
A Step-By-Step Illustration of Building a Data Analysis Tool with Macros

Diana Zhang Wobus, University of Maryland, Baltimore, MD
John Charles Gober, Beekeeper, Inc., Alexandria, VA

ABSTRACT

Grouping observations in a data set into subgroups
according to their percentiles based on a continuous
variable (expense, age, or score) and then generating
statistics for each subgroup can be tedious. By
applying macros appropriately, however, one can
achieve greater program efficiency and error-proof
results. This paper illustrates a rational process of
building a data analysis tool that demonstrates the
power and efficiency of macros. By describing three
approaches we employed in a real life project, this
paper shows how each one improves the tool as our
methodology develops. Using a step-by-step
illustration of macros in DATA steps and statistical
procedures to solve the problem, this paper helps
SAS programmers who have just begun tapping into
"mysterious" macro programming to learn about some
of the basics of macros and the rationales that led us
to the results we desired. We assume that readers
of this paper have a basic understanding of macros
(and macro variables), do- loops, and data set
manipulation procedures.

INTRODUCTION

Several methods are available to generate summary
statistics for subgroups of observations in a large
data set. The "by" or "class" statements used in
several SAS statistical procedures can do the job. If,
however, observations are grouped by different
percentiles of the data set based on a continuous
variable in each observation, it is not a simple matter
to just execute procedures with a "by" or "class"
statement. The chance of lengthy coding and error-
generating increases greatly.

In a managed-care rate setting project, we tried three
different approaches for generating statistics for
observations grouped by percentiles. As a result, we
developed a data analysis tool that is very flexible
and uses minimal coding to obtain subgroup
statistics. Its main strength is macro programming,
which enables analysts to accomplish common
statistical analyses with greater efficiency and
convenience.

BACKGROUND

Amid the national movement toward managed care in
public health services, the state of Maryland charged
the Center for Health Program Development and
Management at the University of Maryland Baltimore
County to develop a comprehensive plan for
reforming the state’s Medicaid Program. The Center
is also responsible for developing risk-adjusted
capitation rates for the managed care organizations,
a process by which payment rates are developed
among traditional health maintenance organizations.
The capitation rates are based on the Medicaid
recipients’ current fee-for-service (FFS) costs paid by
the Medicaid Program.

OBJECTIVE

An important part of our analysis of the capitation
rates requires us to examine the FFS of the Medicaid
population. For this project, we need to review the
FFS costs at different percentiles of the population
based on their yearly total payments, measured in
dollars.

Suppose, during our preliminary analysis, we observe
that Medicaid recipients in the upper 10 percentile
(above 90%) incurred the largest costs to the
Medicaid Program. We then decide to look closer at
these recipients, say, at every ten percentile below 90
percentile and at every one percentile between 90
and 99 percentiles and at every tenth percentile for
the upper one percentile. The objective, therefore, is
to produce a table containing summary payment
information for individuals at specified percentiles of
the population based on payment.

SAMPLE DATA

The data set we will use is a fiscal year 1995 person-
level summary of Maryland Medicaid paid claims.
Each observation on the file contains Medicaid
eligibility and payment information for a Medicaid
recipient. One of the most important variables on the
file is a yearly payment amount summing all types of
medical services. For a simple demonstration, we
selected at random 5,000 observations from the total
FY95 Medicaid population.

METHODOLOGY

To demonstrate how we developed our analysis tool,
we will describe the three approaches we used, in the
following three sections.

1. Univariate and Summary Approach

With the yearly Medicaid payment as the analysis
variable, the UNIVARIATE procedure allows us to
specify percentiles, generating for us payment values
corresponding to each specific percentile. The
thought is that if we can find the dollar value, then we
can group recipients within each percentile and then
generate summary statistics. To find the
corresponding values, we execute the following code:

Illustration 1.a

proc univariate data = test.sample noprint;
var totals;
output out = caprate

pctlpts = 10 to 100 by 10
pctlpre = pct_;

run;

In the input data set, TEST.SAMPLE, the analysis
variable is totals, the yearly total payment. The
"output" statement does a number of things. The
"out=" option tells the procedure to output a
temporary data set, CAPRATE; the "pctlpts=" option
specifies the percentile range, each percentile
resulting in a variable in the output data set; and the
"pctlpre=" option assigns to each new variable in the
output data set a text string as the name, with a
prefix of our choosing. We use "pct_" as the prefix of
the variable names.

As shown in Table 1., the output data set consists of
one record containing 10 variables. Their names
correspond to the percentiles (and dollar values)
specified in PROC UNIVARIATE.

Table 1.

Content of Univariate Output Data Set

PCT_10 PCT_20 PCT_30 PCT_40 PCT_50 PCT_60
86.21 165.10 272.27 398.06 589.21 958.20

PCT_70 PCT_80 PCT_90 PCT_100
1,772.92 3,453.23 6,896.16 299,427.91

The text step, intuitively, is to summarize yearly

payments for persons within each percentile. The
MEANS or SUMMARY procedure can easily
accomplish this using a "where" statement to set the
value boundaries for each percentile. However, in
order to generate the summary statistics for recipients
at each percentile, we need to execute a PROC
SUMMARY for as many times as there are
percentiles. The result, unfortunately, is a very
lengthy program, as illustrated below:

Illustration 1.b

proc summary data=test.sample
n sum max min maxdec=2;

var totals;
where totals <= 86.2;
output out=pct_10

n=n sum=sum max=max min=min;
run;

proc summary data=test.sample
n sum max min maxdec=2;

var totals;
where totals <= 165.1;
output out=pct_20

n=n sum=sum max=max min=min;
run;
..........
..........
(more PROC steps omitted)
..........
..........
proc summary data=test.sample

n sum max min maxdec=2;
var totals;
where totals <= 6896.2;
output out=pct_90

n=n sum=sum max=max min=min;
run;

proc summary data=test.sample
n sum max min maxdec=2;

var totals;
output out=pct_100

n=n sum=sum max=max min=min;
run;

The final step is to concatenate all of the output data
sets from PROC SUMMARY into a single data set,
using either a DATA step or a DATASETS procedure.
A printout of the merged data set using a DATA step
is shown in Table 2.

Illustration 2.

data final;
set pct_10 pct_20 pct_30 pct_40

pct_50 pct_60 pct_70 pct_80
pct_90 pct_100;

format n sum max min comma10.2;
run;

2

Table 2.

Output of Merged Data Set

N SUM MAX MIN

1,000 88,097.43 165.09 0.00
1,501 195,473.52 272.29 0.00
2,001 361,654.45 398.09 0.00
2,500 603,430.58 588.66 0.00
3,000 981,466.91 958.05 0.00
3,500 1,643,027.50 1,772.82 0.00
4,000 2,883,759.03 3,452.34 0.00
4,500 5,367,852.60 6,895.97 0.00
5,000 17,625,172.01 299,427.91 0.00

Here we see several problems. First, we are forced
to manually enter the value for each percentile into
each of the SUMMARY procedures. To generate
non-cumulative numbers, we need to enter both the
lower and upper values of each percentile, greatly
increasing the amount of coding and chance for error.
Secondly, a slight change in the percentile
specification in PROC UNIVARIATE changes every
value, which means we have to re-enter the values
for every PROC SUMMARY all over again. With
every increase in the number of percentiles, the
program becomes longer, and the risk of errors
becomes greater. Thirdly, the result in Table 2. does
not indicate for which percentile the statistics
(numbers in rows) are generated. For this approach
we have to remember the variables in the PROC
UNIVARIATE output data set and somehow add the
labels to the final data set either manually or through
additional data set manipulation.

2. Ranking Approach

The approach using RANK procedure is a lot easier.
We begin by specifying the number of groups.
PROC RANK assigns a rank score to each of the
observations in the data set in the order of a numeric
variable, which in this case is the yearly payment.
Once the rank order is assigned, PROC RANK
generates summary statistics for observations in each
rank. We execute the following code, as an example:

Illustration 3.

proc rank data=test.sample
out=caprate group=5;

var totals;
ranks rank;

run;

proc summary data=caprate;
class rank;
var totals;
output out=final

n=n sum=sum max=max min=min;
run;

Here, the "group=" option in "proc rank" statement
specifies the number of groups into which we want to
divide the total observations. For example, an option
of "group=100" breaks the observations in the data
set into 100 groups, with one percent of the
observations in each group. Likewise, an option of
"group=20" breaks the observations into 20 groups,
five percent of the total observations per group; an
option of "group=25" breaks the observations into 25
groups, four percent per group; and so forth. The
"ranks" statement specifies the name of the variable
containing rank scores. If no "ranks" statement is
used, the name of the analysis variable on the "var"
statement will be used for rank scores (See SAS
document for RANK PROCEDURE). A printout of the
output data set is shown in Table 3.

Table 3.

Output of RANK Procedure

RANK N SUM MAX MIN

0 1,000 88,097.43 165.09 0.00
1 1,000 273,158.93 398.02 165.11
2 1,000 620,210.55 958.05 398.09
3 1,000 1,902,292.12 3,452.34 958.35
4 1,000 14,741,412.98 299,427.91 3,454.12

We seem to now have a simpler program with the
ranking approach. In this case, however, we are
unable to generate groups of varying percentiles in
one step as in PROC UNIVARIATE. We have to
execute as many PROC RANKS as there are
percentile specifications. For example, we must
execute three RANK procedures in order to obtain
observations at: 1). every ten percentile up to 90
percentile; 2). every one percentile between 91 and
99 percentile range; and 3). every tenth percentile for
the upper one percentile. We then have to do more
data manipulation and cut and paste the results to
generate a single table.

3. Univariate and Summary Procedures with
Macros

Ideally, we would like to write a program that is both
flexible with percentile specifications and simplistic
with a one-step process. We also want to avoid hard
coding and have the program automatically feed the
percentile values, one at a time, into as many
SUMMARY procedures as there are percentiles. We
find that SAS macros are the answer.

3

We use PROC UNIVARIATE as described in our first
approach to achieve varying percentiles, such as:

Illustration 4.a

proc univariate data=test.sample noprint;
var totals;

output out = caprate
pctlpts = 10 to 90 by 10,

91 to 99 by 1,
99.1 to 100 by .1

pctlpre = pct_;
run;

From the output data set, CAPRATE, we know there
are 28 variables each for a percentile specified. We
then write the following macro that gives us the
desired performance. This macro, METHOD3, is
described in segments, as follows:

Illustration 4.b

%macro method3;

data _null_;
set caprate;
array pct2[28] pct_10 -- pct_100;

%do i = 1 %to 28;
call symput ("var&i", put(pct2[&i],8.));

%end;
run;

The DATA step in the macro operates as follows: it
takes the output data set from the PROC
UNIVARIATE (containing one observation with as
many variables as specified); the do-loop scans
through the variables in the array, during which its
"call symput" function retains each value in a macro
variable named "var&i," with "i" being one of the array
elements. At invocation, the macro variables will
pass the values contained in them to where each is
called for, as shown in Illustration 4.c:

Illustration 4.c

%do i = 1 %to 28;
proc summary data=test.sample

n sum max min maxdec=0;
var totals;
where totals <= &&var&i;
output out = out&i

(drop = _type_ _freq_)
n=n sum=sum max=max min=min;

run;
%end;

proc data sets;
%do i = 1 %to 28;

append base=final data=out&i force;
%end;

run;

%mend method3;
%method3;

In the do-loop, the "where" and "output" statements
in PROC SUMMARY resolve "var&i" with the retained
values passed on from the macro variables. The
"where" statement specifies the cut-off point below
which the dollar amount of all observations is
summed, resulting a cumulative sum of payment.
The "&&" in the macro variables scans the statement
twice. The first scan resolves "&&" into "&" and "&i"
into numbers, and the second scan further resolves
them into actual payment values. The "output’
statement outputs the summary statistics of
observations at each percentile into a uniquely
named data set. Then all output data sets from the
SUMMARY procedures are added (concatenated)
together to form a table with PROC DATASETS. The
macro ends with a "%mend" statement. Invoking the
macro with a "%method3" call, we have the result as
shown in Table 4.

Table 4.

Output of the Program with Macros

OBS N SUM MAX MIN

1 499 25,016.11 85.79 0.00
2 999 87,932.34 164.79 0.00
3 1,498 194,656.77 272.00 0.00
4 1,999 360,858.34 397.85 0.00
5 2,500 603,430.58 588.66 0.00
6 2,999 980,508.86 957.82 0.00
7 3,500 1,643,027.50 1,772.82 0.00
8 4,000 2,883,759.03 3,452.34 0.00
9 4,500 5,367,852.60 6,895.97 0.00

10 4,550 5,731,394.14 7,638.76 0.00
11 4,600 6,136,129.79 8,652.60 0.00
12 4,650 6,598,773.76 9,869.63 0.00
13 4,700 7,147,863.22 12,332.47 0.00
14 4,750 7,835,705.20 14,874.85 0.00
15 4,800 8,658,765.93 17,986.06 0.00
16 4,850 9,642,829.55 21,974.46 0.00
17 4,900 10,932,994.47 30,046.06 0.00
18 4,950 12,892,122.95 49,262.62 0.00
19 4,955 13,152,827.64 53,713.46 0.00
20 4,960 13,424,150.96 54,512.64 0.00
21 4,965 13,716,865.66 62,645.44 0.00
22 4,970 14,039,711.20 66,004.70 0.00
23 4,975 14,377,996.11 68,923.38 0.00
24 4,980 14,741,180.92 76,767.68 0.00
25 4,985 15,169,361.99 97,922.03 0.00
26 4,990 15,724,317.40 120,333.35 0.00
27 4,995 16,471,774.29 171,051.22 0.00
28 5,000 17,625,172.01 299,427.91 0.00

To take advantage of macros, we will add the

4

following features to our program to achieve flexibility,
simplicity, and convenience:

Let macro variables perform substitution of all
changes in percentile specifications.
Let macro variables capture the names of the
variables in the output data set from PROC
UNIVARIATE and add the names as labels
to the final data set--the final table.
Let the macro automatically count the
variables in the output data set from PROC
UNIVARIATE and feed the count value into
the subsequent DATA steps.
Let macro variables obtain noncumulative
summary statistics for observations at each
percentile.

Our final program is shown in the following segments.

Illustration 5.a

***;
*Specify percentile range and analysis variable;
***;
%let range = 10 to 90 by 10,

91 to 99 by 1,
99.1 to 100 by .1;

%let tot = totals;

Once the compilation begins, the first "%let"
statement creates a macro variable to conveniently
substitute percentile specifications in the program.
The second "%let" statement is to allow for using
different analysis variables. These two macro
variables pass their values to the next PROC
UNIVARIATE, which generates percentile values.

Illustration 5.b

%macro method3;

***;
*Generate percentile values;

***;
proc univariate data=test.sample noprint;

var &tot;
output out = caprate

pctlpts = &range
pctlpre = pct_;

run;

***;
*Make sure labels are in correct order;

***;
proc contents data=caprate noprint

out=varname(keep=name npos);
run;

proc sort data=varname
out=vname(keep = name);

by npos;
run;

Note in PROC UNIVARIATE, we can request different
percentile ranges with the macro variable, &range.
The purpose of the CONTENTS and SORT
procedures is to capture the names of variables in
the PROC UNIVARIATE output data set to be used
in the final table as labels. The two procedures result
in a data set, VNAME, containing one variable of the
labels sorted in the same order as they are specified
in PROC UNIVARIATE.

Illustration 5.c

***;
*Get names of lower and upper percentiles;

***;
data _null_;

set vname end=last;
if _n_ = 1 then call symput (’fstvar’,name);
if last then call symput (’lstvar’, name);

run;

***;
*Use first and last names in the array to

count number of array elements;
***;
data _null_;
set caprate;

array pct1[*] &fstvar -- &lstvar;
call symput (’varnum’, put(dim(pct1),8.));

run;

***;
*Get percentile values;

***;
data _null_;

set caprate;
array pct2[*] &fstvar -- &lstvar;

%do i = 1 %to &varnum;
call symput ("var&i", put(pct2[&i],8.));

%end;
run;

During the macro compilation, three temporary DATA
steps (_null_) are generated. In the first DATA step,
the "call symput" function captures the value of the
first and last variables in data set VNAME from
PROC SORT and retains the two string values in two
macro variables, fstvar and lstvar. The second DATA
step takes CAPRATE and replaces the macro calls
with the values from fstvar and lstvar. It then counts
the number of the array elements, which includes all
variables in CAPRATE and contains that count value
in another macro variable, varnum. The third DATA
step then uses the values from all three macro
variables from the previous two DATA steps to
perform the following: setting the array boundaries,
specifying the array dimension, and creating a series
of new macro variables, var&i, that contains the
actual payment value from the array elements
corresponding to the specified percentiles.

5

Illustration 5.d

%do i = 1 %to &varnum;
%let j = %eval(&i-1);
proc summary data=test.sample

n sum max min maxdec=2;
var &tot;
%if &i = 1 %then %do;

where &tot <= &&var&i;
%end;
%else %do;

where &&var&j <= &tot <= &&var&i;
%end;
output out = out&i (drop = _type_ _freq_)

n=n sum=sum max=max min=min;
run;

%end;

In this section, do-loops are used to generate
summary statistics using the values passed on from
the macro variables. The "%do i=" statement is an
outer do-loop that serves as a counter for percentiles.
The "%do j=" statement is another counter that keeps
track the value of the lower percentile. The "%eval"
function converts "&i" from a string to a number for
numeric calculation.

In order to keep the array within its logical range, two
inner macro do-loops are introduced within PROC
SUMMARY. The first do-loop sums the payment
variable for persons in the lowest percentile, while the
second do-loop sums the payment variable for
persons between the lower (&&var&j) and upper
(&&var&i) limits of all other percentiles, resulting in
non-cumulative values. At the end of every outer do-
loop, PROC SUMMARY outputs a data set, OUT&I,
and the outer do-loop returns for the next PROC
SUMMARY until all SUMMARY procedures are
executed.

Illustration 5.e

proc datasets;
%do i = 1 %to &varnum;

append base = merged data=out&i force;
%end;

run;

data final;
merge vname merged;

run;

proc print data=final noobs;
title ’Table 5.’;
format n comma8. sum max min comma13.2;

run;

%mend method3;
%method3;

With all of the data sets, OUT&I, output by PROC

SUMMARY, PROC DATASETS concatenates them
into one data set, MERGED, with an "append"
statement. The last DATA step combines VNAME
data set from PROC SORT with MERGED to attach
a label to each observation in MERGED to indicate
the specific percentile at which statistics are
generated. A printout of the final data set, in Table
5., shows the results we have achieved.

Table 5.

Output of Final Program

NAME N SUM MAX MIN

PCT_10 499 25,016.11 85.79 0.00
PCT_20 500 62,916.23 164.79 86.19
PCT_30 499 106,724.43 272.00 165.09
PCT_40 502 166,473.57 397.85 272.00
PCT_50 501 242,572.24 588.66 398.02
PCT_60 499 377,078.28 957.82 589.75
PCT_70 501 662,518.64 1,772.82 958.05
PCT_80 500 1,240,731.53 3,452.34 1,773.01
PCT_90 500 2,484,093.57 6,895.97 3,454.12
PCT_91 50 363,541.54 7,638.76 6,896.35
PCT_92 50 404,735.65 8,652.60 7,648.67
PCT_93 50 462,643.97 9,869.63 8,747.96
PCT_94 50 549,089.46 12,332.47 9,923.33
PCT_95 50 687,841.98 14,874.85 12,360.69
PCT_96 50 823,060.73 17,986.06 14,924.59
PCT_97 50 984,063.62 21,974.46 18,010.49
PCT_98 50 1,290,164.92 30,046.06 22,032.39
PCT_99 50 1,959,128.48 49,262.62 30,652.32
PCT_99_1 5 260,704.69 53,713.46 50,712.47
PCT_99_2 5 271,323.32 54,512.64 53,727.28
PCT_99_3 5 292,714.70 62,645.44 56,128.82
PCT_99_4 5 322,845.54 66,004.70 62,992.14
PCT_99_5 5 338,284.91 68,923.38 66,125.84
PCT_99_6 5 363,184.81 76,767.68 70,021.89
PCT_99_7 5 428,181.07 97,922.03 77,398.16
PCT_99_8 5 554,955.41 120,333.35 101,293.90
PCT_99_9 5 747,456.89 171,051.22 130,483.05
PCT_100 5 1,153,397.72 299,427.91 183,651.54

CONCLUSIONS

Our experience shows that, when repetitive coding is
unavoidable, macros are the most appropriate
programming technique to use. The analysis tool we
developed for our specific project can easily be
adapted to accomplish a variety of tasks. For
example, for users without SAS experience, the
macro can be modified in such a way that users
simply supply the percentile specifications. The
macros and macro variables will do the rest. The
concept we used in developing the tool can be
applied to other statistical analyses as well. We
believe there are alternative approaches for achieving
the same results with similar or greater flexibility and
efficiency. Our demonstration exemplifies the thought
process by which we reached our conclusion.

6

REFERENCES

SAS Institute, Inc. (1990), SAS Guide to Macro
Processing, Version 6, Second Edition. Cary, NC:
SAS Institute, Inc.

SAS Institute, Inc. (1990), SAS Language Reference,
Version 6, First Edition. Cary, NC: SAS Institute.

SAS Institute, Inc. (1990), SAS Procedures, Version
6, First Edition. Cary, NC: SAS Institute.

ACKNOWLEDGEMENT

We wish to thank Peter Wobus, US Bureau of
Census, for his valuable comments on the concepts
expressed in this paper.

SAS is a registered trademark of SAS Institute, Inc.
in the USA and other countries.

AUTHORS

Diana Zhang Wobus obtained her doctorate in
Education and Research Methodology in 1994. She
is currently involved in developing risk-adjusted
capitation rates for managed care organizations
participating in the Maryland Medicaid reform
initiative. She began SAS programming in the late
1980s and has been an active SAS user in education
and health policy research since 1993. Contact:

University of Maryland Baltimore County
Center for Health Program Development and
Management
1000 Hilltop Circle
Baltimore, Maryland 21250
Phone/FAX: 410-455-6847/6850
Email: zhangwob@umbc.edu

John Charles Gober specializes in the acquisition and
manipulation of large data sets. He has been
programming in SAS for over seventeen years. His
areas of expertise include improving program
performance and efficiency, establishing micro-to-host
links on various platforms, and creating applications
to aid data migration and processing. Contact:

8105 Carlyle Place
Alexandria, Virginia 22308-1402
Phone/FAX: 703-768-1319/3614
Email: j.gober@worldnet.att.net

7

	Main TOC

