
1

TEN GOOD REASONS TO LEARN SAS ® SOFTWARE’S SQL PROCEDURE
SIGURD W. HERMANSEN, WESTAT,ROCKVILLE,MD

ABSTRACT

SAS PROC SQL works interchangeably with and complements data step
programs and other procedures, but does it offer any new capabilities?
Some say no. This tutorial presents a series of examples of PROC SQL
solutions to problems that would prove very difficult or cumbersome to
implement without SQL. Examples introduce the use of table and
column aliases; catalogued views; inline views; host-variable
references; summary functions applied by group; and complex joins.

Practical applications of SQL constructs make a convincing case for
learning these useful tools. A few examples of some data step constructs
that prove difficult to match in SQL round out the discussion.

During the few years since the introduction of SAS PROC SQL, the
use of SQL for database access has seeped slowly into the large
base of SAS programmers. Slowly, from my point of view, because I
believe that PROC SQL represents a major step forward for the
SAS System and that it deserves much wider use.

Several factors have limited wider use of PROC SQL1. Beginning
SAS programmers tend to learn traditional SAS programming
methods first. It takes time to change training curricula, and the
standard SAS Language2 manual introduces methods that date back
to the era of procedural languages. Experienced SAS programmers
lack the incentive to change. Many have heard on good authority
that anything you can do in SQL, you can do in the older SAS
language constructs (called “datasteps” here). SQL, the story goes,
does not really offer anything new, and it looks strange to boot.

During the last few years I have developed a repertoire of examples
showing why beginning and experienced programmers should learn
SAS SQL. My colleagues at work have helped me refine the
reasons, often with subtle counter-arguments (“That’s not right!” and
“Your SQL example brought our system down!” and “Is it supposed
to print the right answer?”) Over time they have persuaded me to
distill hundreds of half-brewed arguments into ten good reasons.

For those that have invested a considerable amount of time studying
the SAS Language manual, I hasten to add that PROC SQL does
not make the SAS datastep obsolete. Following my glossy review of
SAS SQL, you will find several good reasons for keeping the old
SAS language manual close at hand.

Ten Good Reasons for Learning SAS SQL

REASON #1. SQL has less pointless stuff for programmers
and other users to remember .

It often takes too long to organize a SAS datastep program.
Sometimes the order of statements and options matters and
sometimes it doesn’t. Tracing through all of the statements and
options that define a variable can prove tedious, and forgetting to
put a semi-colon at the end of a statement

The “S” in SQL stands for “structured”. SQL provides a basic
structure of keywords and lists. The programmer uses this structure
to declare the type and name of the result, the column (variable)
definitions, the source data table(s), and the condition for selecting
rows (observations). As a result, SQL programs require

• fewer statements and thus fewer pesky semicolons and other
syntax elements (and, of course, no line structure). A few
basic structures work across the board. For instance, the
“Colder Than A San Francisco Winter” clause structure takes

care of most of the basic table access, restructuring, and
merge operations in Base SAS datasteps:

SAS SQL SAS Datastep
CREATE TABLE ...AS DATA
SELECT (KEEP=...);
FROM SET/MERGE;
WHERE BY...;
; IF (subsetting)....;

SQL requires a semicolon only at the end of the clause
structure. If you add to the SELECT clause and wrap around
to another line, you don’t have to worry about moving the
semicolon down to the second line. You can write different
expressions in a WHERE clause and copy and edit them
without losing a semicolon or adding an extra one. More than
just a sequence of statements that the programmer strings
together to specify a process, a SQL program has a definite
purpose and a structure to fit that purpose.

• column definitions for a table in one place. The SELECT list
not only tells the compiler which of the existing column
variables to include in the result table, it also specifies any new
columns (including constant expressions); the naming and
ordering of the columns; and formats and labels for the
columns. All of this appears in one place in the intended order.
Commas separate the elements of the SELECT list. An AS
keyword makes it easy to specify and recognize a new column
name following an existing column name or an expression
containing existing column name(s) and/or constant(s). Format
and label keywords in SAS SQL help keep the definition of a
column variable in one place. For instance, SELECT
ID,round(price*quantity,.01) AS cost FORMAT=9.2
LABEL=“buyer pays” puts a complete definition of columns
in a SELECT list.

• fewer confusing options. In a SAS datastep, for example, the
keyword KEEP may appear as a SET statement option, a
DATA statement option, or in a KEEP statement. These
optional ways to KEEP column variables differ in subtle ways.
It takes a real SAS expert to know when to use one method
rather than another. These types of options usually arise when
developers of compiler programs add new, more general
methods, but need to maintain compatibility with procedural
options inherited from earlier versions of the language.
Designed from the start as a declarative language, SQL has far
fewer vestiges of procedural language ancestors.

In SQL a programmer finds the best qualities of SAS data steps
plus a simplified structure.

REASON #2. In SQL, a table is a table is a table ... is a view.. is
a query ... is a SAS dataset ... is a relation.

When working with one dataset or combining data linked by
common keys, SAS datasteps work fine. When working with a
complex database, with interrelated tables, SAS dataset
programming becomes much more difficult.

In string processing functions in C, everything is a character; in a
Unix script, everything is a file. In SQL, everything is a table. We
may represent a table as a view, or a query on an external data
source, or a SAS dataset. We may think of it as an abstract relation.
So long as it resolves to columns of data in rows embodied in a
fixed-format data stream and described in a recognized catalog,
SQL will accept it as a table.

2

The role on the table data type in SQL extends to the elements of the
lists. The user can, for example, embed another SQL query in a
FROM or WHERE clause, as in

SELECT *
FROM (SELECT distinct t1.person,t2.outcome

FROM sample AS t1,test AS t2
WHERE t1.person=t2.subject
)

WHERE outcome in
(SELECT distinct diagnose
FROM special
WHERE agent=“VIRUS”
)

;

These so-called “in-line views” add immensely to the expressive
power of SQL. Whether in a SELECT, FROM, or WHERE clause,
an in-line view can substitute for any argument that represents a
table. SAS SQL makes it much easier to combine on different
dimensions (say, person, test, outcome) information from different
sources.

If embedded in-line views make the SQL program more difficult to
construct and understand, then the programmer can define the
same views separately and make it look more like a procedural
program, as in

CREATE VIEW samplvw AS
SELECT distinct t1.person,t2.outcome
FROM sample AS t1,test AS t2
WHERE t1.person=t2.subject
;
CREATE VIEW speclvw AS
SELECT distinct diagnose
FROM special
WHERE agent=“VIRUS”
;
SELECT *
FROM samplvw
WHERE outcome in speclvw

The programmer can also interchange references to SQL tables,
SQL catalog views, SAS work datasets or views already created
outside PROC SQL, queries on external data sources, and
permanent SAS datasets on different SAS libraries (including
EXPORT libraries). Moreover, SAS datastep programs recognize
SAS SQL tables and views as equivalent to SAS datasets. The
SAS Version 6+ System treats PROC SQL queries interspersed
among datasteps and other SAS PROC’s the same way it treats
PROC MEANS or PROC CATMOD. It interchanges SAS datasets
or views seamlessly in datasteps, SQL, and procedures.

Using views rather than temporary datasets to store the results of
preprocessing source data has a secondary benefit. It takes almost
no time, disk space or other computer resources to create a view.
Syntax errors turn up much quicker, and programmer and compiler
have a better opportunity to optimize (actually, improve) the
efficiency of the query.

Reason #3. SQL’s smarter than the average compiler
program.

A SAS datastep program may work perfectly until something
changes the order of observations in a data source. A MERGE BY
operation may run for a time and then fail with a run-time error.

Even more so than other supposedly fourth generation languages
(4GL), including SAS datasteps, SQL in SAS or otherwise does not
require the programmer to specify details that the compiler program
can figure out for itself. For instance, database access languages
require users to sort physical files or create indexes. SQL handles
these tasks as needed.

Let’s start with a short but rich example of a query program that
leaves it to the SQL compiler figure out how to order or index data
sources. Say you need total sales greater than $1000 per buyer with
the highest sales totals listed first. You have a file of purchase
orders by itemcode. You have a price list by product ID. The
itemcode appears as a substring in the product ID.

This query has to

• match up two data tables on identical values of a substring of
product ID in one table and itemcode in another;

• collect together all sales volume values related to the same
buyer ID;

• sort the table created by this query in a descending collating
sequence so that the highest sales volume appears at the top.

A SAS program based on PROC SORT and datasteps would have
to sort the purchase order and price list tables by the key itemcode
and product ID substring prior to merging the two and calculating
sales volume, sort the result of the MERGE by buyer ID and use
PROC MEANS or SUMMARY (with the NWAY option) to add up
the sales per buyer, and sort the results one last time by sales
volume.

The SQL alternative simply uses the table and column names on the
SAS catalog to describe the table required:

PROC SQL;
CREATE TABLE sales AS
SELECT DISTINCT t2.buyerID,

SUM(t1.price*t2.quantity) AS salesvol
FROM pricelst AS t1,qntordr AS t2
WHERE substr(t1.product,4,7)=t2.itemcode
GROUP BY t2.buyerID
HAVING CALCULATED salesvol GE 1000
ORDER BY CALCULATED salesvol DESCENDING
;

QUIT;

The SAS SQL compiler

• determines which of several methods should work most
efficiently and uses that method to join (equijoin or merge) the
two tables;

• determines how to collect the calculated values of salesvol for
the same buyerID and add them;

• sorts the sales table by salesvol sum.

All this happens automatically during the compiling and processing
of the query.

Many prospective users of SAS SQL have heard that SQL
programmers have to know a lot about creating and managing
indexes. Not true! Knowing how to create and manage indexes may
help make SQL programs more efficient; nonetheless, leaving
indexing and other data ordering operations entirely in the “good
hands” of the SAS SQL compiler will not do any irreparable harm
and may actually lead to more efficient processing.

The developers of SQL began with the premise that requiring the
programmer to know anything initially about the order of rows in a
table would lead to a lot of unnecessary complications. In some
special cases it makes programming more difficult if we can’t
assume, for example, that after testing for a match on person ID the
next record in sequence represents a later record for that person.
The validity of a lot of legacy programs depends on this class of
assumptions. It turns out, though, that in most cases we can write
equivalent programs that require no assumptions about the order of
rows in source tables. In doing so we allow programming language
developers some room for making compiler programs smarter.
Smarter compiler programs such as SAS SQL free us from the
details of processes such as sorting, indexing, and verifying that the
order of the data matches the process. Having to pay less attention

3

to the details of basic processes should shift our focus to the way in
which the program describes the results we want to produce from
our data sources.

Moving from partially procedural programming languages to SQL
requires this shift in focus. We call SQL a declarative language
because the SQL programmer uses it to declare a result and the
compiler program constructs a step-by-step process that
implements it. All of us do so when we declare a desired product as
x=a*b; , rather than telling the compiler how to find the product using
an iterative addition procedure that we learned in our first
programming course:

x=0; c=1; do while c <=a; x=x+b; c=c+1;
end;

We would no doubt agree that a programmer should declare the
product as the result of an expression of two numbers. Shouldn’t a
smart programmer also learn how to declare other classes of results
and let the compiler program call the procedures needed to produce
it?

REASON #4. SQL has a richer and more precise collection of
methods for combining data .

Many programming tasks boil down to nothing more than subsetting
sets of data in a way that one could describe using simple Venn
diagrams. Many SAS programmers find it difficult to visualize the
solution and then translate it into a datastep program.

The SQL language makes it easy to express and combine
operations on tables. A few basic set operations have equivalent
expressions in SQL. These serve as the building blocks:

SET SQL EXPRESSION SYMBOL
intersection SELECT * FROM t1,t2

WHERE t1.ci=t2.cj . ⊗

union SELECT * FROM ∪
(SELECT * FROM t1
OUTER UNION CORR
SELECT * FROM t2)

complement SELECT * FROM t1 
WHERE t1.ci

NOT IN (SELECT t2.cj

FROM t2)

The intersection (produced by an equijoin and not exactly the same
results as that produced by the SAS SQL set operator,
INTERSECT) contains, if not empty, some or all columns from one
table and some or all columns from another. It includes only those
rows in which key columns in one table match key columns in the
other. The key may consist of a single column, such as an ID, or an
expression based on columns. If we want to find all matching pairs
of patient records and visit records and we have a patient ID in each
patient record and a corresponding type of patient ID in each visit
record, the intersection defines a new table that contains the patient
ID, all of the columns in the patient record and all of the columns in
the visit record.

The union contains the rows from one table plus those from
another. The CORR or CORRESPONDING keyword tells the SQL
compiler to match columns in one table to those in the other by
column name, not position in the table. To keep the order of
columns in a table from becoming a programming issue, it makes
sense to use the CORR keyword with UNION as a matter of routine.
If we have collected tables of the same form of visit record from two
clinics and want to combine them into one file, we could define the
union operation.

The complement contains all of the rows in one table that do not
match on a key at least one of the rows in another table. In a sense,
subtracting the keys in one table from those in another leaves the

complement. If we have finished checking a subset of all visit
records and now want to select the ones that we have not checked
from the full set, the complement defines a new subset that excludes
the ones already checked.

Putting a SELECT clause, in front of a FROM clause in SQL lets us
specify the columns required. Putting a WHERE clause after the
FROM clause (or adding conditions to the WHERE t1.ci=t2.cj clause
in an equijoin) will limit the selection of rows to those that meet the
WHERE conditions.

We can use basic set operations to compose other sets. Composite
set operations give us the ability to specify the different ways that we
might want to combine data tables. SQL includes several concise
ways to declare certain composite operations. For example, we may
want

1) to match all patient records to visit records, but also include the
patient record with visit missing when a patient has no visit
records;

2) to match visit records to patient records but also show the visit
records that do not match the patient records;

3) to select all of the matching patient and visit records, but also
select all patients without visit records and all visits without
patient records.

The three composite operations3 shown below correspond directly to
1)., 2)., and 3). above:

COMPOSITE SET OPERATION SQL EXPRESSION
1). (t2 ⊗ t1) ∪ (t1 − t2) SELECT * FROM t1

LEFT JOIN t2
ON t1.ci=t2.cj

2). (t1 ⊗ t2) ∪ (t2 − t1) SELECT * FROM t1
RIGHT JOIN t2
ON t1.ci=t2.cj

3). (t2 ⊗ t1) ∪ (t1 − t2) ∪ (t2 − t1) SELECT * FROM t1
FULL JOIN t2
ON t1.ci=t2.cj ..

The union operation also has simple and special forms. The
statement

SELECT * FROM t1 UNION CORRESPONDING SELECT *
FROM t2

selects the columns that have corresponding names from t1 and t2
and appends the unique rows from both tables. Putting the keyword
OUTER just before UNION CORR works much the same, except it
also selects columns from either table that do not have matching
names in the other table (setting the undefined parts of columns to
missing values). OUTER UNION CORR works much like a SET t1
t2 statement in a SAS datastep. Adding the keyword ALL after
UNION CORR keeps duplicate rows in the union of the two tables.

SQL has a firm mathematical base supporting its methods of
interrelating data tables. The language allows the user to make
distinctions among the different methods of joining column values on
rows and appending rows from two or more tables.

REASON #5. SAS SQL has a foolproof (almost) method for
defining scalar constants during program
runtime.

Say you want to compute a single number that represents the
average number of days it took to fill an order last year. You can
compute this number from a file of order numbers, order dates, and
delivery dates. You then plan to subtract this number from the
actual number of days it has taken to fill an order this year and sum
the differences.

In SAS SQL you can SELECT the average directly into a SAS
macrovariable and subtract that macrovariable value from the days to
delivery calculated for each order this year. These short SQL
queries demonstrate the method:

4

SELECT AVG(DelDate-OrdDate) INTO :AvgDif95 FROM temp95;
< more SQL>
TITLE “95 Avg. Wait: &AvgDif95 “;
SELECT AVG((DelDate-OrdDate) - &AvgDif95) AS DifAvg
LABEL="Diff 96/95 avg"
FROM temp96;
<Other queries with value of AvgDif95 inserted.>
QUIT;

Why “almost foolproof”? You can’t use the macrovariable AvgDif95
until after the select statement that defines it finishes running.

REASON #6. SQL keeps track of which column variables
come from which table or view .

Many questions about SAS syntax and methods concern the
difficulties involved in naming, managing, and renaming variables.
Many of these difficulties disappear when a programmer has the
option to qualify the name of a column variable by a reference to its
source table.

SQL makes referring to columns particularly easy by letting
programmers assign aliases to table references. (I use the AS after
a table name to assign the aliases t1, t2, etc.; I then distinguish
column references by qualifying them with the table alias, as
t1.x,t2.x, etc.) It doesn’t hurt to use qualified column names even
when the compiler doesn’t really need them, so, as long as we have
the alias defined, we do not need to remove them from segments of
SQL programs copied from other programs.

Qualified column names become particularly useful when we need to
compare values on one row of a table with values on another row of
the same table. Say we are looking at a set of test results on
samples and we are trying to find different tests that have different
results for the same sample. The program

SELECT t1.sample,t1.date,t1.seq,t1.result,t2.date,t2.seq,t2.result
FROM samples AS t1,samples AS t2
WHERE t1.sample=t2.sample
 AND (t1.date < t2.date OR t1.seq <t2.seq)
;

uses different aliases, t1 and t2, for two references to the same
table. SQL treats two references as different views and has no
problem with inter-row comparisons. The inequality conditions on
the comparison of the date and sequence reference prevents
matching on the same row. All this depends on having a method for
distinguishing one reference to a column from another by its source.

REASON #7 SQL’s easier to write, understand, and modify.

Following a trail of variable names through several SAS MERGE
steps involving renaming can prove confusing and lead to errors.

Most users of C/C++, earlier procedural languages, APL, GUI
OOP’s, or other write-only languages concede that SAS datastep
programs have the advantage in ease of writing, understanding and
modification. SAS SQL rates even better than SAS datasteps.

Let’s look first at continuing data from three datasets using SAS
datasteps vs. a SQL query:

* Assuming dbx and dby sorted or indexed by ID1;
DATA d1 (KEEP=ID1 test RENAME=(ID1=ID));

MERGE lib.dbx (KEEP=ID1 site
IN=inx)

lib.dby (KEEP=subject
test IN=iny
RENAME=(subject=ID1));

BY ID1;

IF inx AND iny AND site ne "x";
RUN;

PROC SORT DATA=d1;
BY ID test;

RUN;

* Assuming dbz sorted or indexed by assay;
DATA d2DS (KEEP=ID test outcome);

MERGE d1 (IN=in1)
lib.dbz (IN=inz
RENAME=(assay=test));
BY ID test;
IF in1 AND inz;

RUN;

* Equivalent SAS SQL program;
PROC SQL;

CREATE TABLE d2SQL AS
SELECT DISTINCT t3.ID, t3.test, t4.outcome
FROM (SELECT DISTINCT t1.ID1

AS ID,t2.test
FROM lib.dbx AS t1,lib.dby AS t2
WHERE t1.ID1=t2.subject

AND t1.site NE "x"
) AS t3,
lib.dbz AS t4

WHERE t3.ID=t4.ID
 AND t3.test=t4.assay ;

QUIT;

The SQL version clearly raises the unit of data to the table level.
This basic structure CREATE’s a TABLE by SELECT’ing rows
FROM a table WHERE each row meets conditions. The SQL
programmer declares the characteristics of a data table and the
name of the source table. The SQL engine combines the SQL
program and data stored in a catalog (the so-called metadata in
tables that relate the symbolic names of tables and table columns to
the locations of data stored in the host system). It produces the
table d2SQL as declared in SQL for implementation by the SAS
SQL compiler and SAS System.

The SAS SQL query reduces a process description to a state
description. The programmer does not have to worry about the order
of operations (for example, whether or not the RENAME= precedes
the KEEP= in a DATA statement option list). One can assign
aliases to columns to avoid ambiguities; by default the columns in
views or tables inherit their names from their source tables. Queries
take data from one state to another. The SQL programmer declares
a new state of the data; the compiler figures out the process required
to transform the data to the new state.

REASON #8 /t’s easier to write a program to write SQL .

System developers are increasingly using automated methods to
write programs. SAS datastep programs can, for example, read
external files and datasets and use the information they contain to
write a query on another database or a continuation of the same
program.

The standard SQL syntax has a relatively compact and simple
description (for example, when expressed in the BNF notation used
to describe other ANSI programming language standards). SAS
SQL extends the standard syntax primarily by implementing the rich
set of functions, informats, and formats of the SAS datastep
language.

The structure of a SQL statement consists of keywords followed by
comma-delimited lists. This makes it easier to insert table and
column names from macrovariables or files.

5

The ability to use an automated process to write programs is
becoming an important feature of programming systems. SAS SQL
has a syntax that system developers find simpler and more familiar
than SAS datastep syntax.

REASON #9. Join SQL and see the rest of the world .

An object can communicate with another object by sending it a
message in the form of a program written in its language or in a
common subset of the languages understood by the two objects.
Outside of the SAS world, no one understands the SAS datastep
language but many understand a subset of SAS SQL.

Whether or not SQL works best in the SAS system, nothing else in
the SAS language works at all in a query being sent to another
database system. Many other database systems understand a
standard subset of SQL. SQL queries have become the standard
method for specifying data requests from one database system to
another

Client access to SAS server datasets has a better chance of
succeeding when the client writes the data request in SQL. The
Open Data Base Connectivity (ODBC) method for exchanging data
among databases, for example, accepts SAS SQL queries on SAS
datasets, but does not accept datastep programs or other
procedures.

REASON #10. SQL sounds a lot better than OOPS!

What you call a programming method won’t make it more
productive, but it could make it easier to defend the budget for your
system development project.

SAS SQL fits in between the old mainframe methods and the brave
new world of WindowsXX. SQL has the right image for the time.

And isn’t image everything? If not so, OOPS would have already
evolved into Pragmatic Object-Oriented Programming Systems.

Good reasons to keep your SAS Language
manual.

A few reasons seem particularly obvious and important:

• Partitioning a dataset into several subsets using SELECT or IF
conditions has a simpler and more direct implementation in a
SAS datastep than in SAS SQL;

• The INFILE ... INPUT and FILE ... PUT statements in SAS

datastep programs can handle a wide variety of file stream
parsing and other tasks related to acquiring data from external
files. The standard RDBMS offers many features related to on-
line data entry and updating but few tools for capturing data
from system files. Entry of data from files generally falls
outside the scope of SQL;

• In some applications, implicit ordering of data in a physical file
really matters. For instance, a source data file may have a
primary key ID, but that ID may contain meaningful data, such
as the first three characters of a person’s last name and SSN.
Sorting the file by a random number and creating a primary ID
from the automatic SAS variable _n_ would create both an
encrypted ID and a mapping of the encrypted ID to the actual
ID. All this depends crucially on maintaining the original
ordering of the source file until the procedure finishes creating
both the encrypted main file and the mapping files;

• The SET t1 t2 method of appending datasets seems
simpler than the UNION set operator for those who already
know and understand it;

• The SAS datastep has much better tools for creating test data.
After declaring a SAS SQL query, a wise programmer writes
SAS datasteps to create a test database and tests the SQL
program.

SAS SQL, we should add, does not replace the other SAS
procedures (FORMAT, COMPARE, PRINT, TRANSPOSE, etc.;
SAS/STAT PROC’s; IML, MACRO, or other specialized tools.
These distinguish the SAS System from RDBMS and OOPS.
Fortunately, the SAS System makes it easy to use different methods
in harmony. Casting SQL as a PROC has allowed programmers to
build SQL gradually into SAS programs. At first, one can try a query
that directly replaces an equivalent SAS datastep. In time one might
find, as I have, that fewer and fewer programs require SAS as we
knew it in the pre-SQL era.

Author’s e-mail address: hermans1@westat.com

Notice
SAS is a registered trademark of SAS Institute Inc. in the USA and
other countries.

Acknowledgments

Ian Whitlock, Nancy Odaka, Steven Schweinfurth, Willard Graves,
James Ingraham, Duke Owen, and Drew Hayes contributed
comments and suggestions that led to substantial improvements in
the contents and presentation. Darlene Faiola and Betty Ovington
improved the design and layout of text and examples. The author
alone takes responsibility for remaining defects. The views
presented do not necessarily represent those of Westat, Inc.

References

1 SAS Institute Inc. (1989) SAS Guide to the SQL Procedure ,

First Edition, Cary, NC: SAS Institute Inc.

2 SAS Institute Inc. (1990) SAS Language Reference, Version

6, First Edition, Cary, NC: SAS Institute Inc.

3 Some dialects of SQL do not support the full (outer) joins. See

Gruber, Martin. (1990) Understanding SQL , Alameda, CA:

Sybex, pp. 177-181, for SQL programs that compose set

operations to achieve the same effect. Also, Appendix D, pp.

400-417, contains a concise BNF description of standard SQL

syntax.

	Main TOC

