIO resolves to JANE
ANDERSON.

The log looks like:

1445 PROC PRINT DATA=MEANDAT NOOBS;
1446 WHERE DEPT EQ "&DPT";
SYMBOLGEN: Macro variable DPT
 resolves to GIO
1447 VAR LASTNAME SEX DEPT;
SYMBOLGEN: Macro variable DPT
 resolves to GIO
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable DPT
 resolves to GIO
SYMBOLGEN: Macro variable GIO
 resolves to JANE ANDERSON
1448 TITLE "DEPARTMENT: &DPT
 DEPT HEAD: &&&DPT";

We can also create compound macro variable

references with numeric endings such as

&&VAR&I. Resolving this value will take two

scans. For instance we may want to gather an

unknown number of variable names into macro

5

variables with a numeric suffix. Using CALL

SYMPUT in a DATA step we can create these macro

variables.

i.e.

I+1;

IF FIRST.DEPT THEN

 CALL SYMPUT(‘DPT’||LEFT(I),DEPT);

The symbol table might look like:

Macro Variable Macro Variable

Name Value

DPT1 GIO
DPT2 GPO
DPT3 RIO

By concatenating the value of I to the constant part

of the macro variable name DPT, each time we

encounter a new department on the sorted data set

we create a macro variable with a name of DPT1,

DPT2 etc. containing the value of the specific

department. These macro variables can be

referenced later in a macro do loop with &&DPT&I.

On the first iteration of the macro loop, the first scan

of &&DPT&I will resolve to &DPT1,

and on the second scan &DPT1 will resolve to GIO.

Example 5:

We want to plot all independent variables on a data

set with the dependent variable.

DATA TEST;
 INPUT YVAR XVARA XVARB XVARC;
CARDS;
1 2 2 4
2 3 2 5
3 3 2 5
4 5 3 7
5 4 3 7
6 6 4 9
7 8 4 10
8 8 5 12
9 8 5 12
;

One method would be to hard code each plot:

PROC PLOT DATA=TEST;
 PLOT YVAR * XVARA;
PLOT YVAR * XVARB;
RUN;

and so on.

We could instead create a macro variable for each
independent variable on the data set and a macro
variable for the total number of independent
variables on the data set. This information can be
obtained from PROC CONTENTS and saved to a
data set.

%MACRO ALLPLOTS(DSNAME,YAXIS);
 PROC CONTENTS DATA = TEST
 MEMTYPE=DATA NOPRINT
 OUT=MYSET(KEEP=NAME
 WHERE=(NAME NE "&YAXIS"));

 DATA _NULL_;
 SET MYSET END=FINAL;
 I+1;
 CALL SYMPUT('VAR'||LEFT(I),NAME);
 IF FINAL THEN
 CALL SYMPUT('NUMVARS',I);
 RUN;
 PROC PLOT DATA = &DSNAME;
 %DO I=1 %TO &NUMVARS;
 PLOT YVAR * &&VAR&I;
%END;
RUN;
%MEND;

%ALLPLOTS(TEST,YVAR);

On the first iteration of the %DO loop &&VAR&I
resolves to &VAR1. On the second scan, &VAR1
resolves to XVARA.

We could use similar methodology to refer to a SAS
data set name instead of a SAS variable name.

Example 6:

Write a macro to generate a sample PRINT report
for all SAS data sets in a library.

To accomplish this we need to pass the number of
data sets and their names to macro variables. We
can use PROC DATASETS to get the information.

6

%MACRO SAMPRINT(LIBNAME,OBS);
 PROC DATASETS LIBRARY=&LIBNAME
 MEMTYPE=DATA;
 CONTENTS
 OUT=WORK.JUNK(KEEP=MEMNAME)
 DATA=_ALL_ NOPRINT;

 PROC SORT DATA=JUNK NODUPKEY;
 BY MEMNAME;

 DATA _NULL_;
 SET JUNK END=FINAL;
 I+1;
 CALL SYMPUT
 ('SET'||LEFT(I),LEFT(MEMNAME));
 IF FINAL THEN
 CALL SYMPUT('NUM',LEFT(I));
 RUN;

 %DO J = 1 %TO &NUM;
 PROC PRINT DATA=&LIBNAME..&&SET&J
 (OBS=&OBS);
 TITLE "SAMPLE PRINT FOR DATASET:
 &LIBNAME..&&SET&J";
 RUN;
 %END;
%MEND;

%SAMPRINT(WORK,5);

WHEN TO USE TWO SEMI COLONS

In many situations we would like to be able to
generate a dynamic SAS statement within an macro
%DO loop. For instance we may want to create a
VAR statement based on macro variable values or
create a sub setting WHERE statement based on
values in an external file. The %DO loop would
look like:

PROC PRINT;
 VAR
%DO I = 1 %TO &MAX;
 &&VAR&I;
%END;
RUN;

If our symbol table looked like:

Macro Variable Macro Variable

Name Value

VAR1 NAME
VAR2 SSN
VAR3 SALARY
MAX 3

What SAS statements would this macro %DO loop
generate?

Result:

PROC PRINT;
VAR NAME; SSN; SALARY;
RUN;

We would get a syntax error as SAS would interpret
each of the variable names as a separate statement;
If we took the semi-colon off of the &&VAR&I line,
this %DO loop would generate the following SAS
statements:

PROC PRINT;
VAR NAME SSN SALARY
RUN;

However this macro would generate an error saying
that the variable RUN is not recognized. We need to
close the VAR statement with a semi-colon.

PROC PRINT;
 VAR
%DO I = 1 %TO &MAX;
 &&VAR&I
%END ; ;
RUN; Closes the VAR statement

 Closes %END

7

Example 7:

Write a macro that subsets a SAS data set with a
WHERE statement based on values from an external
file.

The external file (ddname of SELFILE) contains the
departments that we would like to pull from a SAS
data set and looks like:

GIO
RIO
GPO

Our macro with a dynamic WHERE statement is:

%MACRO PRNTRPT;
 DATA _NULL_;
 INFILE SELFILE ;
 INPUT @1 WHRDEPT $3.;
 I+1;
 CALL SYMPUT
 ('DPT'||LEFT(I),'"'||LEFT(WHRDEPT)||'"');
 CALL SYMPUT('TOTDPTS',I);
 RUN;

 PROC PRINT DATA=MYLIB.EMPFILE;
 VAR SSN DEPT;
 WHERE DEPT IN(
 %DO I = 1 %TO &TOTDPTS;
 &&DPT&I
 %IF &I LT &TOTDPTS %THEN , ;
 %ELSE) ;
 %END;;
 RUN;
%MEND;

%PRNTRPT;

The first DATA _NULL_ step creates the following
macro variable values:

Macro Variable Macro Variable

Name Value

DPT1 GIO
DPT2 RIO
DPT3 GPO
TOTDPTS 3

Because the department values are character, we
must concatenate quotes around the values for the
WHERE statement. Each of the values must also be

separated by a comma when using the IN operator
(the %THEN condition). We must also end the IN
list with a closing parenthesis (the %ELSE
condition). We close the WHERE statement with
double semi-colons on the %END statement.

Example 8:
Write a macro that will generate a flat file from a
SAS data set.

A typical program to accomplish this might look
like:

DATA _NULL_;
 SET MYLIB.MYSET;
 FILE MYFILE;
 PUT @1 NAME $10. @11 AGE Z3.
 @14 SCORE Z3. @17 TESTDT
 YYMMDD8.;

The PUT statement defines the start location,
variable name, format and length for each of the
variables on the data set. Instead of hard coding
these values we could gather this information for any
data set at run time for any data set and pass the
variable names, lengths, formats, and start locations
to macro variables. Once this has been done we can
use a dynamic PUT statement to write the value out
to an output file.

All of the necessary information can be obtained
from PROC CONTENTS (the same information can
also be obtained from dictionary tables) and saved to
a data set. Because we do not know how many
variables will be on the data set we can use the
&&var&I methodology to create macro variables for
each variable, format, length and start position.
We should also generate a report describing the
output file.

Sample data set:

DATA TEST;
 INPUT @1 NAME $9. @10 AGE 3.
 @14 SCORE 3. @18 TESTDT
 YYMMDD6.;
 FORMAT TESTDT YYMMDD10.
CARDS;
CHRIS 032 087 960101
JILL 029 092 960202
JAN 041 096 960315
BILL 052 095 960704
ROBIN 022 085 960901
;

8

We will assume some defaults for this macro. All
non formatted numeric variables will use a standard
length. All character variables will use there storage
length. Formatted variables will use there format
lengths.

%MACRO
OUTFILE(DSNAME,DDNAME,NUMLEN=8);

/* DSNAME IS THE INPUT SAS DATA SET
 DDNAME IS THE OUTPUT FILEREF
 NUMLEN IS THE DEFAULT LENGTH FOR
 NON FORMATTED NUMERIC VARIABLES */

/* GET FILE INFORMATION */

 PROC CONTENTS DATA=&DSNAME
 OUT=FILE1 (KEEP=LENGTH VARNUM NAME
 TYPE FORMAT FORMATL) NOPRINT;

 PROC SORT DATA=FILE1; BY VARNUM;
RUN;

/* PUT VARIABLE NAMES, LENGTHS,
 FORMATS AND START LOCATIONS TO
 MACRO VARIABLES */

 DATA FILE1;
 SET FILE1 END=FINAL NOBS=NUMVARS;

 IF _N_ = 1 THEN STARTPOS = 1;

 /* DETERMINE FORMAT AND LENGTH */
 IF FORMATL > 0 THEN LENGTH=FORMATL;
 ELSE IF TYPE = 1 THEN
 LENGTH=&NUMLEN;

/* DETERMINE START POSITION */
 POS + LENGTH;
 STARTPOS = POS - LENGTH + 1;

 IF FORMAT = ' ' THEN DO;
 IF TYPE = 1 THEN FORMAT='Z';
 IF TYPE = 2 THEN FORMAT='$';
 END;

 /* CREATE MACRO VARIABLES */
 FMT=LEFT(TRIM(FORMAT))||
 TRIM(LEFT(LENGTH))||'.';
 I+1;
 CALL SYMPUT('VAR'||LEFT(I),NAME);
 CALL SYMPUT('FMT'||LEFT(I),FMT);
 CALL SYMPUT
 ('START'||LEFT(I),STARTPOS);

 IF FINAL THEN
 CALL SYMPUT('NUMVARS',NUMVARS);

 RUN;

 /* CREATE FLAT FILE */

 DATA _NULL_;
 SET &DSNAME;
 FILE &DDNAME;
 PUT
 %DO I = 1 %TO &NUMVARS;
 @&&START&I &&VAR&I &&FMT&I
 %END;;
 RUN;

 /* PRINT FILE DESCRIPTION */

 PROC FORMAT;
 VALUE TYPEFMT 1= 'NUMERIC'
 2= 'CHARACTER';

 PROC PRINT DATA=FILE1 NOOBS SPLIT='*';
 TITLE 'FILE DESCRIPTION';
 VAR NAME TYPE STARTPOS LENGTH
 FORMAT;
 FORMAT TYPE TYPEFMT.;
 LABEL NAME= 'FIELD*NAME'
 TYPE= 'FIELD*TYPE'
 STARTPOS= 'START*POSITION'
 LENGTH=’LENGTH’
 FORMAT=’FORMAT’;
 RUN;
%MEND;

%OUTFILE(TEST,PRINT,NUMLEN=4);

This macro produces the following output file:

CHRIS 003200871996-01-01
JILL 002900921996-02-02
JAN 004100961996-03-15
BILL 005200951996-07-04
ROBIN 002200851996-09-01

9

and the following report:

FILE DESCRIPTION

FIELD FIELD START
NAME TYPE POSITION LENGTH FORMAT

NAME CHARACTER 1 9 $
AGE NUMERIC 10 4 Z
SCORE NUMERIC 14 4 Z
TESTDT NUMERIC 18 10 YYMMDD

For simplicity, this macro does not decimal positions
in numeric fields. The macro could be modified put
the decimal point out to the flat file or to put the
numeric out with implied decimal positions.

SUMMARY

1. RUN statements are required as a step boundary
when a macro variable value generated in a
DATA step must be referenced prior to
encountering the next DATA or PROC step.

2. Multiple ampersand referencing can be used
when several scans of a macro variable is
required. This is particularly useful in creating
macro variables with numeric endings. These
variables be like ‘arrays’ when used in a macro
%DO loop. These ‘array’ values can be used to
reference a series of similar values i.e. variable
or data set names.

3. Two semi colons are required to close a SAS
statement generated by conditional macro
statements or a macro %DO loop.

CONCLUSION

The power of macros is in their flexibility and
reusability. An understanding of how SAS
statements are generated by macro statements, the
impact of step boundaries and the use of multiple
ampersand references enable a programmer to take
better advantage of the macro language.

I can be reached at:

Chris Yindra
C. Y. Training Associates
80 West Mountain Road
Canton Center, CT 06020
(860) 693 - 4297
yindra@ix.netcom.com

REFERENCES

SAS Institute, Inc, SAS Guide to Macro Processing,
Version 6, Second Edition, 1990

SAS Is a registered trademark of SAS Institute, Inc,
Cary, NC

	Main TOC

