
REPORTS BASED ON SAS’ OUTPUT:

TAKING ADVANTAGE OF PROC PRINITO, DATA STEPS AND PROC GPRINT

Lauren Haworth, Kaiser Permanente Center for Health Research, Portland, OR

ABSTRACT

The SAS@ System is a powerful tool for data manipulation
and analysis, but it often produces far more output than
you want to read or report. Instead of scanning through a
lengthy log printout looking for error and warning
messages, or hand copying a few dozen figures into a

table from a hundred-page output printout, let SAS do the
work. This paper introduces a variety of time-saving
techniques for producing concise summary reports.

The key is using the PRINTTO procedure to direct
procedure output to log and print files. These files are
then available to the DATA step for further refinement or
analysis of the results. For example, by using a data step

to review the SAS log, you can create self-monitoring
production jobs that print error reports when warranted.

By using a DATA step to review a lengthy output file, key
results can be selected to report in summary tables or to
use in advanced statistical computations. Finally, using the
GPRINT procedure in SAS/GRAPH@ you can add high-
resolution graphics, titles and footnotes to the results.

lhtTRODucTlON

This paper briefly reviews the PRINTTO and GPRINT
procedures, and then demonstrates how they can be used
to produce concise customized reports that save time for
the programmer as well as the end-user. The examples
will show just a few of the many ways the SAS System
can refine and summarize its results. The goal of this
paper is to introduce the idea that SAS procedure output is

not necesswily an end product, but can also be an input

to use in the process of creating custom reports.

QUICK REVIEW: PROC PRINUO

The PRINTTO procedure allows you to specify
destinations for SAS log and output files, instead of using
the system defaults. The syntax is as follows:

filename Iogfile ‘c:\demo.log’;
filename Iisfile ‘c:\demo.lis’;
proc printto log=logfi[e print=lisfile new
run;

* SAS procedures go here;
proc printto;
run;

In this example, the log file is rerouted to the fileref called
logtile and printed output is rerouted to the fileref called
lisfile. Be aware that filename statements are highly
system-dependent; the above example works for SAS
operating under Windows~M but may not work for your
operating system.

The NEW parameter causes PROC PRINTTO to start a
new tile, otherwise the procedure appends the new
information to the bottom of the existing file.

PROC PRINTTO acts much like a switch. First, you turn
it on, and then you have to turn it off again. In the above

example, the first PROC PRINTTO reroutes output to the
two filerefs, and the second PROC PRINTTO closes the

two output files and redirects output back to the default
destinations. The two output files are then available for

DATA step processing.

QUICK REVIEW: INFILE ANDINPUT STATEMENTS

The sample code below shows how to read in the output
file created by PROC PRIN7TO:

data temp;
infile Iisfile truncoven
input Iinetxt $90.;
* manipulate your results here, then output;

run;

In the example above, the file is read in a line at a time.
Each line of output is stored in a single variable, linetxt,
so it can be manipulated later in the DATA step. The
variable linetxt is formatted to a length of 90 to match the

current linesize setting. The TRUNCOVER1 option on the
INFILE statement is used to truncate and retain any lines
that are less than 90 characters wide. This paper will
provide a number of examples of INPUT statements used
to read in SAS output.

QUICK REVIEW: PROC GPRINT

The GPRINT procedure creates a graphics output file
from a text input file. The syntax is as follows:

goptions Yset graphics options here’~
proc gprint fileref=lisfile;
run;

1 For more information on TRUNCOVER and other options
related to INFILE and INPUT statements, see “Using the

DATA Step to Read Varying Length Record Files on ASCII

Devices” (1995), SAS Cornmmications, 21:1,29-32.

1

In this example, the text file called lisfile is transformed
into graphics output, and sent to the graphics device

specified by the current GDEVICE setting. The output
device may be the display monitor, or a printer or plotter.
GPRINT settings are highly system-dependent, and will
not be covered in this paper.

PROC GPRINT is a handy way to print your text output
file after it has been modified by a data step. This
procedure can also be used to add high-resolution
graphics to a text output file.

The following example – a macro used to create a self-
monitoring production job - shows how PROC

PRINTTO, the DATA step and PROC GPRINT can be
used together.

EXAMPLE 1: ERROR REPORTS

When you are running a report that has been produced

over and over many times without error, it is easy to get
complacent and miss a new error caused by changes in the
underlying data. The following sample program takes care

of that problem. A DATA step is used to automatically
check the SAS log file for a variety of errors each time
you run the program. Then a macro is used to print either
an error report or the SAS procedure output.

The macro assumes PROC PRINTTO has been used to
route the main program output to two files: Iogfile is the
log and lisfile is the printed output. A third file, errfile, is

used to hold the text for the error report (if needed). To
run the macro, insert the following code at the end of your
program:

%let founderr=O; * CHECK LOG FILE FOR ERRORS;
data null_;

infie Iogfile truncoveL
input Iinetxt $90.;
if index(linetxt,’’ERROR’’)>O or

index(linetxt,’’uninitialized’’)>O or
index(linetxt,’’repeats of BY values’’)>O
then do;

call symput(’’founderr”, 1);
file errfile;
put “PROGRAM: DEMO_A.SAS”;
put Iinetxt;

end;
run;
%macro errchec~
%if &founderr=l %then %do; %* PRINT ERROR;

title h=2 justify=left “Erro~ Check LOG File”;
proc gprint fileref=errfile;
run;

%end;
%else %do; %* PRINT OUTPUT FILE;

proc gprint fileref=lisfile;
run;

%end;
%mend errchec~
%errcheck

The DATA step above reads in the log file, searching for
several text strings. These include SAS error messages, as
well as two other types of problems that SAS does not
report as errors. This approach gives you the ability to
search for a variety of problems in the log, whether or not
SAS categorizes them as errors.

If any of the text strings are found, the macro variable
founderr is set to 1. The name of the program and the line
containing the error are then output to an error file.

After scanning the entire log file, the macro checks
founderr to see if any errors were discovered. If there are
no errors, then the macro prints the output file from the

main program. If there are errors, then the macro uses
PROC GPRINT to print a report with an error message,
the name of the program and a prompt to the user to check
the log file. PROC GPRINT allows a large-font banner
title to be used to draw attention to the error message

In the following example, the error-checking code
identifies two subtle errors in the program.

158 data both;
159 merge demo. testdata demo. testdat2;
160 by id;
161 x=Y/2:
162 run;

NOTE: Variable Y is uninitialized.
NOTE: MERGE statement has more than one data set with
repeats of BY values.
NOTE: Missing values were generated as a result of
performing an operation on missing values. Each place

is given by: (Number of times) at (Line) :(Column) .
1211 at 161:20

NOTE: The data set WORK. BOTH has 1211 observations and
9 variables.
NOTE: The DATA statement used 2.2 seconds.

163 proc means data. both;
164 var age x;
165 run;

These errors did not trigger a SAS error message, or even
a warning message, but were identified and reported by
the error-checking code.

Error: Check LOG File
PROGRAM:DEMO.A.SAS
NOTE:VariableY is uninitialized.
PROGRAM:DEMO_A.SAS

repeatsof BYvaluea.

2

EXAMPLE 2: SUMMARY REPORT WITH SELECTED
RESULTS - PROC GLM

The previous example showed how to use PROC
PRINTTO to identify errors in your programs. This next
example shows how to use the procedure to produce a

summary table.

The code below produces a lengthy output file, reads it
back in to select a few key statistics, and prints a concise
summary report. The original output file is not printed, but
remains available if the user later needs to review the

detailed results.

In the example, PROC GLM was used to compute

adjusted standard deviations for a number of population

subgroups. The adjusted standard deviations are reported
as the “Root MSE” in the resulting output file.

---------------------- COHORT=l TREATMENT =1 ---------------------
General Linear Models Prc.cedure

DeDendent Variable: WEIGHT

Source DF Sum of Squares Mean square F value Pr > F
I

Model 39 60765.31910875 1558.0 S510535 1.39 0.1982

Error 24 26898.80415514 1120.78350646

COXX!3Cted Total 63 87664.12326389
I

R-Square C.v. ROOt MSE WEIGHT Mean
0.693161 30.26697 33.47810488 110.60937500

However, each PROC GLM creates three pages of output,
and in the above example the original output file was
more than 50 pages. This code reduces the output file to a
single-page summary table:

proc printto Iog=logfile print=lisfile new;
run;

titlel “3-way ANOVA: Gender, Age and BP”;
title2 “ “;
proc glm data=demo.testdata;

by cohort tx;
class gender age bp;
model weight=gender age bp;

run;
proc printto;
run;

data temp;
infiie Iisfile;
input @“COHORT=” cohort $1.

@“TREATMENT=” tx $1.
@“Root MSE” // junkl junk2 adj_sd;

keep cohort tx adj_sd;
run;

The @“character-string” control locates the specified
series of characters in the input file and moves the pointer
to the first column after the character string. The /
control moves the pointer to the beginning of the next line
of data.

In this example, the input file is scanned for the text
strings “COHORT=” and “TREATMENT=” to read in the
values of the BY variables. Then the file is scanned for
the text string “Root MSE” to find the adjusted standard
deviation. Because the statistic is below the label, two /
controls are used to move down two lines. Then, because
the pointer has moved to the beginning of the line, the

program has to skip past the two preceding statistics.
These are assigned to variables junkl and junk2 and later

discarded. Finally, the adjusted standard deviation is read
in as variable adj_sd.

You can use PROC PRINT to output your summary table.

proc print data=temp;
by cohort;
id tx
var adj_sd;

run;

SUGI Demonstration Report
Std Dev of Weight, Adjusted for Gender, Age and BP

--------------------- COHORT= I ---------------------

TX ADJ_SD

1 33.5
2 38.4
3 38.9
4 32.9
5 35.6

39.2
; 38.8
8 40.2
9 36.2

--------------------- COHORT=2 ---------------------

TX ADJ_SD

1 35.0
2 41.3
3 39.0
4 31.6
5 42.2
6 36.2
7 35.2
8 30.9

To capture the information needed to produce the

summary table, the output file is read back in using a
DATA step. Instead of reading it in line by line, as in the
previous example, the @ and / pointer controls were
used to scan through the file for the required information.

EXAMPLE 3: SUMMARY REPORT WITH SELECTED
RESULTS - PROC TTEST

Another way to produce a summary report is to read in

selected statistics and, based on their values, pick which
results to print in a summary report.

The TTEST procedure is one of many procedures that

produces more than one set of results. Each t-test yields
two values of T, one that is appropriate if the variances of
the two groups are equal, and one that is appropriate if the
variances of the two groups are not equal. In order to pick
the correct result, you have to examine the F’ test at the
bottom of the output.

Veriable: Q24

GENDERN MeZLU Std W Std Error kfininwm ~

FsNArIE 200 6.67 4.50 0.31 1.24 35.24
MALE 236 7.88 8.35 0.54 1.02 112.02

Variances T DF Prob>IT I

Unequal -1.9190 372.1 0.0557
Squal -1.8336 434.0 0.0674

For HO: Veriauces ere eQUal,Ff.3.44 DF. (235,199) Prob>F’.0.00

If the F’ value is less than .05, then you reiect the null
hypothesis that variances are equal, and use the results

from the row labeled “Unequal.” Otherwise, you use the
results from the row labeled “Equal.”

If you have just a few variables, you can easily scan
through your output to find the results. But if you are

doing hundreds of t-tests, this can get very time-
consuming.

The code below shows how to get SAS to do this work for

you. In this example, the goal is to find which of the 87
questionnaire items yield different results based on
gender. All of the necessary information is in the t-test
output, it’s just a matter of extracting the information and

creating a user-friendly summary report.

options 1s=64;
proc printto print=lisfile new; run;

proc ttest data=demo.testdat2;
class gende~
var ql -q87;

run;
proc printto; run;

data temp;
infile Iisfile;
input @“Variable: “ varname $8.

@?’’FEMALE “ junkl meanF stdF
@“MALE “ junk2 meanM stdM
@“Unequal “ junk3 junk4 pval_un
@“Equal “ junk5 junk6 pval_eq
@“Prob>F’ =” fvai;

if fvalc=.05 then pval=pval_un; else pval=pval_eq;
drop junkl-junk6;
label mean F= ’Females* Mean’

stdF=’Std’
meanM=’Males*Mean’
stdM=’Std’;

run;

proc print data=temp noobs label split=’*’;
where pvalc=.05;
id varname;
var meanF stdF meanM stdM pval;
title ‘SIGNIFICANT (c=.05) T-TEST RESULTS’;

run;
proc print data=temp noobs label split=’*’;

id varname;
var meanF stdF meanM stdM pval;
title ‘ALL T-TEST RESULTS’;

run;

The DATA step is used to read in the name of the analysis
variable, and pick up the means and standard deviations
for females and males.

Next, the program reads in the p values for the two t-tests.
Only one of these results is appropriate for the data, so the

program reads in the p value from the F’ test to determine
the correct result. The key to the whole program is the IF-
THEN statement that selects the correct t-test result

Finally, the results are reported in two separate tables. The
first PROC PRINT selects only those results where the t-
test showed significant differences. This table provides a
quick summary of the results.

SIGNIFICANT (<= .05) T-TEST RESULTS

Q19
Q28
Q30
Q49
Q50
Q55
Q56
Q57
Q60

...

Females

Mean

292.36
4396.97
4581.58
154.15

4590.81
34.14
13.68
43.40
34.68

Std

169.74
3179.82
4381.18
109.71

4382.32
6.89
2.70
7.13
6.96

Nales
Mean

342.26
5090.65
5903.12
178.77

5911.37
37.30
15.03
46.13
37.88

Std

215.69
4140.79
5929.32
148.96
5931.04

7.39
3.23
8.71
7.57

FvAL

0,0072
0.0488
0.0079
0.0481
0.0079
0.0000
0.0001
0.0004
0.0000

The second PROC PRINT displays all of the results,
whether or not significant differences were found, in case
you want to review the rest of the results.

ALL T-TEST FESULTS I

l– Females Meles
Mean Std Mean Std PvAL I

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q1O

2125.29
76.82
88.76

247.45
813.69

1291.81
14.93

3818.01
3144.51
9550.33

925.44
34.34
45.84
111.41
452.97
586.00
7.43

1870.43
1399.04
5786.27

2232.00
82.68
94.22

253.70
856.54

1358.79
15.75

4191.98
3258.63
10587.55

900.88
34.36
46.11
103.78
430.11
566.18
7.03

2090.50
1308.53
6624.34

0.2242
0.0766
0.2171
0.5454
0.3123
0.2264
0.2337
0.0515
0.3799
0.0817

EXAMPLE 4: CUSTOM STATISTICS

The above program is easily adapted to seek out, evaluate
and report other statistics. It also comes in handy when
you need to calculate statistics not available from SAS.
For example, intra-class correlations are not readily

available from any SAS/STAT@ procedure, but it is a
simple matter to scan through PROC GLM output to pick
up the required inputs and calculate the statistic yourself.
The formula for intra-class correlations is:

(Ms.- MS)
‘c=Ms.+((k -1) *M!S)

wherek=~
dfm-1

All of the values used in the formula are found in the
output horn PROC GLM. You can extract the values and
compute the intra-class correlation by using the following
code:

proc printto Iog=logfile print= lisfile new;
run;

proc glm data=demo.testdata;
by cohort tx;
model age=bp;

run;
proc glm data=demo.testdata;

by cohort tx;
model weight=bp;

run;
proc printto;
run;

data temp;
format byvarl byvar2 $12.;
infile Iisfile;
input @”- “ byvarl $ byvar2 $

@“Dependent Variable:” depvar $
@“Model” dfm junkl msm
@“Error” junk2 junk3 mst
@“Corrected Total” dft;

drop junkl -junk3;
k=(dft+l)/(dfm+l);
ic=(msm-mst)/(msm+ ((k-l)’mst));
label ic=’’lNTRA-CLASS CORRELATION”;
format ic 8.3;

run;

The DATA step is used to seek out the dependent
variable, the two by-group variables, and the statistics
needed to calculate intra-class correlations.

‘-------------- COHORT=l TRENTMSNT=l ----------------

General Linear Models Procedure

Dependentvariable: AGE AGE

Source DF Sum of Squares

Model 1 14.19968782

Error 62 20744 .4096S718

Corrected Total 63 20758.60937500

Mesn Square F Value Pr > F

14.1996S782 0.04 0.8375

334.58725302

First the DATA step scans for a dash followed by a space
to find the BY group header. Then it reads in the two BY
vaiables. Next, it looks for the text label for the
dependent variable and reads in the name of the variable.
Then it scans for the degrees of freedom and mean square
for the model and the total. These values are used to
calculate the intra-class correlation, using the formula
above. After calculating the correlation, the results are
reported in the following summary table.

SUGI Demonstrate ion Report

Intra-class Correlation

DEPVAR BYVARI BYVAR2

AGE COHORT.1 TREATMENT= 1
TREATMENT.2
TREATMENT= 3
TSJ3ATMENT=4

AGE COEORT=2 TREATMPN’T=l
TREATMENT.2
TRBATMENT=3
TREATM33NT=4

WBIGHT COHORT=l TRJ3XTMENT=1
TREATMENT= 2
TRBATMENT.3
TREATMENT= 4

WEIGHT COHORT.2 TRBATMENT. 1
TREATMBNT.2
TREATMENT= 3
TRJ3ATM33NT=4

IC

-0.031
0.156

-0.022
-0.006

-0.029
0.017
0.008
0.071

-0.000
-0.022
0.079
0.021

-0.027
-0.029
-0.022
-0.028

proc print data=temp;
by depvar byvarl;
id depvar byvarl;
var byvar2 ic;
title j=c “SUGI Demonstration Report”;
title2 j=c” Intra-class Correlation”;

run;

5

EXAMPLE 5: CUSTOM PAGE NUMBERS

PROC PRINTTO can also be used to make changes to the
format of your output. For example, you can create
custom page numbers.

When you number pages using the format “Page #of ##”,
the end-user of a report can be sure he/she received all the

pages. However, SAS does not produce page numbers in
this format. The following code uses PROC PRINTTO
and a DATA step to count pages and then builds an output
file with custom-formatted page numbers:

options nonumbe~
proc printto Iog=[ogfile print=lisfile new;
run;

titlel “SUGI Demonstration Report”;
title2 “Long Output File with Customized Page
Numbering”;
title4 “Page ### (of ###)”;
proc univariate data=demo.testdata;

by cohort tx gende~
var weight;

run;
proc printto;
run;

The only change made in the main body of the program

was to add the “Page ### (of ###)” title, turn off the
standard page numbers, and use PROC PRLNTTO to route
the output to a file. The pound signs in the page number
title are used as placeholders for the new page numbers.
At this point, the output file looks like this:

SUGI Demonstrate iOn ReDOrt

Long Output File with Customized Page Numbering

page ### (of ###)

----------- COHORT=l TREATNENT=l GENDER=l ------------

Univariate Procedure

Variable .WEIGHT WEIGHT

Moment B

N 43 sum Wgts 43
Mean 106.4109 Sum 4575.667
Std Dev 37.9522 Variance 1440.37
Skewness 0.416217 Kurtosis -1.18809
Uss S47396.1 CSS 60495.52
Cv 35.66572 Std Mean 5.787656
T:Mean. O 18.38583 Pr>l Tl 0.0001
Nun ‘= O 43 Nvml>0
M(Sign)

43
21.5 Pr>=l Ml 0.0001

Sgn Rank 473 Pr>=l S] 0.0001

Following the main body of the program, a new section is
added to read in the output file to count the pages, and
read in the output file again to add the new page numbers.

Yolet1s=90;
data _null_; * COUNT PAGES IN DOCUMENT;

retain pgcnt O;
infile Iisfile kecl=&ls end=eof missover pad;
input line $& Is..;
if index(line,’’###’’)>O then pgcnt+l;
if eof then call symput(’’totpage’’,left(put(pgcnt,))););

run;

data _null_; * ADD NEW PAGE NUMBERS ;
retain pgcnt O;
infile Iisfile lrecl=&ls end=eof missover pad;
input line $&ls..;
file lisfile2 lrecl=&ls;
if index(line,’’### ’’)>O then do;

pgcnt+l;
substr(line,floor(&ls/2)-3,3)=put(pgcnt,z3.);
substr(line,floor(& ls/2)+5,3)=put(&totpage,z3.);

end;
put line $&ls..;

run;
title; footnote;
proc gprint fileref=iisfile2;
run;

The macro variable LS is used to pass the value of the
LINESIZE setting, since it is used in numerous parts of
the program.

This example uses a different type of INFILE statement
than the previous examples. Instead of using the
TRUNCOVER option to truncate shorter lines of data,
this program uses the LRECL, MISSOVER and PAD

options to read in each line of data into text strings of
equal length. Lines that are shorter than the LRECL
setting are padded with blanks at the end to make them
longer.

These options are needed to preserve all of the blank
spaces in the file. The blanks are needed to keep the lines
of output correctly centered and the columns of data in the

output correctly aligned.

SUGI Demonstration Report
Long Output File with Customized Page Numbering

page 001 (of 036)

----------- COHORT=l TREATMENT=l GENPER=l ------------

Univariate Procedure

Variable .WEIGHT WEIGHT

Moments

N 43 sum Wgts 43
Mean 106.4109 Sum 4575.667
Std Dev 37.9522 Variance 1440.37
Skewness 0.416217 Kurtosis -1.18809
Uss 547396.1 CSS
Cv

60495.52
35.66572 Std Mean 5.787656

T:Mean. O 18.38583 Pr>l Tl 0.0001
Nun ‘= O 43 NLun>0
M(Sign)

43
21.5 Pr>=l Ml 0,0001

Sgn Rank 473 Pr>=lsl 0.0001

PROC GPRINT is used to print the resulting output file.

This example assumes the program will produce no more
than 999 pages of output. For longer output files, adjust
the placeholder title and the two substring statements.

EXAMPLE 6: EXPORTING PROC TABULATE TABLES

To A SPREADSHEET

Sometimes you want to do even more reformatting of your
SAS output. One way to produce elegant tables is to take
the SAS output and move it into a spreadsheet program,
where a wide array of formatting and graphics tools

becomes available.

Although ODBC and PROC ACCESS are handy ways to

pass data to a spreadsheet application, they are used to
transfer data, not procedure output. And if you have ever
tried to import SAS output files into a spreadsheet, you
know how hard it can be to get all the columns to line up.

The following example uses PROC PRINTTO to pass the
results of PROC TABULATE to a comma-delimited file
that is easily imported into most spreadsheet programs:

options nodate nonumber 1s=254 ps=500;
proc printto print=lisfile;
run;

proc tabulate data=demo.testdata
formchar=”, “ noseps;
class tx gender;
var weight;
table mean’weight, tx all, gender all;

run;
proc printto;
run;

The large LINESIZE setting is used to keep wide tables
from wrapping onto a second page. The maximum setting
allowed is 254. The long PAGESIZE setting is used to
prevent carriage controls being sent for new pages. You

can set the PAGESIZE as high as 32,767 for a very large
table. The FORMCHAR setting is a comma followed by
10 spaces, which puts commas between each of your
columns of data and eliminates all other outlines and
dividers. NOSEPS is used to prevent the addition of row
separators.

As an example, to import such a file into Microsoft
Excel@, you would take the following steps. First, select
File and then Open from the main menu bar. Then select

your SAS output file. Excel will detect that the file is a
text file, and bring up the Text Import Wizard.

On the first screen, the wizard will ask whether the file is
delimited or fixed-width. Select delimited. On the second
screen, the wizard asks for the character used as a
delimiter. Select comma. Make sure the “treat consecutive

delimiters as one” box is not checked. Then select Finish.

Excel then imports the data, and the resulting spreadsheet

file is shown below. If your columns of data or your

column or row headings are particularly wide or narrow,
you may need to adjust column widths slightly, but the
rows and columns of data will always be perfectly aligned.

A [B I c I D I E i F
1 MEAN OF WEIGHT
2
3 I I GENDER I I I
4

5 I I Ii 21 ALL I
6
7 TREATMENT
8 1 106.3 115.23 110.14
9 2 111.21 109.29 110.31

10 3 107.61 113.42 109.98
11 4 110.25 114.63 112.23
.“--.- ...--

151 I 61 107.95I
16 I 9] 109.371 ,,,
. . 1., ,

,., I 31 11 1.4UI 1 UY.Y5 114.30

131 61 109.13 [116.82 112.69
14(I 71 105.O9I 115.95 110.36

108.17 106.03
* * 9.59 109.96

,, I ,Al-l. I ,“s.>’$ 112.84 110.96
..1

The only limitation to this approach is that complex tables
with stacked column headings may need to have the
headings adjusted. All of the data columns will line up,
but the heading for a group of columns will appear over
the left-most column. All you have to do is center the
heading across the group of columns. Stacked row
headings do not cause this problem.

While this example used Excel, other spreadsheet
programs have similar options for importing comma-
delimited text files.

EXAMPLE 7: TAKING ADVANTAGE OF GRAPHICS IN A
REPORT

The previous examples have used PROC GPRINT to

output simple text files, but the procedure is far more
powerful. When PROC PRINTTO is used to pass your
results to PROC GPRINT, instead of being limited to

basic output styles produced by SAS procedures, a whole
new world of alternative type faces, sizes and colors is
opened up.

By using GOPTIONS settings to modify titles and
footnotes, you can change the font to a different typeface,

point size or color. (One warning: stick to the uniform
fonts, or columns and tables will not line up correctly in
the resulting output. Uniform fonts generally have names
ending in “U”.)

The following example illustrates how to dress up a

simple SAS table. The table is taken from example 2
above, and assumes that the results are stored in an output
file called lisfile2.

goptions fby=swissu hby=l.5 cby=blue
ftext=swissu htext=l ctext=purple;

title j=c f=brush h=4 c=red
“SUGI Demonstration Report”;

title2 j=c f=swissb h=l,5 c=green
“Standard Deviation of Weight”;

title3 j=c f=swissi h=l c=green
“(Adjusted for Gender, Age and BP)”;

title4” “;
footnote j=r f=swiss h=.5 “DEMO_F.SAS 3/1/97”;
proc gprint fileref=lisfile2;
run;

This example, shown below, uses variations in font

(BRUSH, SWISSB, SWISSI, SWISSU) and variations in
font height (which ranges from .5 for the footnote to 4 for
the top title) and color (which you can’t see in this black&
white format) to create a more appealing report. A large
title draws attention to the report; a small font for
footnotes allows the addition of unobtrusive labels for the
program name and run date.

Standard Deviation of Weight
(Adjusted for Gender, Age and BP)

TX ADJ.SD

1 33.5

2 38.4

3 38.9

4 32.9

COHORT=2
TX ADJ_SD

1 35.0

2 41.3

3 39.0

4 31.8

DEMO.F.SAS31V97

The following table outlines some common GOPTIONS
parameters and their settings.

FBY=fontname

HBY=n

CBY=color

FTEXT=fontname

HTEXT=n

CTEXT=color

BORDER

DEVICE=

Sets the font used for BY group
headings.1

Sets the height of the text for BY
group headings. Try a setting of 1.5
to make the headings somewhat
larger than the rest of the text.

Sets the color of the text for BY
group headings.z

Sets the default font used for text
(not titles or BY group headings).

Sets the default height of text (not
titles or BY group headings). Try .9
or 1. If this setting is too large, the
output will no longer fit on the page.

Sets the default color for text (not
titles or BY group headings).

Puts a border around your output.

Selects an output device (monitor,
laser printer, plotter, etc.).

To set the font, height, color and justification for titles, it
is easier to do so in the individual TITLE statements. This

allows you to select different options for each title, instead
of setting overall defaults. The most common parameters

are: 3

FONT=fontname

HEIGHT=n

Sets the font for each title. Some
interesting fonts for titles include
BRUSH, SCRIPT, SWISSXBU and
ZAPFBU.

Sets the text size for each title. For

your first title, try height settings of
3 to 5. Additional titles should be
smaller, try settings of 1.5 to 2.

COLOR=color Sets the color of the title text.

JUSTIFY=LICIR Aligns the title to the left, center or
right.

1 For a list of available software fonts, see Chapter 6 of

SA.S7GRAPH Software: Reference, Version 6, First Edition.

2 For a list of predefine colors, see Chapter 7 of SAS/GRAPH

Software: Reference.

3 For additional TITLE statement options, including boxed and

angled titles, see Chapter 17 of SAS/GRAPH Software.’

Reference.

8

LIMITATIONS ACKNOWLEDGMENTS

The examples above are powerful tools to use in reporting

your SAS results, but keep in mind some important
limitations. First, it is very easy to make a mistake that

creates a summary table containing incorrect data. It is
important to check all summary tables against the original
SAS output. Second, this type of reporting is somewhat
vulnerable to changes in SAS versions. A new SAS
release might change the format of a particulw procedure’s
output, causing the summary program to fail. Third, if you
change the LINESIZE setting, the same output format
problem may occur. Many SAS procedures modify the
output format and content based on line size. Finally, it
takes time to set up a summary report. For a simple, one-
time run, it may be easier to create a report by hand.

CONCLUSION

This paper reviewed a number of techniques and tricks for
producing customized summary reports from SAS output.
But the main point is to introduce a new way of looking at

SAS procedural output: as an input, not an end product.

For SAS procedures with long and complex output, or for
standard reports that will be run repeatedly, it is well
worth the time to set up automated error checking,
summary reporting and custom output formatting. This
paper has presented a few ideas to try, but there are many
other potential uses for this approach.

REFERENCES

Hatcher, Larry & Stepanski, Edward J. (1994), A Step-by-

Step Approach to Using the SAS System for Univariate

and Mzdtivariate Statistics, Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1990), SAS Procedures Guide, Cary,
N.C.: SAS Institute Inc.

SAS Institute Inc. (1990), SAS/GRAPH Software:

Reference, Version 6, First Edition, Cary, N. C.: SAS

Institute Inc.

SAS Institute Inc. (1990), SAS/STAT Software, Version 6,
Fourth Edition, Cary, N. C.: SAS Institute Inc.

The page-numbering program is based on a program
written by Larry Parker of Parker& Brooks Associates.

The code for exporting PROC TABULATE output to a
spreadsheet was borrowed with permission from an
internet posting located at the following URL:
http://is.rice. edti-raddprocs/listsas/formchm.hml.

SAS, SASIGRAPH and SASISTAT are registered
trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. @ indicates USA registration.

Other brand and product names are registered trademarks

or trademarks of their respective companies.

CONTACTING THE AUTHOR

Please direct any questions or feedback to the author at:

Kaiser Permanence Center for Health Research
3800 N. Kaiser Center Drive
Portland, OR, 97227-1098

E-mail: haworthla@chr.mts.kpnw. org

“Using the DATA Step to Read Varying Length Record
Files on ASCII Devices”, (1995), SAS Communications,

21:1,29-32.

9

	Main TOC

