
1

A SAS® Programmer's View of the of the SAS Supervisor
Ian Whitlock, Westat Inc.

Abstract

This tutorial answers questions like:

• As a DATA step programmer, what do I need to
know about the SAS supervisor and why?

• How does the SAS supervisor process DATA
step code?

• How does a SAS MERGE work?

• What about engines, indexing, and views?

• What happens when my DATA step code
contains macro variables?

• What if my DATA step invokes a macro or is
contained in a macro?

For many years Donald Henderson or one of his
colleagues gave a tutorial about the SAS Supervisor
(SUGI 8, and 12 - 17). This tutorial builds on those
earlier articles and adds the experience of the author.

Introduction

A basic SAS program consists of DATA steps and
procedure steps. In both cases machine code is
executed. The main difference is that the machine code
already exists for procedures so that only the parsing of a
little control information is needed. The DATA step
language provides the flexibility needed to read and
manipulate arbitrary data structures in ad hoc ways.

The SAS supervisor manages step processing. We will
be mainly interested in how it manages the DATA step,
but first we will take a quick look at the consequences of
having steps. Finally we will take a quick look at how the
macro facility fits in.

Why should one be interested in how the supervisor
works? Such knowledge gives you better control over the
language, i.e. the ability to make a program do exactly
what you want because you have a better idea about
what is happening and when it is happening.

Step Processing

At a very early point in the development of the SAS
System, a fundamental decision was made to compile
and execute each step before the next is considered.
This shrewd decision has significant consequences for
the SAS programmer:

1. Each step is an executable image optimized for
fast execution.

2. The executable image is by default thrown away;
hence the source code is faithful to the action.

3. Information is basically passed from one step to
another via files; hence SAS is primarily an I/O
bound language. This means the programmer
should, consistent with clarity, minimize the
number of steps in the program design.

4. Almost by definition, SAS is very modular,
amenable to structured programming techniques
and data flow diagrams.

5. Since costly early steps may execute only to
have the program fail on a mistake in a later
step, the programmer must bear the
responsibility for adequate testing.

6. Since later steps need not even exist when
earlier steps are executed, the earlier steps can
determine what program is needed and then
write it. Consequently even batch programs can
have an interactive flavor to them.

A common request on the software ballot is to provide
true syntax checking. Although SI has said they will
provide it, I don’t see how they can without changing the
nature of the language. Consider the step:

data w ;
retain x �abc� ;
set data1 ;

run ;

This code is syntactically correct if DATA1 does not
contain a numeric variable X, but it is incorrect otherwise.
Usually one would expect a syntax checker to catch
errors in variable type. Now suppose that the step
creating DATA1 was included from code written by a
previous step. How can SAS possibly have the needed
information without executing far enough to create the
needed code? This is one example where the power of
the SAS system design makes it hard to implement what
looks like a standard requirement for programming
languages.

The Basic DATA Step Loop

Each DATA step requiring I/O (really we mean input) is
built with an implied loop. Hence the common structure
for a DATA step is initialization, read a record, do
something with the data, and write out the transformed
data. The automatic variable _N_ counts iterations of this
implied loop. It is always available in a DATA step.
Typically _N_ is used in code where variables must be
initialized. For example:

data _null_ ;
if _n_= 1 then set stats;
set sales ;

2

....
run ;

Perhaps the first question to ask is, “What stops the
looping process and where does it stop?” By default the
process stops when an input request cannot be satisfied;
hence a DATA step typically stops with a SET, MERGE,
UPDATE, MODIFY or INPUT statement. Not on the last
record, but the next time around the loop, when the
statement is to execute and it cannot. For the
programmer this means the best place to test for end-of-
file is not after the I/O statement, but before it! When the
test for end-of-file is placed after the reading statement,
there is a danger that some subsetting code will cause
the test to never be executed. The following code works
even when the REGION on the last record is not “WEST”.

data _null_ ;
if eof then put total= ;
set sales end = eof ;
if region = �WEST� ;
total + sales ;

run ;

The STOP and ABORT statements can be used to
explicitly halt a DATA step, either because some
condition is reached or because the normal default
cannot operate. For example, when one uses a SET
statement with the POINT option, the end-of-file is never
set, consequently one must take explicit action or depend
on the step stopping at some other I/O statement. The
DO-loop below would execute over and over until it runs
out of space or time without the crucial STOP statement.
Since input is done in every iteration of the implied loop,
there is no reason to stop the implied loop.

data sample (drop = i) ;
do i = 1 to 100 ;

ptr = int(ranuni(0)*nobs+1);
set universe point = ptr

nobs = nobs ;
end ;
stop ;
run ;

On the other hand no STOP is needed below, since the
DATA step will stop when it runs out of records from
LOOKUP.

data found ;
set lookup ;
/* ptr is variable in lookup */
set answers point = ptr ;

run ;

What if there is no input? Then processing simply stops
at the bottom of the step as if there were no implied loop.
You might try to trick the compiler with

data ;
if 0 then set dataset ;

run ;

The looping operation is set up because of the SET
statement. Since no input statement is executed, it
cannot run out of data, but the step will stop at the
bottom of the first iteration of the loop with the message

NOTE: DATA STEP stopped due to looping.

DROP, KEEP, LABEL, and RENAME

Now let’s look more carefully at the compile process and
in particular at compile time directives. These are non-
executable statements that tell the compiler how to set up
something. DROP, KEEP, LABEL, and RENAME all give
instructions about the output SAS data sets. They do not
give information about the variables during execution of
the DATA step. They may occur anywhere in the step
without changing anything that is done. The drop and
keep variables may be repeated. Why is this important?
A macro to generate DATA step statements may need to
create and drop variables. The macro may be invoked
several times because the repetition of the drop
statement doesn’t matter.

If a variable is both kept and dropped, the drop takes
precedence, and a warning is issued. If the same
variable is renamed or labeled more than once, the last
one rules. When a rename output data set option is used
with a RENAME statement for the same variable, the
RENAME statement is done first and the variable is no
longer available for renaming. You can test your
understanding with the following code.

/* 1 */ data w (rename=(z=q));
/* 2 */ x = 1 ;
/* 3 */ y = 'a' ;
/* 4 */ rename x = u ;
/* 5 */ rename x = y ;
/* 6 */ rename y = z ;
/* 7 */ run ;
/* 8 */ proc print data = w ;
/* 9 */ run ;

The resulting values are Y = 1 and Q = ‘a’. X is renamed
to Y since line 5 comes after line 4. Y is renamed first to
Z by line 6 and then later to Q by the output data set
option in line 1. Note that the compiler applies the output
data set option RENAME last even though it occurs first
in the physical order of the code. Any KEEP and DROP
options refer to the name before use of the RENAME
option, but after application of RENAME statements.

Note that lines 5 and 6 imply that

rename x = y y = x ;

should interchange the two variable names. It does in a
DATA step, but it results in an error message in PROC
DATASETS saying that Y and X already exist.

How might one make use of this information? A common
question on SAS-L is “I have character variable X on a
SAS data set but I want it to be numeric with the same
name. How can this be accomplished?” Assume W is a
data set with a character variable X which has numeral
values. One possibility is

data w (drop = temp) ;
set w ;
temp = input (x, best12.) ;
rename x = temp ;

3

rename temp = x ;
run ;

Usually DATA step code, using pure data set options, is
shorter, simpler and clearer, since the moment of action
is spelled out.

data w (drop = temp) ;
set w (rename=(x=temp)) ;
x = input (temp, best12.);

run ;

The Order of Variables

The first explicit occurrence of a variable is important,
because with the exceptions of DROP, KEEP, RENAME,
LABEL, and possibly RETAIN, this occurrence will
determine whether the variable is character or numeric.
When is the length of a variable determined? Character
variables are treated differently from numeric because
numeric variables are always manipulated as 8 byte
floating point variables during execution of the DATA
step.

Since numeric lengths are not applicable to the DATA
step processing (only the output data set), numeric
lengths are determined by the last LENGTH or ATTRIB
statement to assign a length. An ARRAY statement can
also assign numeric lengths, but only when there is no
relevant LENGTH or ATTRIB statement overruling it.

On the other hand, character data lengths are determined
by the first statement that allows specification of a length.
In particular assignments, formats, and informats all
determine character lengths in addition to the explicit
length specifiers LENGTH and ATTRIB. For character
variables the length specified in an ARRAY statement
takes precedent when it comes first. Any attempt to
change a character variables length results in a warning.

Even FORMAT statements can determine the length of
character variables when they occur first. For example,

format c $myfmt. ;

will determine that C has the length of the longest label in
$MYFMT. This does not make too much sense; hence it
is best to avoid having a FORMAT statement announce
that a variable will be character.

When a variable is known to be character and the length
cannot be determined, a default is chosen. Hence, the
length of character data is always determined by the first
statement determining that the variable is character. A
default length 8 or 200 is usually chosen when no better
information is available. For example, list input causes
character variables of length of 8 and

c = symget (�macvar�) ;

determines a length of 200. Unfortunately one cannot
depend on reason because the INFILE option
FILENAME= defaults to a length of 8. Some functions
determine other lengths, but not necessarily in a
consistent fashion. For example

c = substr (char , 1 , 1) ;

will cause C to have the same length as CHAR, but

c = put (char , $agecat1.) ;

will cause C to have a length of 1. The difference is
explained by the fact that the second argument of the
PUT function is code and known to determine a length of
1 at compile time. Had the "1" not been present, then the
length would be determined by the longest label of the
format, consistent with the format determination of length
given above..

On the other hand, the third argument of SUBSTR is a
DATA step value, in principle could be any length up to
the length of CHAR at execution time. Thus the third
argument of SUBSTR cannot control the length even
when a constant.

One might expect that

call vname (var , name) ;

will determine NAME as a character variable, but that is
not true. It will be numeric by default. Probably function
and subroutine argument types never determine the type
of the corresponding variable.

In review, it is impossible to determine that a variable is
character without at the same time knowing its memory
size requirements. This means that the compiler knows
how to arrange storage for a variable as soon as it knows
whether the variable is numeric or character. Moreover,
this determination can be made by the first mention of a
variable (with the exception of DROP, KEEP, RENAME,
LABEL and sometimes RETAIN).

As soon as a variable is determined to be character or
numeric, it can be assigned a position in the logical
Program Data Vector (PDV). This order is important
because it determines the order in which variables are
stored on output data sets. It is also important within the
DATA step when using the notation “firstvar -- lastvar“ to
avoid writing a long list of variable names. In particular,
this is the default order that many procedures use.

The other compile time directives ARRAY, ATTRIB,
FORMAT, INFORMAT, LENGTH, and sometimes
RETAIN all allow one to distinguish numeric from
character, hence they all can place a variable in the
logical PDV. Their position in the code may not be
important for their intended purpose, but it can be crucial
in determining the logical PDV. (Prior to Version 6, the
PDV was actually a contiguous area in memory where the
variables were stored during DATA step manipulation. It
still plays an important role as a logical tool for organizing
what happens during DATA step processing.) All
references below to the PDV are really the logical PDV.

RETAIN is a peculiar exception in that it may not provide
the ability to determine the data type, but it can still
determine the position in the PDV. For example,

retain var /* no value */ ;

4

does not determine whether VAR is numeric or character.
But when it appears before other statements referencing
the variable VAR, (other than the standard exceptions
DROP, KEEP, RENAME, and LABEL), it does determine
the position of VAR in the PDV, whenever VAR has any
position in the PDV. If VAR does not appear anywhere
else in a statement in the step, other than the standard
exceptions, then VAR will not be in the PDV, and hence
not on any output data sets. These facts can be
demonstrated with the code:

data w ;
retain x ;
y = 1 ;
put _all_ ;

run ;

Now X is not written to the SAS log and it does not
appear in the contents of the data set W. On the other
hand, if VAR does appear elsewhere in the DATA step,
then the first occurrence determines the variable type, but
not its position in the PDV. This can be seen by
assigning X a value (character or numeric) just before the
PUT statement in the above DATA step code.

Another common question on SAS-L is how can one
reorder the variables of a SAS data set. From the
knowledge above you can see the simplest answer is

data out_data_set ;
retain order_you_want ;
set input_data_set ;

run ;

Although SET, MERGE, UPDATE, and MODIFY
statements may not explicitly name any variable they do
implicitly name all variables in the associated SAS data
sets, which are not ruled out by a DROP= or KEEP= data
set option. (Note that this means each SAS data set
named in a DATA step must exist and be available to the
DATA step compiler.) Thus for a complete determination
of the order in the logical PDV one must also consider the
placement in the DATA step of the above I/O statements.

Note that DROP= and KEEP= options are preferable to
DROP and KEEP statements precisely because they
control what goes into the PDV instead of what is
transferred to output buffers. A smaller PDV means a
faster executing DATA step, and less chance of a
variable conflict in the current or later DATA steps.

Finally we must consider the SAS statements that ask for
the system creation of variables (usually known as
automatic variables). These variables are placed in the
logical PDV at the point the DATA step compiler
encounters the statement, unless they have been
mentioned before in another statement. For example,

set dataset end = eof ;
by id ;

requests three automatic variables EOF, FIRST.ID, and
LAST.ID. Each will be added to the PDV as the compiler
reads the corresponding statement. In the above
example, EOF will come first, followed by the variables on
DATASET, and then FIRST.ID and LAST.ID. The
variables _ERROR_ and _N_ are always added at the

end of the PDV. You should now be able to read any
SAS data step and write the variables in the PDV in the
correct order. How can you be sure of the order on the
PDV? Add

put _all_ ;

to your DATA step. (The keyword _ALL_ in this case
refers to the PDV at the time of execution after it is
completed, not as it exists at this point in compilation. In
contrast, RETAIN _ALL_ and ARRAY A (*) _ALL_ refer
to the PDV at their point of compilation.) The variables
are always written in PDV order at the point that the PUT
statement executes. Thus you can also get their values
at any point during execution after the first initialization
set up by the supervisor. Some of the variables may not
be missing because they were initialized during compile
time.

An important example is given by

data _null_ ;
call symput (�nobs�,

left(put(nobs,best12.))) ;
stop ;
set test nobs = nobs ;

run ;

It is correct to refer to the variable NOBS in the CALL
statement because is was assigned at compile time when
the DATA step compiler read the SET statement and
looked at the directory of TEST. There is a STOP in front
of the SET statement because we do not wish to read
any observations from TEST. The purpose of this step is
to create a macro variable NOBS holding the number of
observations in TEST. (This code will not produce a
correct result when observations have been “deleted”
from TEST without physically removing them, thus the
interest in the code is more theoretical than practical.
Today the problem is better solved with PROC SQL.)

Initialization of Variables

Prior to Version 6 the supervisor did the initialization to
missing at the top of each iteration of the DATA step, and
it was relatively slow because the variables were
processed as stored in the PDV. With Version 6 the
variables are actually stored in four separate blocks -
character versus numeric, need to initialize versus no
need. Now the supervisor generates code to initialize a
block at a time and it is part of the execution module as is
the implied loop. Hence the looping and initialization are
very fast and there is little need on efficiency grounds for
programmers to avoid either.

We still have not determined which variables are
initialized once at the beginning of the DATA step and
which are initialized to missing at the beginning of every
loop of the step. Automatic variables, variables from SAS
data sets, and variables that appear in RETAIN
statements are initialized once. Some variables are
initialized to non-missing values. For example,

• _N_ is set to 1,

• _ERROR_ is set to 0,

5

• the END= variable is set to 1 if the file is
empty and 0 otherwise,

• the NOBS= variable is set to the number of
records in the file when this number is known,

• the LAST. and FIRST. variables created
because of the BY statement are set to 1, and
0 otherwise,

• variables which appear in a RETAIN
statement assigning values are initialized to
their corresponding value, and

• the remaining user variables are initialized to
missing.

If a variable is not automatic, does not come from a SAS
data set, and does not appear in a RETAIN statement,
then it will be initialized to missing at the beginning of
each loop of the DATA step. There is one exception the
statement

RETAIN ;

anywhere in the DATA step means that only the first
initialization will be done. The RETAIN statement is often
confusing because it really means initialize once; hence,
values are retained until changed; it does not mean that
values are constant. Automatic variables can be
automatically changed during a loop of the DATA step.
For example,

• _ERROR_ is set to 1 when an execution time
error occurs,

• FIRST. variables are set to 1 when the
relevant BY-group begins and 0 on the next
record, and

• the END= variable is set to 1 when the SET,
the last record is executed.

For completeness temporary arrays should be discussed.
Consider

array a (10000) _temporary_ ;

This statement creates 10,000 contiguous numeric
storage units in yet another area for variables. They are
not part of the logical PDV and they have no names.
They are initialized once to missing unless assigned in
the ARRAY statement. One can reference the elements
only with array notation, which is very fast compared with
the ordinary SAS arrays because the storage is
contiguous.

Since they have no names, they do not go on any output
file.

In Version 6, the BY statement is local to the previous
SET, MERGE, MODIFY, or UPDATE. This change is
important for DATA steps like the following.

data totpop ;
if _n_ = 1 then set totals ;
merge pop1 pop2
by state ;
pctpop = pop / totalpop ;

run ;

In Version 5 execution of this code would result in the
message that STATE is not on the data set TOTALS. (In
a similar manner, WHERE statements are local to the
previous input statement in Version 6.

Now let’s look at a simple merge in detail using the logical
PDV as a tool to understand what is happening at key
points in the DATA step.

Consider data sets ONE and TWO:

ONEONE TWOTWO

K A K B
1 x 1 r
2 y 3 s
4 z 4 t

4 u
4 v

and the code:

data merge ;
before: put �before: � _all_;

merge one two ;
by k ;
if b = �u� then a = �?� ;

after: put �after: � _all_ ;
run ;

K A B FIRST.K LAST.K _ERROR_ _N_

. 1 1 0 1 before

1 x r 1 1 0 1 after

1 x r 1 1 0 2 before

2 y 1 1 0 2 after

2 y 1 1 0 3 before

3 s 1 1 0 3 after

3 s 1 1 0 4 before

4 z t 1 0 0 4 after

4 z t 1 0 0 5 before

4 ? u 0 0 0 5 after

6

4 ? u 0 0 0 6 before

4 ? v 0 1 0 6 after

4 ? v 0 1 0 7 before

PDV - Time Line for the above DATA step.

produces the PDV time line shown on the previous page.
Each row corresponds to the state of the PDV at the time
the PUT statement shown on the right is executed.
Hence there are two rows for each iteration of the loop
except the last one, which ends with the MERGE
statement.

Note the missing values corresponding to the variables
coming from the data sets in the first row. This is due to
the one time initialization of retained variables. Note the
1’s for FIRST.K and LAST.K in the first row are because
a BY statement is present not because K=1 uniquely in
both data sets. Also note that both the SAS data set
variables and the automatic variables FIRST.K and
LAST.K are retained. For example, the first row with _N_
= 4 still has LAST.K = 1. It is not changed until the SET
statement is processed. In contrast _ERROR_ and _N_
are assigned at the beginning of each iteration of the
loop. One could easily test this fact by incrementing _N_
and _ERROR_. For example:

data _null_ ;
put 'TOP: _all_ ;
input ;
n + 7 ;
_error + (-1) ;

cards ;
1
2
3
;

Are _N_ and _ERROR_ retained? I expect so, but it
doesn't matter because these values are assigned at the
top of the loop.

Returning to the previous example, note that A=‘?’ in the
last two rows. This is not because the A changed values
(B is no longer equal to ‘u’), but because it stayed the
same after it changed. It is important to realize that
records from B are read into the PDV only once in each
BY-group. The value persists because it is retained, not
because it is refreshed. This is a common trap that
occurs when one tries to change values in the single
record per key data set based on a value in the multiple
records per key data set. The solution is to rename A,
say to SAVEA and then drop it. Since SAVEA is retained
and not changed, one now finds that A returns to the
original value after modification.

data merge (drop = savea) ;
before: put �before: � _all_;

merge one (rename = (a = savea))
two ;

by k ;
if b = �u� then a = �?� ;
else a = savea ;

after: put �after: � _all_ ;

run ;

What happens when both sets ONE and TWO also
contain a variable, say X, which is not part of the BY-
group? If the value of X is contributed by both sets then
the one on the right wins the first time and it depends on
which set has multiple records after that. Let's assume
as above that ONE contains at most one record per BY-
group and TWO may contain multiple records per BY-
group. For

merge one two ;
by k ;

TWO contributes the value for X unless there are no
records in TWO matching the BY-group. Now reverse
the positions of ONE and TWO.

merge two one ;
by k ;

Here ONE contributes the value of X on the first record of
each BY- group for which it has a match, but TWO
contributes the value of X for any remaining records of
the BY-group. Since it is very rare that one need actually
have a common variable not in BY-list, I would suggest
that one should use KEEP= or DROP= options to
eliminate the possibility. (If it seems necessary to have a
common variable not in the BY-list, then probably
UPDATE or MODIFY is more appropriate than MERGE.)
When this advice is followed, the code is more stable and
clearer, so it is worth the extra effort.

When are the IN= variables set in a merge? They are set
every time a record is read from the corresponding file.
But one should remember that records are read only
once. When a one-to-many merge is performed, the IN=
variables for the singleton records is assigned once at the
beginning of each BY group and retained. In a many-to-
many merge (rather unusual) one often wants to know
that two new corresponding records came in to the PDV.
This can be done by resetting the IN= variables.

data pairs oddballs ;
many1 = 0 ;
many2 = 0 ;
merge many1 (in = many1)

many2 (in = many2) ;
by partkey ;
if many1 and many2 then

output pairs ;
else

output oddballs ;
run ;

When first encountered, one is often surprised that the
user can change an automatic variable. Actually
automatic variables are not used by the system; they are

7

only for the user and may be modified in any way the
user chooses. As hinted in a previous example, one can
even change _N_, but of course at the top of each
implied loop the system will set it equal to the system’s
counter. The most dramatic example that I know of is

data check ;
set something ;
If _n_ = 1 then first.x = 5 ;
put first.x= ;

run ;

Note there is no BY statement, and X need be not a
variable in SOMETHING. Even without a BY statement
FIRST.X is an automatic variable, hence it will be retained
and dropped. It was initialized to 0 because there was no
BY statement, changed to 5 in the third line, and it
remains that way because the variable is retained.

I/O Engines

In Version 6 SAS data is accessed via an I/O engine.
The engine is chosen by a part of the SAS supervisor
called the I/O engine supervisor. This means that the I/O
is no longer handled directly by the SAS supervisor. For
you it means that many different structures can be read
as if they were SAS data sets, since the appropriate
engine knows how to make the data appear in SAS
format. For the Institute it means that they can more
easily change the underlying structure of SAS data sets.

Indexes

SAS data sets may be indexed by one or a combination
of SAS data set variables, by using either the INDEX
CREATE statement in PROC DATASETS, or the
CREATE INDEX statement in PROC SQL, or the (output)
data set option INDEX. A special index file is created
giving index values and the locations of each value. The
value/location pairs are stored in a B-tree structure that
enables the engine to perform a binary search for the
associated record. When the observations are to be read
as indexed data, the index engine is chosen by the
supervisor.

The request for using an index may be explicit as in

set mydata key= index / unique;

or it may be implicit when a WHERE or BY statement is
used. For the implicit cases the choice algorithm is quite
complex.

An index is eligible for BY processing when

1. There is no NOTSORTED or DESCENDING
in the BY statement.

2. An initial list of variable(s) in the BY

statement agrees with the complete list
variable(s) in a composite (or regular) index
and that index was not created with the
NOMISS option.

An index is eligible for WHERE processing when

1. The WHERE statement can be broken into
two parts such that the first part consists of
conditions of the form

 variable op constant

 or
 constant op variable

 joined by AND’s where the set of variables

matches an initial list of variables in the index,
and, either the two parts can be joined by an
AND, or the second part is empty. For
example, an index on X could be used with the
WHERE statement

where x > 1 and y = 2 ;

 since the second part is joined by an AND.

On the other hand, the WHERE statement
below could not make use of the index on X.

where x > 1 or y =2 ;

2. The conditions on the variables in the first part

of the WHERE do not involve missing values
when the index was made with the NOMISS
option. For example, the WHERE statement

where x < 1

could not involve an index including X with the
NOMISS option, since missing is a potential
value for X that would not be read using the
index.

The eligible set of indices is reduced as follows:

• If both BY and WHERE statements are
present form the intersection of the two
eligible sets. If non-empty this is the eligible
set, otherwise take the set corresponding to
the BY statement.

• If there is only a BY or a WHERE statement,

then the eligible set of indices is the eligible
set for that statement.

The index is now chosen as follows:

1. If there is only one eligible index, use it.

2. If a BY statement is present, use the index

with the most variables.

3. Otherwise, use the index which will select the

smallest subset of data assuming a uniform
distribution of values.

The competition between BY and WHERE is interesting.
Consider

options msglevel=i ;
data w (index = (x y z)) ;
do x = 1 to 100 ;

do y = 1 to 5 ;
do z = 1 to 3 ;

r = ranuni (0) ;

8

output ;
end ;

end ;
end ;

run ;

data w2 ;
set w (sortedby = x y z) ;
by x y z ;
where x = 2 and y = 1 ;

run ;

Here there are competing choices. The data set must be
read with BY variables X Y Z. The SAS supervisor knows
that an efficient direct sequential read is possible because
of the SORTEDBY option. In fact without the WHERE
statement this would be the choice of the supervisor. But
with the WHERE statement present it chooses the X
index because of the more efficient subsetting. Of course
it will not be more efficient when most of the file has X =
2, but the choice is based on a uniform distribution of X
values. Can the choice hurt other than efficiency? No. If
the data set were really sorted by X Y and Z when the
index was made then Y and Z will appear in order when
using the X index. If the data set was not in order when
the index was made then both the index and a sequential
read would fail.

You have no explicit way to force the use of a particular
index, but you can find out which index is chosen by
using the MSGLEVEL option.

options msglevel = i ;

How can indexing hurt efficiency? First one must pay the
price of extra I/O to read the index file, so reading the full
file with an index will be slower that reading it sequentially
without the index. Secondly I/O is performed on pages
which usually contain several records (sometimes many).
In sequential reading only one physical I/O is performed
for each page. When the file is read using an index, then
a new physical I/O must be performed every time the
index file indicates that the next record is located on a
different page. Hence the same page may be read many
times when an index is used. So why should use
indexes? Because they can drastically speed up
subsetting when the subset is a small portion of the file.
As an extreme case look at what happens when all the
wanted records reside on one page. Now only one
physical I/O is needed beyond those need to locate the
page. The system knows that it has found all the
required records. On the other hand without the index a
sequential search through the entire file is required to do
the subsetting.

Views

Another consequence of I/O engines is the ability to
construct SAS views. A view is instructions to construct
SAS data. This idea started with PROC SQL where it is
important to be able to define the data elements once,
but provide different views for different uses. Version
6.07 introduced the concept a data view. For example,
suppose PERM.SALES has one record per year holding
monthly sales amount for each salesman and you want to
print out the information in annual terms.

data sales / view = sales ;
set perm.sales ;
annual = sum(of mon1-mon12);

run ;

Proc print data = sales ;
var salerep year annual ;

run ;

The DATA step does not read PERM.SALES and it does
not create a data set SALES. Instead it creates
instructions for making SAS data, a user engine. When
the PROC PRINT executes the I/O supervisor chooses
the SALES view to generate data. During the execution
of PROC PRINT PERM.SALES is read and the data
created. One very practical use of views is in sorting
wide data sets where only a few variables are required.
One would think

proc sort
data = wide (keep= varlist)
out = narrow ;
by id ;

run ;

would be sufficient. But due to a design bug in PROC
SORT, the KEEP option is active only after the data has
been sorted. Hence one can often save time, space, and
money by creating a view to feed the right set of variables
to PROC SORT.

The Macro Facility

How does the macro facility fit into the SAS supervisor’s
job? The SAS supervisor must parse the code from the
input stack into tokens and send these tokens to the
appropriate subsystem. Let’s call the manager of this
part of the process the word scanner (WS). The diagram
below shows the three subsystems - the DATA step
compiler, the procedure parser, and the macro facility.

9

WORD
SCANNER

COMPILER PARSER

MACRO
FACILITY

INPUT STACK

&
%

Without the macro facility the code in tokenized form
goes to either the DATA step compiler or procedure
parser. To allow macro code, the WS had to learn one
new trick - recognize tokens containing a %-sign or &-
sign and pass these tokens to the macro facility. In
addition it had to learn to take orders from the macro
facility some of the time in the same way that it took
orders from the DATA step compiler and procedure
parser.

Let’s look at the creation and use of a macro variable.
Assume we are processing data collected state by state
and writing programs to work on these data. We might
have

10

%let state = TX ;
data &state ;

set lib.&state ;
/* more code */

run ;

First the WS picks up “%let” from the input stack of code.
Since it begins with a %-sign it goes to the macro facility.
The %LET-handler now takes over and asks for a token;
hence “state” goes to the macro facility even though it
has no “%” or “&”. The process continues to the
semicolon; then the variable name STATE is stored away
with its value TX. Since the %LET handler finished its
task when it received the semicolon, no one is asking for
tokens. WS gets the “data” token on its own. Since the
token was not requested by either the DATA step
compiler or the procedure parser, it is the free key word
“data” indicating the beginning of a DATA step; hence, it
goes to the DATA step compiler, which now asks for
tokens. The next token, “&state”, is not given directly to
the DATA step compiler since it begins with an &-sign.
“&State” goes to macro facility which looks up STATE
and finds TX. This token is then put back in the input
stack to be found as the next token by WS. Thus when
WS goes to get the next token, it is TX and this is given
to the DATA step compiler. After the semicolon the
DATA statement is compiled, and the DATA step
compiler asks for more tokens. Now “set” goes to the
DATA step compiler, and “lib.&state” to the macro facility,
where it is resolved to LIB.TX and put back on the input
stack. Now “lib.TX” is found and passed to the DATA
step compiler. The semicolon ends the SET statement
and the DATA step compiler does its thing as described
earlier. And so on, until the step boundary (either a RUN
statement or an initial keyword “DATA” or “PROC”) At
the step boundary the SAS supervisor executes the
module.

The important thing to realize here is that the DATA step
compiler never sees macro code and knows nothing
about it. On the other hand the macro facility knows
nothing about SAS code or how to compile it. Finally the
word scanner had to learn very little more to make the
whole process work. It is one of the best examples, that I
know of, demonstrating how to break up a complex
process to be managed by three separate little managers
who know how to interact, but know nothing of the other’s
business.

How does a macro fit into this process? Using our
previous example consider the following code.

%macro edits (state = NJ) ;
data edited.&state ;

set raw.&state ;
%if &state = TX %then
%do ;

/* special TX edits */
%end ;
/* more code */

run ;
%mend edits ;

%edits (state = TX)

When WS encounters the token “%macro”, the token
goes to the macro facility, which hands it to the macro

compiler. Now the macro compiler asks for tokens and
compiles until it runs into the semicolon on the %MEND
statement. This means everything is stored away in a
form for quick processing by the macro facility at a later
time. No resolution of macro variables occurs at this time
and no macro instructions are actually performed; the
code is merely prepared for later use.

After the macro compilation WS encounters “%edits” and
sends it to the macro facility which now calls up the
compiled macro. The tokens “(“, “state”, “=“, “TX”, and
“)” cause the compiler to store the parameter, STATE, as
TX instead of NJ and to dump tokens from the macro
compiler into the input stack. Now “Data” goes to the
DATA step compiler as before. “Edited.&state” goes
back to the macro facility for resolution. The resolved
form is dumped by in the input stack to be found by WS
and given to the DATA step compiler, since the macro
facility is not asking for tokens. The semicolon goes to
the DATA step compiler, for the same reason. The
process continues in this manner.

When the %IF instruction is encountered by WS and sent
to the macro facility, it will test whether &STATE resolves
to TX or not. In our case it does, so the macro facility will
then dump the special edits for Texas into the input stack
for processing by WS. The process continues until the
RUN statement is encountered. At this point the DATA
step is finished compiling, thus it is executed by the SAS
supervisor. Had there been more code in the macro after
the RUN statement, the WS would have found this code
and continued to distribute it to either the DATA step
compiler, the procedure parser, or the macro facility as
appropriate.

A common problem for macros that manage one or more
steps is the specification of the input data set. SAS
usually assumes the last created data set by default.
How can we make use of the above knowledge to make
the macro behave the same way? Consider

%macro steps (data = &syslast) ;
.....

%mend steps ;

At macro compile time, when the %MACRO statement is
read, the value of &SYSLAST is irrelevant since macro
variables are not resolved at macro compile time. The
default value is the expression '&SYSLAST', not the
resolved form. Now when the macro is invoked with

%steps ()

the parameter DATA is assigned the default, &SYSLAST,
and now it is resolved. Hence, DATA will have the value
named by the last data set created before the macro
invocation.

The technique is handy, but one must be careful. Often
one would like the default for a parameter to be the
resolution of some global macro variable whose value is
assigned at the beginning of the program. Suppose we
make the mistake of naming the parameter and the global
variable by the same name, say DATA.

%macro steps (data = &DATA) ;
.....

11

%mend steps ;

At macro compile time there is no problem, but when the
macro is invoked with the default, there is a big problem.
How should &DATA be resolved? Since DATA is a
parameter, it is local; hence &DATA does not refer to the
global variable DATA. Now the macro facility is stuck with
the conundrum, "Find the value of DATA by looking at the
value of DATA", which results in an error message.

Conclusion

You have probably learned more than you wanted, but it
should help to make you a better SAS programmer. You
should now have a better sense of the four basic times

1. SAS compile time
2. SAS execution time
3. Macro compile time
4. Macro execution time

and what the SAS supervisor is doing in each of them.

Prior to Version 6 the SAS supervisor played a much
bigger role during the execution of the DATA step. In
Version 6 during DATA step execution it only handles the
LIST statement and the dump tripped by _ERROR_ = 1.
Both are done at the bottom of the implied loop and not
where they occur in the code.

The author can be contacted by mail at

Westat Inc.
1650 Research Boulevard
Rockville, MD 20850-3129

or by E-mail at

whitloi1@westat.com

References

Donald J. Henderson, (1983), “The SAS Supervisor,”
Proceedings of the Eighth Annual SAS Users Group
International Conference, 924-931.

Tom Miron, (1996), “The Secret Life of the DATA Step,”
Proceedings of the Twenty-First Annual SAS Users
Group International Conference, 170-177

Mary G. Rabb, Donald J. Henderson, and Jeffry A.
Polzin, (1992) “The SAS System Supervisor - A Version 6
Update, ” Proceedings of the Seventeenth Annual SAS
Users Group International Conference, 190-197.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries.
® indicates USA registration.

	Main TOC

