
It Takes at Least Two to Tango -
A Data Set JoiningPrimer

Caroline Balder, GIV

Abstract

The ability to combine different types of data
from multiple hardware and software platforms
is a major strength of the SAS@system. SAS has
blessed information analysts with a wealth of
different options for joining data values from
many different data structures. Therefore, an
information analyst needs to determine who
(parent data structures), what (“software envi-
ronment”), where (“hardware environment”),
how (the tools available to perfiormthe join) and
why (the required contents of the child data set)
of a join in order to determine which strategy to
use, This paper will discuss the joining tech-
niques offered within the SAS system and give
examples of their use.

Introduction

Data warehouses can contain data collected and
stored in many different physical forms. These
data stmctures (the physical form of the data)
can inc!ude flat files, database tables, spread-
sheets, and SAS data sets. Utilization of this
“raw” data by an itiormation analyst can require
combking two or more of these data structures
through the use of a join (merging and joining
are synonymous terms referring to the combina-
tion of’data structures through the use of com-
mon variables/fields). One of the strengths of
the SAS system is that it provides many different
options for joining data values from many dii3er-
ent data structures.

Joining Strategies

Determining the appropriate joining strategy for
a given situation requires that the information
analyst evaluate the who, what, where, why and
how of a join.

1

● Who and Why- “Parent” and “Child”
Data Structures

Selection of the “parent” data structures is to-
tally dependent on the required contents of the
“chiki” data structure. In other words, the
“parent” data structures should contain all vari-
ables and data values that are needed in the final
outcome of the “child” data structure. The
“parent” data structures are the SAS data sets,
database tables and other data structures con-
tained within a data warehouse. The job of the
information analyst is to identi$ which of these
stored data structures need to be joined to create
the required new “child” data structure.

● What - “Software Environment”

The “software environment” also greatly influ-
ences how a group of two (2) or more data
structures are joined. Selection of a joining
strategy increases in complexity as the number of
“soilware environments” containing data in-
creases. A standard rule of thumb is that data
structures from the same environment should be
joined within that environment. However, this
does not always hold true since system resources
and other factors may indicate that it is more
‘efficient” to join data structures fi-ointhe same
soilware within a different “environment”.

Figure 1 illustrates a common joining strategy
with some of the ambiguities involved. The
optimum place to join a SAS data set and a flat
file is within SAS. However, whether the
database tables are joined within the database
environment depends upon the type of join re-
quired. For instance, outer joins can be very
database resource intensive and the “better”
choice might be to join the two database tables
within the SAS environment.

Physical File Structures Software where data
Location is joined.

1 1
Flat
File

Joined
within

‘mm.

H y~/----7.........................

Mainframe / /

Figure 1. Example of joining strategy.

Therefore, determining whether data structures
should be joined within a given “soflsvare envi-
ronment” depends upon the impact of the system
resources by this data manipulation and whether
the joining tools available within the
“environment” produce the required result. If
the impact on system resources is acceptable and
the tools available produce the required results
then the data structures should be joined within
that environment. If the answer to the first
question is “no” then other “environments” need
to be evaluated. However, this decision is not
always black and white, and a large draw upon
system resources for a given join maybe accept-
able within certain situations. Therefore, each
joining scenario needs to evaluated thoroughly
to determine the costs vs. benefits of joining data
structures within a given environment.

● Where - Physical Location of the Join
“The Hardware”

Physical location defines where the data resides
(hardware platform) such as two SAS data sets
with one residing on a PC and one on a main-
frame. Deciding on which hardware platform to
join these data sets can be an involved process.

Joined
within
SAS

Joined
I

within
Database

The choice is not always clear because advances
in PC CPU processor power and speed blurs the
line between a mainftame approach and a PC
approach. Bench-marking of each hardware
system is critical to developing a realistic joining
strategy.

● How- Selection of a “Joining Tool”

Availability of the proper soflware joining tool is
the last decision required of the information
analyst. The rest of this paper will assume that
the SAS environment was the correct place for a
join to occur.

The following criteria affect joining tool selec-
tion:

a) the information requirements of the “child”
data set and

b) the type and amount of information con-
tained within the “parent” data structures.

Table 1 below lists examples of different i.nfior-
mation requirements for a “child data set and
the type of join and SAS tool used to produce
that result.

2

ChiId Informational Type of ParentData SetJoin SAS Tool

Requirements
A. All data values f?om all parent Match-Merge or Full Outer Join MERGE statement with BY

data sets. statement4
PROC SQL2

B. All data values from a single Non-base parent data set(s) are PROC FORMAT1
parent data set (base) and all used as “Look-up” table(s) or SET statement with KEYS=
data values from the other par- Right or Left outer join. option3
ent data set(s) that match the PROC SQL2
data values of the joining vari-
ables within the base.

C. Only those data values fi-omall Inner Join PROC SQL2
parent data sets that contain the MERGE statement with IN=
same data values within the option and BY statement4
joining variables.

D. Placement of parent data sets One-to-one Merge MERGE statement4
side by side

E. Expansion of child &ta set to Many-to-many Join PROC SQL2
include all levels of a non-
common variable,

Table 1. The type of parent data set joins required to construct a specific child data set.

Scenario A - Groups of two or more parent data
sets are used to build or create a child or output
data set. In scenario A all data values from all of
the parent data sets are needed to create the
child data set (Table 1). The type of joins used
to accomplish this are a match-merge or a fill
join. Missing values are placed within observa-
tions that do not occur within all parent data
sets. Example 1 illustrates the two SAS tools
capable of fi.dljoins.

Scenario B - All data values of a base parent
data set are kept and only those observations
containing matching data values of the common
variable(s) are selected from ail other parent data
sets (Table 1). The terminology right or left join
is an indication of which parent data set to use as
the base. Example 2 illustrates all three SAS
tools available for right or left joins.

Scenario C - An inner join is used when the
child data set needs to contain only those data
records flom the parent data sets where the
common variable(s) are identical. Example 3
illustrates an inner join.

Scenario D - One-to-one merging combines all
of the parent data sets using a common variable
and creates a child data set that is as large as the
largest data set within the merge list. The
parent data sets are not joi~ed by common vari-
ables. Instead parent data sets are placed side by
side and each common variable data value is
super-imposed by the data values within the last
parent data set within the merge. Example 4
illustrates when a one-to-one merge could be
used.

Scenario E - Expansion of the child data set
occurs when one data set has multiple levels of a
non-common variable. An example would be
where one data set contains a listing of names by
city and the other contains city information. The
child data set required contains all of the names
for each city plus the city itiormation. In this
case the data sets are joined by the common
variable city and all names within a city are
transferred to the child data set (Example 5),

SAS Tool Pros
‘ROC FORMAT Creates a “look-up” table using

either single variables or multipl;
variables for the key and label
components of the format.

AERGE statement4 Used only for one-to-one merges
no sorting required and two (2) or
more data sets can be joined.

-1LERGE statement with BY Two or more data sets can be
tatement4 ‘oined by common variables. All

values of all variables within all
data sets will be retained.

hERGE statement with IN= Two (2) or more data sets can be
lption and BY statement4 joined by ~ommon variables. All

data from each data set will be
read before subletting criteria ap-
died.

‘ROC SQL’ Data sets do not need to be pre-
sorted.
Inner joins can occur between
two (2) or more data sets.

ET statement with KEYS=ITWO(2) or more data sets can be
“oinedby common variables.

Cons
The key values must be unique, m
duplicate values can occur within th{
data set used to create the format
Format can be applied to only on~
data set at a time.
The data sets are not joined by an:
common variables. If there is a com
mon variable between the data sets
then the common variable will contail
the values of the common variable il
the last data set joined.
All data sets must be sorted by com
mon variable.

All data sets must be sorted by com
mon variable.

All outer joins occur between twf
data sets only.
Inner join contains only those value!
of the common variable that rnatcl
between the data sets ioined.
Data sets need to be indexed by com
mon variables.

Table 2. Pros and cons for using each type of SAS joining tool.

Conclusions

The pros and cons of using the different joins are
listed in Table 2.

The selection of a joining tool is dependent on
the environment of the parent data structures,
the required contents of the child data set and
what tool is the most system resource efficient,
During the application development process,
careii.d bench-marking of joining tools is re-
quired to ensure selection of the correct environ-
ment and tool for the job.

Example 1- Scenario A examples of both a match-merge and SQL fulI outer joins.

The first two (2) data steps are used to create the
REPS and R(3N data sets.

DATA REPS;
INPUT @Ol REGION $9.

@l 1 REPNAME $10.;
CARDS;
Southeast Jones
Southeast Smith
Southeast Doe
Northeast Harris
Northeast James
Northeast Finch

Rim;

DATA RGN;
INPUT @Ol CITY $10.

(@I 1 STATE $2.
@14 REGION $10.;

CARDS;
Atlanta GA Southeast
New York NY Northeast
Portland OR Northwest

RUN;

Match-Merge : Both data sets must be have the
same variables sorted in the same order. All data
values from both parents are present.

PROC SORT DATA=REPS;
BY REGION;

RUN;

PRC)C SORT DATA=RGN;
BY REGION;

RUN;

ODATA REPRGN;
MERGE REPS RGN;
BY REGION;

RUN;

OMatch-Merge Results
REGION REPNAME
Northeast Harris
Northeast James
Northeast Finch
Northwest
Southeast Jones
Southeast Smith
Southeast Doe

CITY STATE
New York NY
New York NY
New York NY
Portland OR
Atlanta GA
Atlanta GA
Atlanta GA

Below are two examples of Full Outer Joins
using PROC SQL (structured query language).
These two joins differ because of the order of the
variables in the select portion of the SQL. As in
the match-merge all values from both parent data
sets are present.

PROC SQL;
@CREATE TABLE RGNREPSA AS
SELECT A. REGION,

B.CITY,
B.STATE,
A. REPNAME

FROM REPS A FULL JOIN RGN B
ON A. REGION= B.REGION;

(3Full Outer Join Resutts - A
REGION CITY STATE REPNAME
Northeast New York NY Harris
Nottheast New York NY James
Northeast New ‘fork NY Finch
Northwest Portland OR
Southeast Atlanta GA Jones
Southeast Atlanta GA Smith
Southeast Atlanta GA Doe

@CREATE TABLE RGNREPSB AS
SELECT A. REGION,

B.CITY,
B. STATE,
A. REPNAME

FROM RGN A FULL JOIN REPS B
ON A. REGION= B.REGION;

QUIT;

@Full Outer Join Results - B
REGION CITY STATE REPNAME
Northeast New York NY Harris
Northeast New York NY James
Northeast New York NY Finch
Northwest Portland OR
Southeast Atlanta GA Jones
Southeast Atlanta GA Smith
Southeast Atlanta GA Doe

5

Example 2- Scenario B examples of a ‘look-up” table, SET statement with KEYS= option and
SQL left join.

Creation of “look-up” table using PROC FOR-
MAT:

ODATA CALENDAR;
LENGTH MON $10.;
WEEK= I ;
DO DAY= ‘OIJAN96’ TO ’31DEC97’D ;

IF WEEK12AY(DAY) = 1 THEN
WEEK= WEEK + 1;

IF WEEK=53 THEN WEEK= I ;
DATE= LEFT(PUT(DAY,WORDDATEI 8.));
MON=LEFT(SCAN(DATE, l));
MONTH=MONTH(DAY);
YEAR=YEAR(DAY); FISCYEAR=YEAR;
IF MONTH=12 AND WEEK= I

THEN FISCYEAR=YEAR + 1;
KEEP DATE WEEK MONNAME FISCYEAR;

OUTPUT;
END;

(DSampk? of CALENDAR Data Set

‘MONNAME WEEK DATE MONTH FLSCYEAR
‘January 1 January 1, 1996 1 1996
January 1 January 2, f996 1 1996
January 1 January 3, 1996 1 1996
January 1 January 4, 1996 1 1996
January 1 January 5, 1996 1 1996
January 1 January 6, 1996 1 1996

Format Creation - The code below creates vari-
ables required by PROC FOR.MAT5.

DATA WORDDATE;
SET CALENDAR END=EOF;
HLO=’ ‘;
START=DATE
LABEL= PUT{FISCYEAR,Z4 .) I]MONII

PUT(WEEK,Z2);
FMTNAME=’YMVV’;
TYPE=’C’;
OUTPUT WORDDATE;
IF EOF THEN DO;

HLO=’O’;
START= ’OTHER’;
LABEL=’ ‘;
OUTPUT WORDDATE;

END;
RUN;

PROC FORMAT CNTLIN=WORDDATE;
RUN:

The following data step uses the format created
in the previous PROC FORMAT statement to
create two (2) new variables containing data
values fi-omthe calendar data set.

C3DATA SALESA;
LENGTH FISCYEAR $4 MONNAME $10

WEEK $2;
SET @SALES;

FISCYEAR=SUBSTR(PUT(DATE,$YMW.), 1,4);
MONNAME=SUBSTR(PUT(DATE, $YMW.),5,1 o);
WEEK= SUBSTR(PUT(DATE, $YMW.),I 1);
RUN;

The following Left Inner Join creates the same
child data set.

@PROC SQL;
CREATE TABLE SALEC AS
SELECT B.FISCYEAR,

B.MON,
B.WEEK,
A. DATE,
A. SALES

FROM SALES A LEFT JOIN CALENDAR B
ON A. DATE= B.13ATE;

RUN;
QUIT;

@Sample of SALES Data Set

DATE SALES
January 1, 1996 67561.59
January 2, ?996 1162.28
January 3, 1996 52629.84
January 4, 1996 34110.43
January 5, 1996 25372.64
January 6, 1996 15320.03

@Sample of child data sets created by the Format
and Left Join techniques.

FISCYEARMON WEEK DATE SALES
19$6 April 14 April 1, 1996 3922.42
1996 April 15 April 10, 1996 2438.21
1996 April 15 April 11, 1996 3194.39
1996 April 15 April 12, 1996 5690.00
1996 April 15 Aprii 13, 1996 1357.40
1996 April 16 April 14, 1996 264&88
1996 April 16 April 15, 1996 4963.07
1996 April 16 April 16, 1996 3274.21

6

Use of the Set Statement with Key= Option to
join the SALES and CALENDAR data sets.
PROC DATASETS LIB=WORK
MODIFY CALENDAR;
INDEX CREATE DATE;

QUIT;

@DATA SALEB;
SET SALES;
SET CALENDAR

DROP FISCYEAR;
RUN:

KEY=DATE;

@Sample of SALEB Data Set.

DATE SALES MON WEEK MONTH
January l,1996 67561.59 January 1 1
January2, 1996 1162.28 January 1 1
January3, 1996 52629.84 January 1 1
January4, 1996 34110.43 January 1 1
January5, 1996 25372.64 January 1 ‘1
January6, 1996 15320.03 January 1 1

Example 3- Scenario C examples of SQL inner joins and MERGE statement with IN= options.

Inner join using PRO-C SQL.
PROC SQL
@CREATE TABLE RGNREP AS
SELECT A, REGION,

B.CITY,
B. STATE,
A. REPNAME

FROM REPS A, RGN B
WHERE A. REGION= B.REGION;

QUIT;

@Results from both the Inner Join and Merge

REGION CITY STATE REPNAME
Northeast New York NY Harris
Northeast New York NY James
Northeast New York NY Finch
Southeast Atlanta GA Jones
Southeast Atlanta GA Smith
Southeast Atlanta GA Doe

Match-merge restricting the data wdues kept.
@DATA REPRGN;
MERGE REPS(IN=A) RGN;
BY REGION;

IF A;
RUN;

Example 4- Scenario D example of one-to-one merge.

PROC SUMMARY DATA= SALES;
VAR SALES;
OUTPUT OUT= SALESTOT(DROP=_TYPE_

_FREQ~
SUM=TOTSALES;

RUN;

Output of above summary procedure
TOTSALES
3199002.11

ODATA SUMMARY;
MERGE REPS SALETOTS;

RETAIN SALES:

OResults from One-to-One Merge
REGION REPNAME TOTSALES SALES

Northeast Harris 3199002.11 3199002.11
Northeast James . 3199002.11
Northeast Finch . 3199002.11
Southeast Jones . 3199002.11
Southeast Smith . 3199002.11
Southeast Doe . 3199002.11

Note: This type of merge is very usefid in adding
one or more total variables for use in calcula-

SALES=TOTSALES; tions.
RUN;

Example 5- Scenario E example of a many to many join.

Creation of parent data sets.
DATA REPS;
INPUT REGION $

REPNAME $;
CARDS;
Southeast Jones
Southeast Smith
Southeast Doe
Northeast Harris
Northeast James
N@heast Finch

RUN;

DATA RGN;
INPUT @Ol CITY $10.

STATE $
REGION $;

CARDS;
Atlanta GA Southeast
Miami FL Southeast
Boston MA Northeast
New York NY Northeast

RUN;

Match-merge of the two (2) parent data sets.

PROC SORT DATA= REPS;
BY RFGION;

RUN;

PROC SORT DATA=RGN;
BY REGION;

RUN;

@DATA REPRGN;
MERGE REPS RGN;
BY REGION;

RUN;

@Match-merge results in a child data set that
natches rep to a city in each region.

REGION REPNAME CITY STATE
Northeast Harris Boston MA
Northeast James New York NY
Northeast Finch New York NY
Southeast Jones Atlanta GA
Southeast Smith Miami FL
Southeast Doe Miami FL

Many-to-many Join
PROC SQL;
t3CREATE TABLE RGNREPS AS
SELECT A. REGION,

A. CITY,
A. STATE,
B.REPNAME

FROM RGN A,
REPS B

WHERE A. REGION= B.REGION ;
QUIT;

or

PROC SQL;
OCREATE TABLE RGNREPS AS

SELECT A. REGION,
A. CITY,
A. STATE,
B. REPNAME

FROM RGN A LEFT JOIN REPS B
ON A. REGION= B.REGION ;

QUIT;

~ The “child” data set of a many-to-many join
contains a record for each repin each city.

REGION CITY STATE REPNAME
Northeast Boston MA Harris
Northeast Boston MA James
Northeast Boston MA Finch
Northeast New York NY Harris
Northeast New York NY James
Northeast New York NY Finch
Southeast Atlanta GA Jones
Southeast Atlanta GA Smith
Southeast Atlanta GA Doe
Southeast Miami FL Jones
Southeast Miami FL Smith
Southeasf Miami FL Doe

8

Literature Cited

1.

2.

3.

4.

5.

SAS Institute Inc.. SAS Procedures Guide,
Version 6, Third Edition. Cary, NC: SAS
Institute Inc., 1990.275-312 pp.
SAS Institute. SAS Guide to the SQL Proce-
dure: Usage and Reference, Version 6, First
Edition. Cary, NC: SAS Institute Inc., 1989.
142-147 pp.
SAS Institute. SAS Technical Report P-222,
Changes and Enhancements to Base SAS
Soflware, Release 6.07. Cary, NC: SAS In-
stitute Inc., 1991.91, 207-217 pp.
SAS Institute. SAS Language: Reference,
Version 6, First- Edition. Cary, NC: SAS
Institute Inc., 1990.147-155 pp.
Bahler, C. and Clos, S.. To Format or Merge
... That is the Question. Proceedings of the
Southeast SAS Users Group. 3:363-367.

SAS is a registered trademark or trademark of
SAS Institute Inc. in the USA and other coun-
tries. @indicates USA registration.

	Main TOC

