
How To Use the SAS/AF®

 Frame Orgchart Object
Thomas Miron

Miron InfoTec, Inc., Madison, WI

Tutorial Topics
• Overview

• DEMO1 - Basic procedure for creating a chart with dynamic data set assignment

• DEMO2 - How to control the initial color of nodes

• DEMO3 - How to run a process when a node is selected by the user

Overview

What is an Orgchart Object?
An orgchart shows the hierarchical relationships among data items. The SAS/AF Frame organizational
chart class is available with SAS release 6.11. The orgchart class entry is
SASHELP.FSP.ORGCHART.CLASS. Orgchart is in the default BUILD.RESOURCE entry so it is selectable
from the default Make List when building a frame entry. Orgcharts can display data from SAS data sets or
SCL lists that conform to the specific orgchart data structure. In this tutorial we will be using a SAS data
set as the orgchart source data.

Why use the orgchart?
Many databases are structured as a series of tables, but a series of two-dimensional tables related by key
columns may not correspond to the way users visualize or interact with the data. An orgchart may be a
more natural representation of data that are visualized as a hierarchy rather than series of tables.

Fig. 1
A directory style
orgchart with three
levels. Some levels are
collapsed as indicated
by the solid right-
pointing arrow.

Expanded node SASHELP
has two sublevels.

Collapsed nodes.

2

Creating a SAS/AF Orgchart Application
The orgchart class must be used within the context of a SAS/AF Frame application. You must be running
the SAS system in an environment that supports the development of Frame applications.

Assumptions About Your Knowledge
This tutorial assumes that you are familiar with the following concepts and techniques:

• Starting and using BUILD to create SAS/AF Frame applications

• Creating objects on a frame and accessing attribute windows

• Basic DATA step and SQL programs

• Basic SCL statements and functions

• SCL lists

DEMO1: The LIB/MEM/VAR Application with Dynamic Data Set
Assignment

This tutorial is a step-by-step look at the tasks required to create the LIB/MEM/VAR application shown in
Fig. 1. The first version of this application is DEMO1. DEMO1 displays a library/member/variable
hierarchy for the SASHELP and SASUSER libraries. In addition, this application demonstrates how to
dynamically assign a data set to an orgchart at run time. Documentation in the SAS/AF Frame Dictionary
covers the tasks required to assign a data set to a chart at build time via the orgchart attributes window.

Task List
1. Create frame

2. Create orgchart object

3. Set object attributes

4. Create frame SCL

1. Create a Frame

Fig. 2
Create a new frame
from the Build window
by selecting File, New,
and Entry from the
Build pmenu.

Frame name is DEMO1.

3

2. Place the Orgchart Object
Right click in the new frame and select Make to display the Make list.

3. Orgchart Attributes
Orgchart attributes are set in a series of windows, beginning with the main attribute window shown in
Fig. 5. Right click the orgchart and select Object Attributes to display the attributes window.

Fig. 3
Make list. Select the
Organizational chart
class.

Fig. 4
A new frame with
a placed orgchart
object.

Fig. 5
Main orgchart
attributes window.
Select the Help button
for a description of
attributes not covered
in this tutorial.

You can resize the orgchart by
grabbing a corner with the left
mouse button held down and
dragging to size.

When an orgchart will
display many nodes, you
will probably want to
explicitly set the horizontal
and vertical node spacing
for best appearance and
efficient use of display real
estate. Node spacing units
are pixels so the visual
effect of a setting varies
with display resolution.

Chart style is set to
Directory.

4

Data Set Name and Title

Chart Appearance Attributes

Select the Chart appearance item from the main attribute window to display the Chart Appearance
window.

4. Frame SCL
Following is the complete frame SCL for the DEMO1 application.

/* */
/* */
/* HOW TO USE THE SAS/AF FRAME ORGCHART OBJECT */
/* */
/* TOM MIRON */
/* */
/* MIRON INFOTEC, INC., MADISON, WI (608) 255-3531 */
/* */
/* */
/* DEMO1 - LIBRARY/MEMBER/COLUMN CHART */
/* */
/* */

INIT:

/* */
/* */
/* CREATE THE TABLE DISPLAYED IN THE ORGCHART */
/* */
/* */

 /* INTERMEDIATE TABLE: COLINFO */

 submit continue sql;

 create table work.colinfo as

 select
 libname
 ,memname
 ,name

Fig. 6
Attributes window.

Fig. 7
Chart appearance
window

All charts must have a root level.
Here, we are using the title as
the root. The title is blank and
Hide Entire Title is checked so
nothing appears on the chart,
but the root requirement is
satisfied.

Title remains blank.

All the following code is in
the frame’s INIT section.

The SQL creates a table with the
libname, member name (data set name),
and variable name of all variables in all
data sets in the SASHELP and SASUSER
libraries. See the Help system or SAS
Technical Report P-222 page 286 for
more on the DICTIONARY views.

We will assign the data set
name at runtime so select
“Determine value at
runtime” from the down-
arrow drop-down list. The
Data set field remains
blank.

Key a widget (object) name in
the Name field. The name of this
orgchart object is “ORGCHART.”
The name is arbitrary.

Chart appearance item. See Fig. 7.

The show all levels checkbox
determines if all or just the first
two levels are shown on the
initial display. For DEMO1 it is
left unchecked.

5

 from
 dictionary.columns

 where
 lowcase(libname) in('sashelp', 'sasuser')
 and lowcase(memtype) = 'data'

 order by
 libname
 ,memname
 ,name

 ;

 endsubmit;

 /* CHART TABLE: COLUMNS */

 submit continue;

 data columns;

 attrib

 objname
 length=$8
 label="Object Name"

 level
 length=8
 label="Org Chart Level"

 ;

 set colinfo;

 by libname memname name;

 /* THE LIBREF IS CHART LEVEL 1 */

 if first.libname then do;

 objname = libname;

 level = 1;

 output;

 end;

 /* THE MEMBER (DATA SET) NAME IS CHART LEVEL 2 */

 if first.memname then do;

 objname = memname;

 level = 2;

 output;

 end;

 /* THE VARIABLE NAME IS CHART LEVEL 3 */

 if first.name then do;

 objname = name;

 level = 3;

 output;

 end;

 run;

 endsubmit;

/* */
/* */
/* IN THE ATTRIBUTES WINDOW NO DATA SOURCE IS SPECIFIED FOR THE */
/* ORGCHART BECAUSE THE DATA SET WE WANT TO USE IS CREATED AT */
/* RUNTIME. */
/* THERE IS NO METHOD TO EXPLICITLY ASSIGN A DATA SOURCE TO AN */
/* ORGCHART OBJECT, BUT WE CAN DO IT BY SETTING INSTANCE */
/* VARIABLES "DATASET" AND “MAPLIST”. */
/* */
/* */

 /* GET THE OBJECT ID OF THE ORGCHART. THIS IS THE LIST ID OF */
 /* OF THE OBJECT. */

 call notify('.', '_get_widget_', 'orgchart', chartid);

 /* SET THE INSTANCE VARIABLE "DATASET" TO THE TABLE CREATED */
 /* ABOVE. */

 chartid = setnitemc(chartid, 'work.columns', 'dataset');

The DATA step uses BY variable processing to create
a table with two variables: OBJNAME is the name of
the libref, data set, or variable to be represented by a
chart node, LEVEL indicates the hierarchical level of
the object. Librefs are level 1, data sets level 2, and
variables level 3.

Get the object id of the chart. This
is also the list id of the object.

End of SQL step

The COLUMNS data set will be
displayed in the orgchart.

Assign the data set name to the
instance variable (list item) “dataset.”

Read the table created in the preceding SQL step.

End of DATA step that creates the table displayed in the orgchart.

6

 /* CREATE A MAPPING LIST */

 maplist = makelist();

 maplist = setnitemc(maplist, 'objname', 'text');

 maplist = setnitemc(maplist, 'level', 'level');

 maplist = setnitemc(maplist, 'level', 'current_node');

 /* ASSIGN THE MAPLIST AS THE INSTANCE VAR "MAPLIST" */

 chartid = setniteml(chartid, maplist, 'maplist');

 /* NOW TELL THE CHART TO REPOPULATE WITH ITS NEW DATA SOURCE */

 call send(chartid, '_repopulate_');

return;

DEMO1 Display
By default, two levels are displayed: the root (hidden title) and the first data level (the libref). See Fig. 7.

Double Click on a Collapsed Node Expands the Node

Assign the map list id as the chart
instance variable “maplist.”

Send the chart the _REPOPULATE_
method to populate the chart from the
data set.

Fig. 8
The initial display of
the DEMO1
application.

The title is the chart root but
does not appear because it’s
hidden. See Fig. 7.

The right arrow indicates that
the node is collapsed.

Fig. 9
Expanded SASHELP/
ACTIONS node shows
data sets and
variables.

Data set (level=2)

Variables (level=3)

Create and assign items to a list (“maplist” in this
case) that will be assigned as the chart node
mapping list. This list tells the chart how data set
variables correspond to chart node variables. See
Orgchart documentation for more on node
variables.

Library (level=1)

End of INIT section.

7

DEMO2 - Add Node Color
The DEMO2 application is a modification of DEMO1. DEMO2 shows you how to add color to nodes.
The color is static, i.e., it is assigned once, via a variable in the chart data set. When assigned in this
manner, the color does not change based on runtime actions. The orgchart class does provide a method
(_SET_COLOR_) that you can use to assign node color at runtime. Assigning a static color is useful when
you want the color to correspond to a node’s level in the chart hierarchy or some other static node
attribute.

Task List
1. Add color variable to the chart data set (modify frame SCL).

2. Add the foreground color item to the mapping list (modify frame SCL).

1. Add Color Variable (partial frame INIT section)
 /* CHART TABLE: COLUMNS */

 submit continue;

 data columns;

 attrib

 objname
 length=$8
 label="Object Name"

 level
 length=8
 label="Org Chart Level"

 color
 length=$24
 label='Foreground Color'

 ;

 set colinfo;

 by libname memname name;

 /* THE LIBREF IS CHART LEVEL 1 */

 if first.libname then do;

 objname = libname;

 level = 1;

 color = 'red';

 output;

 end;

 /* THE MEMBER (CATALOG) NAME IS CHART LEVEL 2 */

 if first.memname then do;

 objname = memname;

 level = 2;

 color = 'blue';

 output;

 end;

 /* THE OBJECT (ENTRY) NAME IS CHART LEVEL 3 */

 if first.name then do;

 objname = name;

 level = 3;

 color = 'green';

 output;

 end;

 run;

 endsubmit;

Create another variable in the chart data
set, COLUMNS, to hold the color of each
node. The variable name is arbitrary,
here its’s called COLOR.

Assign a value to COLOR for each level.

8

2. Add Color Control Node Variable to the Mapping List

The map list assigns the value of data set variable COLOR as the node variable FOREGROUND_COLOR.

 /* CREATE A MAPPING LIST */

 maplist = makelist();

 maplist = setnitemc(maplist, 'objname', 'text');

 maplist = setnitemc(maplist, 'level', 'level');

 maplist = setnitemc(maplist, 'level', 'current_node');

 maplist = setnitemc(maplist, 'color', 'foreground_color');

 /* ASSIGN MAPLIST AS THE INSTANCE VAR "MAPLIST" */

 chartid = setniteml(chartid, maplist, 'maplist');

 /* NOW TELL THE CHART TO REPOPULATE WITH ITS NEW DATA SOURCE */

 call send(chartid, '_repopulate_');

return;

DEMO2 Display

DEMO3 - Add Node Select Processing
DEMO3 is a modification of DEMO2. DEMO3 shows how to add node selection processing. We will add
the ability to view a data set when the user single-clicks on a data set node. In this example, the Hide/
unhide children upon double click attribute is turned off in the Select Action attributes window (see Fig.
11) and Show all levels is checked in the Chart Appearance window (See Fig. 7). The net result is the
entire chart is always displayed to the user. Expand/collapse is disabled because we want to capture a click
event and distinguishing between a single-click (select node) and double-click (expand/collaspe) involves
techniques beyond the scope of this tutorial.

Task List
1. Add SCL LENGTH statement to declare new character variables and a non-executable LINK statement

to avoid compile-time warning message (modify frame SCL).

2. Add a node select routine to capture the selected data set name and its parent library, then call the
FSVIEW function to view the data set (modify frame SCL).

3. Name the select action routine in the Select Action attribute window.

The maplist item “foreground_color”
determines the foreground color of a
node. There is also an optional
“background_color” item.

Fig. 10
DEMO2 display
with some nodes
expanded.

Each level is displayed in the
color assigned via the maplist.

9

1. LENGTH and LINK statements
The node select routine is not executed via a LINK statement in the SCL. When the code is compiled the
compiler will complain that a routine exists that is never linked to. Place a LINK statement outside of any
executable section to eliminate the message. The following statements are placed before the frame’s INIT
section.

length
 name $8 lib $8
;

link click1;

2. Node Select Routine
This routine is executed when a node is selected. See Fig. 11.

/* */
/* */
/* CLICK1 */
/* */
/* */

CLICK1:

 /* FIRST GET THE NODE ID OF THE SELECTED NODE */

 call send(chartid, '_get_selected_', widgetid, nodeid);

 /* MAKE SURE A NODE WAS SELECTED. IF NOT THEN RETURN NOW. */

 if not nodeid then return;

 /* GET INFO FOR THE SELECTED NODE: TEXT (OBJECT NAME) AND LEVEL */

 call send(chartid, '_get_current_', nodeid, 'text level', node_list);

 /* CHECK THE NODE LEVEL. WE'RE ONLY INTERESTED IN MEMBERS */
 /* (SAS DATA SETS), LEVEL = 2. */

 level = getnitemn(node_list, 'level');

 if level ne 2 then return;

 /* GET THE NAME (TEXT) ASSOCIATED WITH THE NODE */

 name = getnitemc(node_list, 'text');

 /* WE NEED THE PARENT OF THE NODE, I.E. THE LIBRARY. THE TEXT ITEM */
 /* IN THE NODE LIST HOLDS THE NAME OF THE LIBRARY. */

 call send(chartid, '_get_parent_', nodeid, 'text', parent_list, 'n');

 lib = getnitemc(parent_list, 'text');

 /* GOT THE LIBRARY AND MEMBER NAME SO BROWSE THE DATA SET */

 call fsview(lib || '.' || name);

return;

3. Name the Select Routine in the Select Action Window
The node selection routine is named in the Select Attribute window. To get to the window bring up the
object attributes window, select Node appearance, Select action.

Call method to get the nodeid of the selected
node in SCL variable NODEID.

NODEID could be 0 if a node was not directly
selected, in that case return immediately.

Call method to set the TEXT and
LEVEL node variables in list
NODE_LIST.

If level is not 2, i.e., the node does not name a
SAS data set, then return now.

The TEXT item is the data set name.

The parent of this node will be the
libref for the data set.

Form libref.memname and call FSVIEW
to display the data set.

Fig. 11
Node Select Action
attribute window. CLICK1 is named in the Select

Action attribute window as the
routine to run when the user
clicks on a node.

LENGTH statement to declare NAME and LIB as character.

Non-executable LINK statement. (See explanation
above.)

CLICK1 is placed after the frame’s
INIT section as a separate routine.

Expand/collapse behavior
check box.

10

DEMO3 Display

Data Set Node Select
When the user clicks on a data set level node, the data set is displayed via the FSVIEW function.

Fig. 12
For the DEMO3
application all
orgchart levels are
displayed on initial
display because Show
all levels has been
checked. See Fig. 7.

If the user selects a SAS data
set name (level=2) that data set
is displayed by FSVIEW. See
below.

Fig. 13
FSVIEW display of
ACTIONS selected
above.

The selected data set
(ACTIONS in this case) is
displayed.

SAS/AF is a registered trademark or trademark of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

How To Use the SAS/AF®

 Frame Orgchart Object
Thomas Miron

Miron InfoTec, Inc., Madison, WI

Tutorial Topics
• Overview

• DEMO1 - Basic procedure for creating a chart with dynamic data set assignment

• DEMO2 - How to control the initial color of nodes

• DEMO3 - How to run a process when a node is selected by the user

Overview

What is an Orgchart Object?
An orgchart shows the hierarchical relationships among data items. The SAS/AF Frame organizational
chart class is available with SAS release 6.11. The orgchart class entry is
SASHELP.FSP.ORGCHART.CLASS. Orgchart is in the default BUILD.RESOURCE entry so it is selectable
from the default Make List when building a frame entry. Orgcharts can display data from SAS data sets or
SCL lists that conform to the specific orgchart data structure. In this tutorial we will be using a SAS data
set as the orgchart source data.

Why use the orgchart?
Many databases are structured as a series of tables, but a series of two-dimensional tables related by key
columns may not correspond to the way users visualize or interact with the data. An orgchart may be a
more natural representation of data that are visualized as a hierarchy rather than series of tables.

Fig. 1
A directory style
orgchart with three
levels. Some levels are
collapsed as indicated
by the solid right-
pointing arrow.

Expanded node SASHELP
has two sublevels.

Collapsed nodes.

2

Creating a SAS/AF Orgchart Application
The orgchart class must be used within the context of a SAS/AF Frame application. You must be running
the SAS system in an environment that supports the development of Frame applications.

Assumptions About Your Knowledge
This tutorial assumes that you are familiar with the following concepts and techniques:

• Starting and using BUILD to create SAS/AF Frame applications

• Creating objects on a frame and accessing attribute windows

• Basic DATA step and SQL programs

• Basic SCL statements and functions

• SCL lists

DEMO1: The LIB/MEM/VAR Application with Dynamic Data Set
Assignment

This tutorial is a step-by-step look at the tasks required to create the LIB/MEM/VAR application shown in
Fig. 1. The first version of this application is DEMO1. DEMO1 displays a library/member/variable
hierarchy for the SASHELP and SASUSER libraries. In addition, this application demonstrates how to
dynamically assign a data set to an orgchart at run time. Documentation in the SAS/AF Frame Dictionary
covers the tasks required to assign a data set to a chart at build time via the orgchart attributes window.

Task List
1. Create frame

2. Create orgchart object

3. Set object attributes

4. Create frame SCL

1. Create a Frame

Fig. 2
Create a new frame
from the Build window
by selecting File, New,
and Entry from the
Build pmenu.

Frame name is DEMO1.

3

2. Place the Orgchart Object
Right click in the new frame and select Make to display the Make list.

3. Orgchart Attributes
Orgchart attributes are set in a series of windows, beginning with the main attribute window shown in
Fig. 5. Right click the orgchart and select Object Attributes to display the attributes window.

Fig. 3
Make list. Select the
Organizational chart
class.

Fig. 4
A new frame with
a placed orgchart
object.

Fig. 5
Main orgchart
attributes window.
Select the Help button
for a description of
attributes not covered
in this tutorial.

You can resize the orgchart by
grabbing a corner with the left
mouse button held down and
dragging to size.

When an orgchart will
display many nodes, you
will probably want to
explicitly set the horizontal
and vertical node spacing
for best appearance and
efficient use of display real
estate. Node spacing units
are pixels so the visual
effect of a setting varies
with display resolution.

Chart style is set to
Directory.

4

Data Set Name and Title

Chart Appearance Attributes

Select the Chart appearance item from the main attribute window to display the Chart Appearance
window.

4. Frame SCL
Following is the complete frame SCL for the DEMO1 application.

/* */
/* */
/* HOW TO USE THE SAS/AF FRAME ORGCHART OBJECT */
/* */
/* TOM MIRON */
/* */
/* MIRON INFOTEC, INC., MADISON, WI (608) 255-3531 */
/* */
/* */
/* DEMO1 - LIBRARY/MEMBER/COLUMN CHART */
/* */
/* */

INIT:

/* */
/* */
/* CREATE THE TABLE DISPLAYED IN THE ORGCHART */
/* */
/* */

 /* INTERMEDIATE TABLE: COLINFO */

 submit continue sql;

 create table work.colinfo as

 select
 libname
 ,memname
 ,name

Fig. 6
Attributes window.

Fig. 7
Chart appearance
window

All charts must have a root level.
Here, we are using the title as
the root. The title is blank and
Hide Entire Title is checked so
nothing appears on the chart,
but the root requirement is
satisfied.

Title remains blank.

All the following code is in
the frame’s INIT section.

The SQL creates a table with the
libname, member name (data set name),
and variable name of all variables in all
data sets in the SASHELP and SASUSER
libraries. See the Help system or SAS
Technical Report P-222 page 286 for
more on the DICTIONARY views.

We will assign the data set
name at runtime so select
“Determine value at
runtime” from the down-
arrow drop-down list. The
Data set field remains
blank.

Key a widget (object) name in
the Name field. The name of this
orgchart object is “ORGCHART.”
The name is arbitrary.

Chart appearance item. See Fig. 7.

The show all levels checkbox
determines if all or just the first
two levels are shown on the
initial display. For DEMO1 it is
left unchecked.

5

 from
 dictionary.columns

 where
 lowcase(libname) in('sashelp', 'sasuser')
 and lowcase(memtype) = 'data'

 order by
 libname
 ,memname
 ,name

 ;

 endsubmit;

 /* CHART TABLE: COLUMNS */

 submit continue;

 data columns;

 attrib

 objname
 length=$8
 label="Object Name"

 level
 length=8
 label="Org Chart Level"

 ;

 set colinfo;

 by libname memname name;

 /* THE LIBREF IS CHART LEVEL 1 */

 if first.libname then do;

 objname = libname;

 level = 1;

 output;

 end;

 /* THE MEMBER (DATA SET) NAME IS CHART LEVEL 2 */

 if first.memname then do;

 objname = memname;

 level = 2;

 output;

 end;

 /* THE VARIABLE NAME IS CHART LEVEL 3 */

 if first.name then do;

 objname = name;

 level = 3;

 output;

 end;

 run;

 endsubmit;

/* */
/* */
/* IN THE ATTRIBUTES WINDOW NO DATA SOURCE IS SPECIFIED FOR THE */
/* ORGCHART BECAUSE THE DATA SET WE WANT TO USE IS CREATED AT */
/* RUNTIME. */
/* THERE IS NO METHOD TO EXPLICITLY ASSIGN A DATA SOURCE TO AN */
/* ORGCHART OBJECT, BUT WE CAN DO IT BY SETTING INSTANCE */
/* VARIABLES "DATASET" AND “MAPLIST”. */
/* */
/* */

 /* GET THE OBJECT ID OF THE ORGCHART. THIS IS THE LIST ID OF */
 /* OF THE OBJECT. */

 call notify('.', '_get_widget_', 'orgchart', chartid);

 /* SET THE INSTANCE VARIABLE "DATASET" TO THE TABLE CREATED */
 /* ABOVE. */

 chartid = setnitemc(chartid, 'work.columns', 'dataset');

The DATA step uses BY variable processing to create
a table with two variables: OBJNAME is the name of
the libref, data set, or variable to be represented by a
chart node, LEVEL indicates the hierarchical level of
the object. Librefs are level 1, data sets level 2, and
variables level 3.

Get the object id of the chart. This
is also the list id of the object.

End of SQL step

The COLUMNS data set will be
displayed in the orgchart.

Assign the data set name to the
instance variable (list item) “dataset.”

Read the table created in the preceding SQL step.

End of DATA step that creates the table displayed in the orgchart.

6

 /* CREATE A MAPPING LIST */

 maplist = makelist();

 maplist = setnitemc(maplist, 'objname', 'text');

 maplist = setnitemc(maplist, 'level', 'level');

 maplist = setnitemc(maplist, 'level', 'current_node');

 /* ASSIGN THE MAPLIST AS THE INSTANCE VAR "MAPLIST" */

 chartid = setniteml(chartid, maplist, 'maplist');

 /* NOW TELL THE CHART TO REPOPULATE WITH ITS NEW DATA SOURCE */

 call send(chartid, '_repopulate_');

return;

DEMO1 Display
By default, two levels are displayed: the root (hidden title) and the first data level (the libref). See Fig. 7.

Double Click on a Collapsed Node Expands the Node

Assign the map list id as the chart
instance variable “maplist.”

Send the chart the _REPOPULATE_
method to populate the chart from the
data set.

Fig. 8
The initial display of
the DEMO1
application.

The title is the chart root but
does not appear because it’s
hidden. See Fig. 7.

The right arrow indicates that
the node is collapsed.

Fig. 9
Expanded SASHELP/
ACTIONS node shows
data sets and
variables.

Data set (level=2)

Variables (level=3)

Create and assign items to a list (“maplist” in this
case) that will be assigned as the chart node
mapping list. This list tells the chart how data set
variables correspond to chart node variables. See
Orgchart documentation for more on node
variables.

Library (level=1)

End of INIT section.

7

DEMO2 - Add Node Color
The DEMO2 application is a modification of DEMO1. DEMO2 shows you how to add color to nodes.
The color is static, i.e., it is assigned once, via a variable in the chart data set. When assigned in this
manner, the color does not change based on runtime actions. The orgchart class does provide a method
(_SET_COLOR_) that you can use to assign node color at runtime. Assigning a static color is useful when
you want the color to correspond to a node’s level in the chart hierarchy or some other static node
attribute.

Task List
1. Add color variable to the chart data set (modify frame SCL).

2. Add the foreground color item to the mapping list (modify frame SCL).

1. Add Color Variable (partial frame INIT section)
 /* CHART TABLE: COLUMNS */

 submit continue;

 data columns;

 attrib

 objname
 length=$8
 label="Object Name"

 level
 length=8
 label="Org Chart Level"

 color
 length=$24
 label='Foreground Color'

 ;

 set colinfo;

 by libname memname name;

 /* THE LIBREF IS CHART LEVEL 1 */

 if first.libname then do;

 objname = libname;

 level = 1;

 color = 'red';

 output;

 end;

 /* THE MEMBER (CATALOG) NAME IS CHART LEVEL 2 */

 if first.memname then do;

 objname = memname;

 level = 2;

 color = 'blue';

 output;

 end;

 /* THE OBJECT (ENTRY) NAME IS CHART LEVEL 3 */

 if first.name then do;

 objname = name;

 level = 3;

 color = 'green';

 output;

 end;

 run;

 endsubmit;

Create another variable in the chart data
set, COLUMNS, to hold the color of each
node. The variable name is arbitrary,
here its’s called COLOR.

Assign a value to COLOR for each level.

8

2. Add Color Control Node Variable to the Mapping List

The map list assigns the value of data set variable COLOR as the node variable FOREGROUND_COLOR.

 /* CREATE A MAPPING LIST */

 maplist = makelist();

 maplist = setnitemc(maplist, 'objname', 'text');

 maplist = setnitemc(maplist, 'level', 'level');

 maplist = setnitemc(maplist, 'level', 'current_node');

 maplist = setnitemc(maplist, 'color', 'foreground_color');

 /* ASSIGN MAPLIST AS THE INSTANCE VAR "MAPLIST" */

 chartid = setniteml(chartid, maplist, 'maplist');

 /* NOW TELL THE CHART TO REPOPULATE WITH ITS NEW DATA SOURCE */

 call send(chartid, '_repopulate_');

return;

DEMO2 Display

DEMO3 - Add Node Select Processing
DEMO3 is a modification of DEMO2. DEMO3 shows how to add node selection processing. We will add
the ability to view a data set when the user single-clicks on a data set node. In this example, the Hide/
unhide children upon double click attribute is turned off in the Select Action attributes window (see Fig.
11) and Show all levels is checked in the Chart Appearance window (See Fig. 7). The net result is the
entire chart is always displayed to the user. Expand/collapse is disabled because we want to capture a click
event and distinguishing between a single-click (select node) and double-click (expand/collaspe) involves
techniques beyond the scope of this tutorial.

Task List
1. Add SCL LENGTH statement to declare new character variables and a non-executable LINK statement

to avoid compile-time warning message (modify frame SCL).

2. Add a node select routine to capture the selected data set name and its parent library, then call the
FSVIEW function to view the data set (modify frame SCL).

3. Name the select action routine in the Select Action attribute window.

The maplist item “foreground_color”
determines the foreground color of a
node. There is also an optional
“background_color” item.

Fig. 10
DEMO2 display
with some nodes
expanded.

Each level is displayed in the
color assigned via the maplist.

9

1. LENGTH and LINK statements
The node select routine is not executed via a LINK statement in the SCL. When the code is compiled the
compiler will complain that a routine exists that is never linked to. Place a LINK statement outside of any
executable section to eliminate the message. The following statements are placed before the frame’s INIT
section.

length
 name $8 lib $8
;

link click1;

2. Node Select Routine
This routine is executed when a node is selected. See Fig. 11.

/* */
/* */
/* CLICK1 */
/* */
/* */

CLICK1:

 /* FIRST GET THE NODE ID OF THE SELECTED NODE */

 call send(chartid, '_get_selected_', widgetid, nodeid);

 /* MAKE SURE A NODE WAS SELECTED. IF NOT THEN RETURN NOW. */

 if not nodeid then return;

 /* GET INFO FOR THE SELECTED NODE: TEXT (OBJECT NAME) AND LEVEL */

 call send(chartid, '_get_current_', nodeid, 'text level', node_list);

 /* CHECK THE NODE LEVEL. WE'RE ONLY INTERESTED IN MEMBERS */
 /* (SAS DATA SETS), LEVEL = 2. */

 level = getnitemn(node_list, 'level');

 if level ne 2 then return;

 /* GET THE NAME (TEXT) ASSOCIATED WITH THE NODE */

 name = getnitemc(node_list, 'text');

 /* WE NEED THE PARENT OF THE NODE, I.E. THE LIBRARY. THE TEXT ITEM */
 /* IN THE NODE LIST HOLDS THE NAME OF THE LIBRARY. */

 call send(chartid, '_get_parent_', nodeid, 'text', parent_list, 'n');

 lib = getnitemc(parent_list, 'text');

 /* GOT THE LIBRARY AND MEMBER NAME SO BROWSE THE DATA SET */

 call fsview(lib || '.' || name);

return;

3. Name the Select Routine in the Select Action Window
The node selection routine is named in the Select Attribute window. To get to the window bring up the
object attributes window, select Node appearance, Select action.

Call method to get the nodeid of the selected
node in SCL variable NODEID.

NODEID could be 0 if a node was not directly
selected, in that case return immediately.

Call method to set the TEXT and
LEVEL node variables in list
NODE_LIST.

If level is not 2, i.e., the node does not name a
SAS data set, then return now.

The TEXT item is the data set name.

The parent of this node will be the
libref for the data set.

Form libref.memname and call FSVIEW
to display the data set.

Fig. 11
Node Select Action
attribute window. CLICK1 is named in the Select

Action attribute window as the
routine to run when the user
clicks on a node.

LENGTH statement to declare NAME and LIB as character.

Non-executable LINK statement. (See explanation
above.)

CLICK1 is placed after the frame’s
INIT section as a separate routine.

Expand/collapse behavior
check box.

10

DEMO3 Display

Data Set Node Select
When the user clicks on a data set level node, the data set is displayed via the FSVIEW function.

Fig. 12
For the DEMO3
application all
orgchart levels are
displayed on initial
display because Show
all levels has been
checked. See Fig. 7.

If the user selects a SAS data
set name (level=2) that data set
is displayed by FSVIEW. See
below.

Fig. 13
FSVIEW display of
ACTIONS selected
above.

The selected data set
(ACTIONS in this case) is
displayed.

SAS/AF is a registered trademark or trademark of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

	Main TOC

