
1

SAS Data Views: A Virtual View of Data
John C. Boling, SAS Institute Inc., Cary, NC

ABSTRACT

The concept of a SAS data set has been extended or
broadened in Version 6 of the SAS System. Two SAS
file structures now function as SAS data sets: SAS
data files and SAS data views. Both file structures can
be processed as SAS data sets in DATA steps or
PROC or procedure steps. This paper introduces the
concept of a SAS data view, presents its advantages
and disadvantages, discusses the three types of SAS
data views, and compares its structure with that of a
SAS data file.

Defining a SAS Data View

The SAS data file is already familiar to experienced
SAS users because it represents what, historically, has
been called a SAS data set. For example, 1982
Version SAS data sets and Version 5 SAS data sets
are technically referred to now as SAS data files. This
is essentially a change in terminology. The new file
structure and definition in Version 6 is the SAS data
view.

Unlike SAS data files, SAS data views do not contain
actual data. Rather, SAS data views describe data
stored in other file structures. Examples of other file
structures are

• DB2, SQL/DS, and ORACLE tables
• sequential files and VSAM files
• other SAS data sets.

The data the view describes are obtained when the
view is processed as a SAS data set in a DATA step or
PROC step. It is appropriate to refer to SAS data views
as virtual SAS data sets since they represent virtual
views of data. The data are obtained at run time.

For example, this program prints the SAS data set
SASDATA.YEAR93:

 proc print data=sasdata.year93;
 run;

If the data set is a SAS data file, the PRINT procedure
processes the data stored in the SAS data file. If the
data set is a SAS data view, the instructions in the view
are used to retrieve the data and pass them to the
calling task, in this case PROC PRINT, for processing.
Thus PROC PRINT can directly print data from a DB2
table, a sequential file, a VSAM file, a Lotus 1-2-3 file,
or even multiple files.

Additionally, the instructions in the view definition can
specify how to subset the rows (observations), the

columns (variables), and can even create new columns
(variables) not stored in the original file.

SAS Data View and Engine Processing

When a SAS data set is processed, a request for data
is made to the SAS supervisor. The supervisor
recognizes the SAS data set is a SAS data view and
loads the appropriate engine to obtain the data.

An engine is a set of routines or instructions executing
on a host that interfaces to a specific file format.
Engines allow these file formats to be processed as
SAS data files. The responsibility of the engine is to
obtain the data, and pass them to the calling task for
processing. In other words, the engine materializes the
data for appropriate processing by the DATA step or
PROC step.

Advantages of SAS Data Views

There are a number of advantages to using SAS data
views. In particular, they

• allow definition of multiple perspectives on data
• minimize data replication
• minimize maintenance
• always process current data
• allow processing of proprietary file structures
• allow source code to be hidden from users.

Defining Multiple Perspectives on Data

Since the data reside in other file structures, SAS data
views can represent multiple views or perspectives on
the same file. For example, a corporate office
maintains financial data on the Chicago, New York,
Kansas City, and Seattle offices in a common DB2
table. However, when the Chicago office processes the
data, the Chicago office only sees the data relevant to
their office. Likewise, when the New York office
processes the data, the office only processes the New
York data. A different view is defined for each regional
office to use against the same table of data.

Minimizing Data Replication

Disk storage is premium. Unfortunately, in many
organizations data replication occurs frequently and
this valuable storage space is wasted.

By defining multiple views to a common file, data
replication is avoided. In the previous example, it is not
necessary for each regional office to have its own copy
of the data since they are stored in a common file.

2

Since no data are stored in the SAS data view, the
view requires little storage space.

Data Are Always Current

The view does not obtain the data until the view is
processed. Thus, as the data values in the file change,
the view definition always reflects the current data.

Processing Proprietary Files

Views permit the SAS System to process other
proprietary file structures directly without first extracting
the data and reading them into a SAS data file. SAS
data views use engines, which are instructions that tell
the SAS System how to logically model and interpret
other proprietary files directly as SAS data sets.

Hiding Source Code

Source code can be shielded from users and stored in
a SAS data view definition. The user simply processes
the view as a SAS data set and the view handles the
processing.

Disadvantages of SAS Data Views

One major disadvantage to using SAS data views is
the additional overhead required to process data
defined by a SAS data view as compared to processing
a SAS data file.

The overhead is a function of engine processing and
the layering involved since it is possible to chain
multiple SAS data view definitions together. If the same
data will be analyzed in multiple steps in the same
program, it is advisable to first create a SAS data file
representing the data and then process that file.

A secondary disadvantage is that the processing
instructions comprising a type of SAS data view (know
as a DATA step view) cannot be examined directly.
Although this protects the DATA step view definition
from other users, the source code is not retrievable
from the view definition. The source code must be
explicitly saved prior to storing it in the view if the
source code needs to be examined.

Types of SAS DATA Views

There are three types of SAS data views:

• SAS/ACCESS® views
• SQL views
• DATA Step views

SAS/ACCESS Views

SAS/ACCESS views are created using SAS/ACCESS
software and allow access to other vendors’ proprietary
file structures. The specific interface engines supported
include:

• DB2
• SQL/DS
• IMS-Dl/I
• IDMS
• DB2/2
• SQL/400
• ORACLE
• Rdb/VMS
• CA-DATACOM/DB
• INGRES
• INFORMIX
• SYBASE’s SQL Server
• Microsoft’s SQL Server
• ODBC
• ADABAS
• System 2000 Data Management Software
• PC file formats

SAS/ACCESS views support both read and write
functionality.

SQL Views

SQL views of SQL tables (SAS data sets are SQL
tables) are created by PROC SQL and contain SQL
statements. SQL views provide read functionality only.

DATA Step Views

DATA step views are created in the DATA step and
contain DATA step statements. DATA step views
provide read functionality only.

Structure of SAS Data Files

SAS data files have MEMTYPE=DATA and contain
both a descriptor component and a data component.
Information from the descriptor component can be
examined using PROC CONTENTS and the data
component using PROC PRINT. Thus, when the
descriptor component and data component are
physically stored together in the same file structure, the
SAS data set is referred to as a SAS data file. Figure 1
illustrates the structure of a SAS data file and shows
that information can be examined and processed with
DATA and PROC steps.

3

 SAS data file

 Figure 1

As Figure 2 illustrates, a SAS data view represents a
separation of the descriptor component and the data
component. A SAS data view stores a descriptor
component, but no data component. The data are
stored externally to the SAS data view. SAS data views
have MEMTYPE=VIEW. When a SAS data view is
processed by a DATA step or PROC step, the view
obtains the data and passes them to the DATA step or
PROC step for processing.

 data component

 SAS data view

 Figure 2

Identifying SAS Data Files and SAS Data
Views

Since both SAS data files and data views are classified
as SAS data sets, a SAS data file cannot have the
same name as a SAS data view within the same
physical or logical SAS library.

The CONTENTS procedure can be use to verify the
SAS data set MEMTYPE as DATA (a SAS data file) or
VIEW (a SAS data view). The engine definition

identifies whether the view is a SAS/ACCESS view (the
appropriate proprietary engine is reported), an SQL
view (SASESQL engine), or a DATA step view
(SASDSV engine). Since the view contains no data, the
number of observations reported by PROC
CONTENTS is missing.

Creating and Using SAS/ACCESS Views

SAS/ACCESS views are created using the appropriate
SAS/ACCESS software. The following program uses a
SAS access file named SASDATA.FRQFLYR to a DB2
table to create a view named SASDATA.N93. The view
selects the columns FFID, MBRTYPE, NAME, and
MILETRAV and subsets those rows that satisfy the
WHERE expressions.

 proc access dbms=db2 access=sasdata.frqflyr;
 create sasdata.ny93.view;
 select ffid mbrtype name miletrav;
 subset where state=’NY’ and
 miletrav>90000;
 run;

When the TABULATE procedure processes the data
set SASDATA.NY93, TABULATE is actually
processing the selected columns and rows directly from
the DB2 table.

 proc tabulate daya=sasdata.ny93;
 var miletrav;
 class mbrtype;
 tables mbrtype,miletrav*mean;
 run ;

If write authority to the DB2 table is granted, the
FSEDIT procedure can be used to edit the data directly
in the DB2 table.

Creating and Using SQL Views

SQL views are created using the CREATE VIEW
statement in PROC SQL. Views can be defined to
process one or more SAS data sets. Thus, views can
be defined to process other SAS data files or other
SAS data views.

The following SQL example creates a view named
SASDATA.PILOTV. The SQL view extracts columns
IDNUM, JOBCODE, GENDER, and SALARY from the
SAS data set SASDATA.PERSONL for pilots who earn
less than $70,000. The view also creates a computed
column named BONUS which is defined as eight
percent of the employee’s salary. It then sorts the data
by SALARY.

 proc sql;
 create view sasdata.pilotv as
 select idnum, jobcode, gender, salary,
 salary*.08 as bonus
 from sasdata.personl
 where jobcode contains ‘PILOT’
 and salary<70000
 order by salary;

 descriptor portion

 data portion

SAS data sets
Other

proprietary
files

DATA steps
and

PROC steps

 descriptor portion

DATA steps
and

PROC steps

4

The SQL statements are compiled and stored in the
SAS data view SASDATA.PILOTV which defines a
view to the data stored in SAS data set
SASDATA.PERSONL.

The data the view represents are not retrieved until the
view is processed. When the SAS/GRAPH® procedure
GCHART processes the SAS data view
SASDATA.PILOTV, the columns are extracted from the
SAS data set SASDATA.PERSONL, the BONUS
column is computed, the rows are subsetted and
ordered, and the bar chart is produced.

 proc gchart data=sasdata.pilotv;
 vbar jobcode/sumvar=bonus ctext=cyan
 patternid=midpoint;
 title ‘Bonus Information’;
 run ;

The DESCRIBE statement is PROC SQL is used to
review the instructions stored in an SQL view.

 proc sql;
 describe view sasdata.pilotv;

The SQL instructions appear in the SAS log:

NOTE: SQL view IN.PILOTV is defined as:

 select IDNUM, JOBCODE, GENDER, SALARY,
 SALARY*0.08 as BONUS
 from IN.PERSONL
 where JOBCODE contains ‘PILOT’ and
 (SALARY<70000)
 order by SALARY asc;

Views can also be created of other SAS data views;
thus, views can be chained together.

The following program creates a view named
SASDATA.MPILOT that extracts IDNUM, SALARY,
and BONUS columns for male pilots from the SAS data
set SASDATA.PILOTV.

 proc sql;
 create view sasdata.mpilot as
 select idnum, salary, bonus
 from sasdata.pilotv
 where gender=’M’;

When the view SASDATA.MPILOT is processed, the
view processes the SAS data set SASDATA.MPILOTV,
which is a view definition that obtains the data from the
SAS data file SASDATA.PERSONL.

If a view in the chain is not found, the view definition
does not execute.

Multiple SAS data sets can be incorporated into a SQL
view definition. In the following example, specific
columns are selected from three SAS data sets:
SASDATA.PRICES, SADATA.ORDERS, and
SASDATA.CUSTOMER. Specific rows are joined
(merged) using different keys. The view creates a new
column COST and orders the rows by two sort keys.
The three SAS data sets could represent any SAS data
file or SAS data view, that is, joining three sequential
files; a DB2 table, a sequential file, and a SAS data file;

or a DB2 table, an IMS table, and a DATACOM/DB
table.

 proc sql;
 create view sasdata.company as
 select company, city, state,
 orders.product,
 quantity, unitcost*quantity as cost
 from sasdata.prices, sasdata.orders,
 sasdata.customer
 where prices.product=orders.product and
 orders.custid=customer.custid
 order by orders.custid, orders.product;
 run;

Creating and Using DATA Step Views

DATA step views are created using the DATA step.
Just as SQL views contain compiled SQL statements,
DATA step views contain compiled DATA step
statements.

Any DATA step program can essentially be stored in a
view definition. Certain statements such as global
statements or host specific options, if present in the
DATA step, are not stored in the view definition.

When the view is processed as a SAS data set, the
DATA step program obtains the data and returns them
to the calling task for processing.

Prior to Version 6, data in an external file had to be
stored in a SAS data set before it could be processed
by SAS procedures.

 data sasdata.current;
 infile mydata;
 input @20 trandate mmddyy8. @;
 if trandate=today();
 input @1 invoice $char4. supplier $char15.
 @28 itemno $char4. amount comma8.
 clerk $char6. location $2. state $2.
 billcode $3. priority $1. quantity comma6.
 payflag $1.;
 if billcode=’120’ then due=trandate+45;
 else due=trandate+30;
 format trandate due date7.;
 run;

To create a DATA step view to the external file, add the
VIEW=option to the DATA statement. When the DATA
step executes, a compiled version of the program is
created and stored in SASDATA.CURRENT. Note that
the view name must correspond to the SAS data set
name.

 data sasdata.current/view=sasdata.current;
 infile mydata;
 input @20 trandate mmddyy8. @;
 if trandate=today();
 input @1 invoice $char4. supplier $char15.
 @28 itemno $char4. amount comma8.
 clerk $char6. location $2. state $2.
 billcode $3. priority $1. quantity comma6.
 payflag $1.;
 if billcode=’120’ then due=trandate+45;
 else due=trandate+30;
 format trandate due date7.;
 run;

When the PRINT procedure processes the SAS data
view, the sequential file is read, subsetted, a new
column DUE created, and the resulting data passed to
the PRINT procedure.

5

No intermediate SAS data file is created. The PRINT
procedure is printing the selected records and fields
from the sequential file as defined by the view.

 proc print data=sasdata.current;
 title “Transactions for &sysdate”;

 run ;

The original DATA step source statements cannot be
retrieved from a stored DATA step view definition. It is
recommended that the source code be saved so that it
can later be retrieved.

The following DATA step interleaves four SAS data
sets together and creates a new SAS data file. If the
date for QTR1, QTR2, QTR3, or QTR4 changes, the
SAS data file YEAR must be recreated.

 data sasdata.year;
 set sasdata.qtr1 sasdata.qtr2 sasdata.qtr3
 sasdata.qtr4;
 by account;
 run;

The interleave operation could be stored in a view
definition. If the data sets being interleaved are
updated, the view definition does not require any
changes.

 data sasdata.year;
 set sasdata.qtr1 sasdata.qtr2 sasdata.qtr3
 sasdata.qtr4;
 by account;
 run;

The MEANS procedure generates descriptive statistics
on the interleaved data return by the view definition.

 proc means data=sasdata.year mean min max;
 title “Descriptive Statistics”;
 run;

Summary

The concept of a SAS data set has changed
significantly in Version 6. Two SAS file structures
function as SAS data sets - SAS data files and SAS
data views. A SAS data file contains data whereas a
SAS data view only describes the data. The actual data
are stored in other file structures external to the view.

SAS data views allow you to define one or more view
perspectives on data residing in proprietary file
structures; on SAS data sets (SAS data files and SAS
data views); on SQL tables; and on any file structure
that can be read with the DATA step.

Views can be created using SAS/ACCESS software,
PROC SQL, and the DATA step. When the view is
processed as a SAS data set, the view retrieves the
data it represents and passes the data to the calling
task. Since the view only stores a description of the
data, not the data themselves, the view always
processes the most current data. Views can be used to
minimize data replication, minimize file maintenance,
process proprietary file structures, and hide source
code.

This extended SAS data set definition enhances the
richness of the SAS System for processing a variety of
different file structures.

SAS, SAS/ACCESS, SAS/GRAPH, SAS/STAT, SAS/FSP and
SYSTEM 2000 are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA
registration. AS/400, Db2, OS/2, and SQL/DS are registered
trademarks or trademarks of International Business Machines
Corporation. ORACLE is a registered trademark or trademark of
Oracle Corporation.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

	Main TOC

