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Paper 223-2007

The Basics of the PRX Functions
David L. Cassell, Design Pathways, Corvallis, OR

ABSTRACT

We are constantly needing ways to search for patterns in text, and change particular pieces of text. With the advent 
of SAS® 9, the power of Perl's regular expressions is now available in the DATA step. The PRX functions and call 
routines let you to use the pattern matching features of Perl 5.6.1 to do these tasks, and more.  This paper will 
explain what regular expressions are, and how to write basic Perl regular expressions.  It will also show how to code 
the more useful PRX functions, and how to use these functions to search for text and replace text

WHAT’S A REGULAR EXPRESSION ANYWAY?

Regular expressions are simply a way of describing text so that we can search for it.  Regular expressions achieve 
this by describing, piece by piece, how the sections of that text ought to look.  This means that we have to use a sort 
of miniature programming language just to do this description of patterns.  This 'miniature programming language' 
does not look like SAS code, so it may seem rather strange.  But each regular expression is really just a string of 
characters that are designed to tell the program what sorts of patterns you want to find.

The simplest form of a regular expression is just a word or phrase for which to search.  For example, the phrase

Groucho Marx

could be a regular expression.  In Perl, we would use it by putting the phrase inside a pair of slashes, like this:

/Groucho Marx/

Those slashes are actually the way of writing the pattern matching function in Perl.  In SAS, we need to remember 
that string constants need quotes around the text.  We are going to treat the entire pattern matching function as our 
SAS character string., so we place quotes around the  above string before we use it in a function.  Single or double 
quotes will do:

'/Groucho Marx/'

or

"/Groucho Marx/"

And this would tell our program to search for any string which contained the exact string ‘Groucho Marx’ anywhere 
inside it.  The phrase ‘I saw Groucho Marx’ would match, as would the phrase ‘Groucho Marx was funny’ or the 
phrase ‘Groucho Marx’ with no other letters.  But the phrase ‘Groucho and Me’ would not have the exact string 
'Groucho Marx' inside it, and hence would not match.  The phrase 'Groucho and Karl Marx are not related' does 
indeed have both words 'Groucho and 'Marx' in it, but it does not have the exact string 'Groucho Marx' inside it, and 
hence we would still not have a match.

Now, if this was all that regular expressions could do, then they would not be worth very much.  The INDEX() 
function can do this much.  But, as we will see, regular expressions can do a lot more.  They can match virtually any 
pattern that we can describe.

Regular expressions are more common than you realize.  If you have ever used wildcards to look for files in a 
directory, then you have used a form of regular expressions.  And many of these forms look a lot like Perl regular 
expressions.  If you have ever typed something like:

dir DA*.sas
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then you have used regular expressions to look for patterns.  But, if you have done this, then be forewarned that 
these are not quite like Perl regular expressions, and the meaning of the asterisk and period are different for Perl 
(and hence the PRX functions).  This is one of the easiest traps to fall into when working with Perl regular 
expressions.  The asterisk and period are what we call ‘metacharacters’, characters with special meanings in regular 
expressions.  So pay careful attention when we cover the meaning of the asterisk and the period, and remember that 
they won’t work the way you expect them to when using MS-DOS wildcards at a DOS prompt.

HOW DO THE PRX… FUNCTIONS WORK IN A SAS 9 DATA STEP?

As of SAS 9.0, Perl regular expressions are available in the SAS DATA step.  The simplest form will look like the 
example above, a text string within slashes.  Since text strings need to be quoted properly in SAS functions, we will 
need to remember to put quotes around those slashes as well.

Suppose we have a simple database of names and phone numbers for our company to check.  The database will 
have only first name, last name, and phone number (including area code).  A small database like this might look like 
the following:

Obs    lastname        firstname       phonenum

  1    Marx            Chico        412-555-4242
  2    Marx            Harpo        541 555-3775
  3      Marx          Groucho      (909) 555-3389
  4    Marx            Karl         (404)555-9977
  5    Ma rx           Zeppo        (664) 555-8574
  6    Matrix          Jon          (703) 555-6732
  7    von Trapp       Maria        928-555-6060
  8    van den Hoff    Friedrich    870-555-3311
  9    MacDonald       Ole          677-555-5687
 10    MacDuff         Killegan     (854)555-8493
 11    McMurphy        Randall      422-555-4738
 12    Mac Heath       Mack         956-555-4141
 13    Potter          Lily         (646) 555-3324
 14    Potter          James        (646) 555-3324

It is not that hard to look at the above table and see a few potential problems.  With only fourteen records, simple 
inspection is possible.  But with fourteen thousand records, or fourteen million records, examining the records by 
hand becomes unreasonable.  Let’s use this database to explore the basics of the PRX functions.

If we want to search this database (which we will call PRX.CHECKFILE, just for our convenience) for all records 
containing the string ‘arx’, we can use the following program:

data check_arx;
  set prx.checkfile;
  if _n_=1 then do;                         /* 1 */
    retain re;                              /* 2 */
    re = prxparse('/arx/');                 /* 3 */
    if missing(re) then do;                 /* 4 */
      putlog 'ERROR: regex is malformed';   /* 5 */
      stop;                                 /* 6 */
      end;                                  /* 7 */
    end;

  if prxmatch(re,lastname);                 /* 8 */
  run;

proc print data=check_arx;
  var lastname firstname;
  title 'Last name matches "arx" ';
  run;

This program takes our database above and generates the lines:
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Obs    lastname    firstname

 1      Marx        Chico
 2      Marx        Harpo
 3        Marx      Groucho
 4      Marx        Karl

Now how does this program work?  Let's work through the program and see.  First, before we even get to the 
marked lines, we use the DATA and SET statements.  You should know these statements already.  The DATA 
statement tells SAS that we are starting a DATA step, and defines our output data set as WORK.CHECK_ARX .  
The SET statement reads one line at a time from the SAS data set PRX.CHKFILE .

In the line marked [1], we begin a DO-group which runs only when we read in the first record of the database.  This is 
the right time to perform tasks which need only be done once, but must be done before any other processing of the 
file.  The subsequent lines [2] through [6] are executed once, before this processing is done.

In the line marked [2], we use the RETAIN statement so that the regular expression RE will be available as every 
record of the database is processed.

In the line marked [3], we actually use the PRXPARSE function to build our regular expression RE.  As with all DATA 
step functions, we need parentheses around the parameters of the function.  Within the parentheses, we need 
quotes around the string which represents our Perl function.  The slashes are in fact the Perl matching function.  
Within the slashes is the regular expression, in this case only a text string.  But this leads to the complicated-looking 
form

prxparse('/arx/')

which we will see repeated through much of this paper.  Remember: parentheses, around quotes, around the 
slashes for the Perl function, around the actual regular expression.  The two types of Perl functions we will see are 
the matching function above, and the Perl substitution function, which in a PRXPARSE function will look like:

prxparse('s/pattern to find/text to substitute/')

It is important to note the difference here.  It's subtle, since both functions have slashes at the ends.  But these are 
not the same.  They are as different as two SAS functions.  The  /pattern/ function is the Perl matching function, and 
the s/pattern/stuff-to-substitute/ function is the Perl substitution function.

In the lines marked [4] through [7], we introduce error-handling in the DATA step.  If the pattern for the regular 
expression is poorly written, or we ask for some component of Perl regular expressions which is not available in SAS 
9, then the PRXPARSE function will fail.  In this case, the value of RE will be missing.  We check for this once, 
before beginning our processing of the file.  If missing(re) is true, then the do-group will cause the DATA step do two 
things.  It will use the PUTLOG statement to write an error message to the log [the line marked 5] and it will stop the 
execution of the DATA step before processing [the line marked 6].  This error-checking is optional - in the sense that 
checking your rearview mirrors while driving a car is optional.  Not doing it works fine, until you crash horribly.  Until 
you really feel comfortable developing Perl regular expressions and using them in the PRX functions, it is strongly 
recommended that you maintain this sort of error code.  If you are going to be using functions like this in production 
code, good error-checking is essential.  And, if you are going to be writing self-modifying code – code which can 
change as inputs vary – then error-checking is critical.

Also, notice in line [5] that we wrote 'regex' instead of 'regular expression'.  This is a common buzzword for regular 
expression.  We'll use the two interchangeably, from here on out.  Oh, and the official Perl plural of 'regex' is 
'regexen'.  Use of this word in conversation will make you appear to be a regex master.  Or a really nerdy SAS 
programmer.

Finally, in the line marked [8], we use the PRXMATCH function.  PRXMATCH requires two input parameters.  The 
first must be the name of the regular expression variable, and the second must be the name of the character 
expression you wish to search.  PRXMATCH returns the numeric position in the character string at which the regular 
expression pattern begins.  If no match is found, then PRXMATCH returns a zero.  If a match is found, then 
PRXMATCH returns the starting position of the matching string, which will be a whole number greater than 0.  Here, 
we use the Boolean nature of the IF statement to select any record for which PRXMATCH returns a non-zero 
number, that is, any record for which a match is found in the LASTNAME variable.
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PERL REGULAR EXPRESSION FORMS

Now that we have seen a character string, the simplest form of the Perl regular expression, we are ready to take a 
look at some of the basics of Perl regular expressions so we can perform more complicated pattern searches.  But
we have seen the first of the rules: concatenation.  If you want  'a', followed by ‘r’, followed by ‘x’, just write ‘arx’.  The 
five basics are:

concatenation
wildcards
iterators
alternation 
grouping

Now that we know what ‘concatenation’ really means, let’s look at the next step, wildcards.

Perl uses simple text strings, as we have already seen.  But Perl also uses wildcards, special characters (called 
metacharacters in Perl) which stand for more than one single text character.  A few of the common ones are:

. the period matches exactly one character, regardless of what that character is
\w a ‘word’-like character, \w matches any of the characters a-z, A-Z, 0-9, or the underscore
\d a ‘digit’ character, \d matches the numbers 0 to 9 only
\s a ‘space’-like character, \s matches any whitespace character, including the space and the tab
\t matches a tab character only
\W a ‘non-word’ character, that is, anything not matched by \w
\D a ‘non-digit’ character, that is, anything not matches by \d
\S a ‘non-whitespace’ character, that is, anything not matched by \s

Note that the period is a wildcard.  When using MS-DOS regular expressions, the period is a real period marking the 
boundary between the file name and the file extension.  Don’t let that trip you up when working with a Perl regex 
(remember, this is shorthand for ‘regular expression’).

Now let us look at a few more examples.

/a.x/

This would match any string which contained an ‘a’, followed by any character, followed by an ‘x’.  This would match 
the ‘arx’ in ‘Marx’, as well as the ‘anx’ in ‘Manx’ or ‘phalanx’, and the ‘aux’ in ‘auxiliary’.   It would not match ‘Matrix’, 
as the period will only match one character, and there are three characters between the ‘a’ and ‘x’ in Matrix.

/M\w\wx/

This would match any string which contained ‘M’, two ‘word’ characters, and an ‘x’.  It would match ‘Marx’.  But it 
would also match ‘M96x’ and ‘M_1x’, since \w matches numbers and underscores as well.  Be sure that your use of 
wildcards doesn’t lead to too many false positives!

Perl also provides ‘iterators’, ways of indicating that you want to control the number of times a character or wildcard 
matches.  Some of the iterators are:

* matches 0 or more occurrences of the preceding pattern
+ matches 1 or more occurrences of the preceding pattern
? matches exactly 0 or 1 occurrences of the preceding pattern
{k} matches exactly k occurrences of the preceding pattern
{n,m} matches at least n and at most m occurrences of the preceding pattern

Now let us look at using these too.

/a*x/
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Those who are used to Win32-style filename patterns will slip up here.  Instead of matching ‘a’ followed by an 
arbitrary string of characters (as in MS-DOS and win32 naming conventions), or ‘a’ followed by an arbitrary string of 
characters, followed by an ‘x’ (as in unix shells), the Perl regular expression uses ‘*’ as an iterator for the feature on 
its left.  In Perl, this asks to match any string which contains 0 or more occurrences of the letter ‘a’ immediately 
followed by an ‘x’.  So this would match ‘ax’, ‘aax’, ‘aaax’, and ‘aaaaaaaaaaax’.  It would also match ‘x’ alone or ‘lox’, 
since zero occurrences of ‘a’ will match the ‘a*’ part of the regular expression.  This pattern would therefore match 
‘Marx’ and ‘Manx’ and ‘phalanx’ and ‘Matrix’, all of which have an ‘x’ in them.  If you wish to match an ‘a’, then a 
string of arbitrary characters, then an ‘x’, you must write your regular expression as /a.*x/, using ‘.*’ to mean ‘any 
number of arbitrary characters’.  Use care when using the ‘*’ iterator!

/r+x/

This would match one or more occurrences of ‘r’, followed immediately by an ‘x’.  So it would match ‘rx’ and ‘rrrx’ and 
‘rrrrrrrrrrx’.  It would match the ‘rx’ in ‘Marx’, but not the ‘rix’ in ‘Matrix’.

/ri?x/

This would match ‘r’, followed by an optional ‘i’, and then followed by ‘x’.  So this would match both the ‘rx’ in ‘Marx’ 
and the ‘rix’ in ‘Matrix’.

/k\w{0,7}/

This would match a ‘k’, followed by 0 up to 7 ‘word-like’ characters.  In fact, this would match any SAS version 6 data 
set name starting with ‘k’.  Remember that the \w wildcard matches a ‘word’ in the sense of legal characters in SAS 
version 6 dataset and variable names.

/Ma\w{1,3}x/

This would match a capital ‘M’, followed by ‘a’, followed by one to three ‘word’ characters, followed by ‘x’.  So this 
would match ‘Matrix’ and ‘Marx’.  It would also match ‘Manx’ and ‘Maalox’ and ‘M1_9x’, though.  So you have to think 
about what you want to match, and what you do not want to match, as you write out your regular expression.

Perl also provides ways of grouping expressions and providing alternate choices.  The parentheses are the usual 
choice for grouping, and the ‘or’ operator | provides alternation.  Perl also uses the parentheses to ‘capture’ chunks 
of the pattern for later use, so we will want to remember that later.

In particular, when we put anything inside parentheses, the regex engine ‘captures’ the matching string and places it 
into a ‘capture buffer’.  That buffer gets used if we make a substitution with the CALL PRXCHANGE() function.  Also, 
the information about that buffer gets passed back for the use of the CALL PRX... functions, so that we can know the 
starting position and length of the matching text.  We’ll see in a while how to use that information.

When we use the ‘|’ symbol for alternation, we can match either of the component pieces in the regex.

/r|n/

The ‘|’ operator tells us to choose either ‘r’ or ‘n’.  So any string which has either an ‘r’ or an ‘n’ will match here.  Perl 
also provides another way of making such a pattern – the character class – which we will discuss later.

/Ma(r|n)x/

The parentheses group the two parts of the ‘alternation’ pattern.  The whole pattern now will only match a capital ‘M’, 
then an ‘a’, then either ‘r’ or ‘n’, then ‘x’.  So only strings containing ‘Marx’ or ‘Manx’ will match.  Still, strings like 
‘Marxist’ or ‘MinxManxMunx’ will match this pattern.

/Ma(tri|r|n)x/

Again, the parentheses group the patterns to be alternated.  But now we see that we do not have to have the same 
length patterns for alternation, and we do not have to stick with only two choices.  ‘Matrix’ or ‘Marx’ or ‘Manx’ would 
all match, as would any string containing one of them.
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ANOTHER EXAMPLE WITH PRXMATCH

If we now want to search for only those names starting with ‘Mc’ or ‘Mac’, followed by a space, then one or more 
letters, we can modify our above code.  We can use our newly-learned techniques and write the pattern as  
/(Mc|Mac) \w+/ .  We use parentheses to group the only part where we wish to have alternation, the choice of 
‘Mc’ or ‘Mac’.  We then have a literal character, the space.  That is followed by the wildcard \w with the iterator ‘+’, 
meaning ‘one or more’.  So that means 'one or more word characters'.  Then our program would look like:

data check_mac;
  set prx.checkfile;
  if _n_=1 then do;
    retain re;
      /*   Comment on regex:
         (Mc|Mac)  'Mc' or 'Mac'
                   a real space
         \w+       1 or more word characters
                                                */
    re = prxparse('/(Mc|Mac) \w+/');
    if missing(re) then do;
      putlog 'ERROR: regex is malformed';
      stop;
      end;
    end;

  if prxmatch(re,lastname) > 0;
  run;

proc print data=check_mac;
  var lastname firstname;
  title 'Last name matches Mc or Mac, blank, then "word" ';
  run;

This produces the single record of output:

Obs    lastname     firstname

 1     Mac Heath      Mack

Note in passing that the regular expression could also have been written as  /Ma?c \w+/  with the ‘?’ iterator 
handling the difference in beginnings for the last names.  ‘Ma?c’ looks for ‘M’, then an optional ‘a’, then a ‘c’.  This 
would find both ‘Mc’ and ‘Mac’, without accidentally matching any undesired strings.  There is usually more than one 
way to work out a regular expression, and sometimes there can be a great number of alternatives.

Also note that we explicitly put a comment block in our code, so that readers can figure out what on earth our regex 
is doing.  Since the Perl regular expression language is not like SAS data step statements, we are not going to 
expect that other SAS programmers will automatically know what our regex means.  And we want to be able to 
remember what our own regex does if we come back to this code in a couple months!

YET MORE METACHARACTERS

Perl also has special characters (more of those metacharacters) which don’t match a character at all, but represent a 
particular place in a string.

^ represents the beginning of the string, before the first character
$ represents the end of the string, after the last character
\b represents a word boundary, the position between a ‘word’ character and a ‘non-word’ character
\B matches when we are NOT at a word boundary

The metacharacters \b and \B are somewhat subtle.  They are zero-width features (called ‘assertions’ in Perl, if you 
want to throw around some more jargon and impress your colleagues) which take some getting used to.
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/^M\w+x$/

The ‘^’ and ‘$’ indicate that the pattern must match at the beginning of the string and finish up at the end of the 
string.  The \w+ will match any sequence of ‘word’ characters’. So this would match ‘Marx’ and ‘Matrix’ and 
‘MinxManxMunx’.  But it would not match ‘minManx’ (does not start with a ‘M’).  It would not match ‘Marxist’ (does not 
end with an ‘x’).  It would match ‘M3__9x’, since digits and underscores are also matched by \w .

/^M\w{2,6}x\b/

Now this matches a string which begins with ‘M’, has two to six additional ‘word’ characters, followed by an ‘x’, and 
then the word must end.  It could be followed by a space, or a tab, or a percent sign, or a dash.  But it can not be 
followed one of the characters which are represented by the \w metacharacter.  ‘\b’ will only match at the boundary of 
a ‘word’, either immediately before or immediately after a string of characters that would be matched by \w.

/^M\w+x\B/

This matches a string which begins with ‘M’, has one or more ‘word’ characters, then an ‘x’, and then something 
other than a ‘non-word’ character.  The word cannot end at the ‘x’ and still match, because of the \B metacharacter.  
This would match ‘Marxist’ or ‘MinxManxMunx’, because both of these strings could match starting with the capital 
‘M’ and then match an ‘x’ in the middle of the ‘word’.  This would not match ‘Matrix’ or ‘Marx’, because there is no 
way to get a match without having the ‘x’ as the last letter of the word, and \B disallows that.

HANDLING SPECIAL CHARACTERS IN SEARCHES

These Perl regular expression features seem nice, but so far we have left a gaping hole in our text-searching 
capabilities.  If metacharacters like ‘(‘ and ‘+’ and ‘.’ are always special, then how can we search for a real period?  
How can we search for a phone number which has an area code in parentheses, if the open parenthesis mark and 
the close parenthesis mark are special?  Perl lets us use the backslash ‘\’ to mark these metacharacters as regular 
characters.  In Perl this is often called ‘quoting’ the special character.

/(\d\d\d) \d\d\d-\d{4}/

This matches three digits, a space, three more digits, a dash, and four more digits.  But no real parentheses can be 
in the matched string.  The parentheses are still metacharacters here.  They mark the first three numbers as a group 
to be ‘captured’ for later processing.

/\(\d\d\d\) \d\d\d-\d{4}/

Now the opening and closing parentheses are to be treated as real parentheses, not special regular expression 
features.  This matches three digits enclosed in parentheses, a space, three more digits, a dash, and four more 
digits.

/M\.+x/

This matches an ‘M’, followed by one or more real periods, followed by an ‘x’.  So a string like ‘asdfM….xcvb’ would 
match.  The string has a capital ‘M’, then a sequence of periods, then an ‘x’ in it.

PRXMATCH WHEN QUOTING METACHARACTERS

If we want to search our database for phone numbers of the form (xxx) xxx-xxxx, where there may or may not be a 
space between the area code and the 7-digit number, then we need to be able to treat the parentheses marks as 
normal characters, rather than special characters.  So the form above, with an optional space in the middle, will do 
what we need.  Our regular expression will look like  /\(\d{3}\) ?\d{3}-\d{4}/  where the ‘?’ character lets 
us search for zero or one spaces in the middle.
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data check_num;
  set prx.checkfile;
  if _n_=1 then do;
    retain re;
      /*   Comment on regex:
         \(      a real left parenthesis
         \d{3}   3 digits
         \)      a real right parenthesis
          ?      an optional space
         \d{3}-  3 digits and a dash
         \d{4}   4 digits
       So it's a phone number with parens around the area code
                                                               */
    re = prxparse('/\(\d{3}\) ?\d{3}-\d{4}/');
    if missing(re) then do;
      putlog 'ERROR: regex is malformed';
      stop;
      end;
    end;

  if prxmatch(re,phonenum);
  run;

proc print data=check_num;
  var phonenum lastname firstname;
  title 'Phone number matches (xxx)xxx-xxxx or (xxx) xxx-xxxx';
  run;

The output from this program looks like:

Obs       phonenum       lastname    firstname

 1     (909) 555-3389      Marx      Groucho
2     (404)555-9977     Marx        Karl

 3     (664) 555-8574    Ma rx       Zeppo
 4     (703) 555-6732    Matrix      Jon
5     (854)555-8493     MacDuff     Killegan

 6     (646) 555-3324    Potter      Lily
 7     (646) 555-3324    Potter      James

THE PERL SUBSTITUTION FUNCTION AND PRXCHANGE()

As we mentioned before, Perl has a substitution function, which looks like :

s/pattern to match/changed text to insert instead/

The 's' at the front is a mnemonic for 'substitution'.  Remember that this is completely different from the matching 
function /pattern/ even if the two Perl functions look really similar at first glance.  

When we use the substitution function in a SAS function or call routine like PRXCHANGE(), we must remember to 
enclose the entire Perl function in (either single or double) quotes, and to put the quoted string in parentheses, just 
as we did in the code examples for PRXMATCH().

We will start first with the PRXCHANGE() function, which was introduced in SAS 9.1 and as such is not available if 
you are using SAS 9.0 .  (If you are still living with SAS 9.0, just wait a few paragraphs, until we get to the 
PRXCHANGE() call routine, which is in SAS 9.0 .)

When we looked over our database back on page 2, we saw several phone numbers which did not have the form we 
wanted in our previous example.  Some of the phone numbers were missing the parentheses around the area code.  
Let's figure out how to fix that.  We'll need to do a couple things here.  We need to:
(1) match phone numbers which start with the three digits and have no parentheses; 
(2) check whether the area code is followed by a space or a dash, because we do not want the dash carried along 
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when we replace things; 
(3) and replace the area code with the same number in parentheses, followed by a space before the rest of the 
phone number.
Can we do all that in a regular expression?  Of course we can.  We can do almost anything that you can explicitly 
write down like this.

So what do we need?  We need to match three digits at the very start of the string, followed by a space or a dash.  
We want to capture just the three digits, and replace our matched pattern with the three digits inside parentheses, 
followed by a space.

Okay, we can do that.  We have learned all the pieces that we might need, with one exception.  We have not yet 
learned how to use the piece that we capture inside parentheses.  That is straightforward, though.  The contents of 
the first set of parentheses are saved in a buffer that we can call \1 .  The contents of the second capturing 
parentheses are called \2 , and so on.  The other point we need to clarify is that the second part of the substitution 
function is straight text, not regular expressions to be matched.  So we can write our substitution like this:

s/^(\d{3})( |-)/(\1) /

Let's look at this, piece by piece:

s/ start the substitution function
^ match at the start of the string
( start the first capture buffer
\d{3} 3 digits
) close the first capture buffer
( start a grouping (this will also be a capture buffer, even though we will not use it)
 |- space or dash
) close the grouping
/ end the pattern, start the substitution part
( a real left parenthesis (this is not a regex now)
\1 contents of the first capture buffer (the area code)
) a real right parenthesis (this is not a regex now)

a real space
/ end the substitution function

That's the hard part.  After that, the program is easy.  The PRXCHANGE() function looks like this:

newstring = prxchange( regex, numtimes, oldstring );

REGEX is the regular expression variable we create with PRXPARSE().  NUMTIMES is the number of times we want 
to make a substitution in our string, and OLDSTRING is the name of the original string.  The result of the function is 
NEWSTRING, the new string with the substitutions already made.  So our code will look like this:

data change1;
  length newphonenum $ 14;  /* make this as long as the original phone number */
  set prx.checkfile;
  if _n_=1 then do;
    retain re;
      /* details of regex are given above */
    re = prxparse('s/^(\d{3})( |-)/(\1) /');

if missing(re) then do;
      putlog 'ERROR: the regex is malformed';
      stop;
      end;
    end;

  newphonenum = prxchange( re, 1, phonenum);
  run;

proc print data=change1 noobs;
  var newphonenum phonenum;
  title 'Phone numbers with area codes all in parentheses';
  run;
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The output from this program shows that all of the phone numbers without parentheses have been corrected, as we 
intended.  (You'll notice that some of the phone numbers that started out with area codes in parentheses do not have 
a space after the area code: we didn't fix those.)

newphonenum         phonenum

(412) 555-4242    412-555-4242

(541) 555-3775    541 555-3775

(909) 555-3389    (909) 555-3389
(404)555-9977     (404)555-9977
(664) 555-8574    (664) 555-8574
(703) 555-6732    (703) 555-6732
(928) 555-6060    928-555-6060
(870) 555-3311    870-555-3311
(677) 555-5687    677-555-5687
(854)555-8493     (854)555-8493
(422) 555-4738    422-555-4738
(956) 555-4141    956-555-4141
(646) 555-3324    (646) 555-3324
(646) 555-3324    (646) 555-3324

THE PRXCHANGE CALL ROUTINE

The PRXCHANGE() function is easier to use than a call routine, but this function can only return one thing: the new 
string.  It does not tell you how many changes were made.  It does not tell you if your string was truncated - if the 
substituted string does not fit completely in the new character variable, then the end will be cut off.  (Note: if the 
substitutions make the string shorter, or keep it at the same length, then you will not need to worry about truncations 
here.)  As an aside, the default length for the newly-created string is going to be 200, unless you use a LENGTH 
statement.  But the original PRXCHANGE() call routine, which was introduced in SAS 9.0 , can do all of that for you.

The simplest form of the PRXCHANGE call routine looks like:

call prxchange(pattern, n, variablename);

Here the ‘pattern’ is the regular expression previously built using PRXPARSE, ‘n’ is the number of times to search for 
and replace the pattern, and ‘variablename’ is the SAS variable on which to work.  ‘n’ can be any positive integer, or 
-1.  The -1 tells SAS to match and replace every occurrence of the pattern in that string.  With no additional variable 
name in here, the changes are made in the original string VARIABLENAME .

There are optional parameters you can use in the CALL PRXCHANGE function.  However, since the parameters are 
not named, you have to add them in sequentially.  If you want to use the last parameter, you have to include all of 
them.  So the optional forms look like:

call prxchange(pattern, n, variablename, newvariablename);

call prxchange(pattern, n, variablename, newvariablename, length);

call prxchange(pattern, n, variablename, newvariablename, length, trunc);

call prxchange(pattern, n, variablename, newvariablename, length, trunc,
               changecount);

‘NEWVARIABLENAME’ names a new SAS variable in which to insert the substituted version of the text.  This can 
keep you from accidentally destroying your old (but correct) strings if your regex fails to work as you expected.  
‘LENGTH’ names a variable that is assigned the length of the string after the replacement.  ‘TRUNC’ names a 
variable that is assigned a 0 or 1, depending on whether the new string is so long that its tail is truncated when it is 
put back in the variable.  A truncation causes the variable to be assigned a 1.  This makes for easy checking if 

SAS Global Forum 2007 Tutorials

 



11

truncation would be an error condition.  ‘CHANGECOUNT’ names a variable that is assigned the number of 
replacements made in the string.

Now let us make two changes in an earlier regex.  First, we want to catch any case where the name starts with ‘Mac’ 
or ‘Mc’ and has a space, followed by the rest of the name – which is always ‘word’ characters in our database.  So 
we could write the pattern as  /Ma?c \w+/  to find the problem.  But we want to ‘capture’ the parts before and after 
the space, and keep only those for our substitution.  By putting these parts of the pattern in parentheses, Perl 
captures these chunks to memory for later use.  Remember, Perl saves these as \1, \2, etc, where the number is 
based on the order in which the left parentheses are seen in the pattern.  So we can substitute and remove the 
space with the function

s/(Ma?c) (\w+)/\1\2/

Second, let us find any value of last name which starts at the beginning of the string with one or more spaces, then is 
followed by the desired name.  We will capture the name, including spaces if any, and substitute so that we have no 
spaces at the beginning.  We can do that as

s/^\s+(\w.*)/\1/

This describes the pattern as beginning of line, followed by one or more ‘space’ characters, followed by a ‘word’ 
character and whatever follows.  This allows us to have non-word characters, like a space, in the captured chunk.  
So the code looks like:

data check_change;
  set prx.checkfile;
  if _n_=1 then do;
    retain re1 re2;
      /* comments on first substitution:
         (Ma?c)  'M', an optional 'a', and a 'c', in capture buffer 1
                 a real space
         (\w+)   1 or more 'word' characters, in capture buffer 2
         \1\2    the two capture buffers, with no space in between             */
    re1 = prxparse('s/(Ma?c) (\w+)/\1\2/');
      /* comments on second substitution:
         ^\s+    1 or more spaces/tabs at start of string
         (\w.*)  a word character followed by 0 or more of anything, in buffer 1
         \1      replace the above with just what is in capture buffer 1        */

re2 = prxparse('s/^\s+(\w.*)/\1/');
    if missing(re1) or missing (re2) then do;
      putlog 'ERROR: a regex is malformed';
      stop;
      end;
    end;

  call prxchange(re1,-1,lastname);
  call prxchange(re2,-1,lastname);
  run;

proc print data=check_change;
  var lastname firstname;
  title 'fixed last names with incorrect spaces';
  run;

Note that we have used more than one regular expression in the step.  You are not restricted to a single regular 
expression in any DATA step.  However, you should be aware that these regular expressions take up space in 
memory, so over-use of multiple regular expressions in a DATA step has drawbacks.  In this example, the ‘-1’ is not 
really necessary.  Both cases have been designed so that only one substitution is done per record.  A ‘1’ could have 
been used as the second parameter in both PRXCHANGE functions.  However, using the ‘-1’ will allow you to handle 
cases where multiple substitutions need to be performed in a single field.

The output now looks like:
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Obs    lastname        firstname

  1    Marx            Chico
  2    Marx            Harpo
  3    Marx            Groucho
  4    Marx            Karl
  5    Ma rx           Zeppo
  6    Matrix          Jon
  7    von Trapp       Maria
  8    van den Hoff    Friedrich
  9    MacDonald       Ole
 10    MacDuff         Killegan
 11    McMurphy        Randall
 12    MacHeath        Mack
 13    Potter          Lily
 14    Potter          James

We have fixed all but one of the problems we saw at the beginning of the paper, and have not messed up last 
names where a space should be maintained.  Clearly, we could have added a third PRXPARSE line to handle our 
special case of ‘Ma rx’.  Or we could have designed a regex which would remove spaces from all the last names 
except those starting with 'van' or 'von'.  Or we could have assigned the changed strings to a new variable for further 
data validation.  So there are lots of options when structuring changes.

As of SAS 9.1, we can do one extra trick which was not allowed in SAS 9.0 .  We can place the regex itself in the first 
parameter of the PRXCHANGE function or call routine, or the PRXMATCH function, instead of putting the regex in 
the PRXPARSE function and referring to it.  But this is not a good idea unless you are familiar enough with regexen 
that you don't have to worry about making a mistake in the regex, because you no longer have any error-checking!  
This means that we could have written our first CALL PRXCHANGE statement above like this:

call prxchange('s/(Ma?c) (\w+)/\1\2/', -1, lastname);

CHARACTER CLASSES

Another important feature of Perl regular expressions is the ‘character class’.  Perl will let us list inside square 
brackets a whole series of possible choices for a single character.

/[cbr]at/

The character class here has the three letters ‘c’, ‘b’, and ‘r’.  So only those three letters are feasible matches 
immediately before the ‘at’.  Thus, this will match ‘cat’, ‘bat’, and ‘rat’.  But it will not match ‘mat’ or ‘gat’ or ‘_at’.  Only 
the characters listed inside the square brackets can match that single character in the pattern.

/[a-z]at/

The character class allows a dash in the same way that SAS variables can be listed in sequence using a dash 
between the first and last names in the sequence.  The ‘a-z’ inside a character class means all letters between ‘a’ 
and ‘z’, but nothing else.  So this represents all lower-case letters.  This pattern will match ‘’bat’ and ‘gat’ and ‘pat’, 
but not ‘Mat’ or ‘Pat’ or ‘3at’.

/[A-R1-3-]at/

Now the character class contains all capital letters from ‘A’ to ‘R’, the numbers from ‘1’ to ‘3’, and a dash.  Since the 
dash has a special meaning inside the character class (and not anywhere else in Perl regular expressions), we 
cannot use a dash as a normal character when it is between characters.  The way around this is to make the dash 
have its normal meaning if it is at the beginning or end of the string of characters inside the brackets.  This patter will 
match ‘Bat’ and ‘Rat’ and ‘2at’ and even ‘-at’, but not ‘sat’ or ‘Sat’.

/[^A-R1-3-]at/

The caret ‘^’ as the first character in a character class has a special meaning as well.  It means ‘everything except
what is inside the brackets’.  So this now matches ‘sat’ and ‘Sat’ (‘s’ and ‘S’ are not in the list of characters), and will 
not match ‘Bat’ or ‘Rat’ or ‘2at’ or ‘-at’ (those characters that are in the list).
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CALL PRXSUBSTR

We have already noticed that the PRXMATCH function returns not a zero or 1 value, but the position at which the 
matching string starts.  That is often enough.  But, if you then want to use SUBSTR() to grab the matching text, you 
are lacking a length value.  CALL PRXSUBSTR solves that problem.  CALL PRXSUBSTR takes the form:

call prxsubstr (re, variable, start <, length>);

Note that this will now return the start value into a variable called ‘START’ (or whatever you name it), and can 
optionally assign the length of the matching string to the variable called ‘LEN’ (or whatever you name it).  Below, we 
use CALL PRXSUBSTR to create the variables RE_START and RE_LEN, the starting position and length of the 
matching text, respectively.  The regex /\w \w.+/ will match a word character, followed by a blank, followed by a word 
character and more characters (including the blanks at the end of the string).  This will let us find all the last names 
with blanks in them, whether correct or not.  CALL PRXSUBSTR will then return enough information that we can 
collect the text for later use.

Also note that we are using the SAS 9 function SUBSTRN() instead of SUBSTR() here.  SUBSTRN() has the added 
advantage that it will gracefully handle the case where the length of the string to be gathered is 0.  In that case, 
SUBSTRN() politely returns a missing value instead of complaining to the log.

One additional point to note is the offsets used in the SUBSTRN() function.  Because we matched the desired ‘tail’ 
piece of the last name as well as the preceding space and letter, we are starting our match two characters before we 
want to begin the SUBSTRN() function, and our match is therefore two characters longer than desired.  We remedy 
this by inserting the offsets below.

data check_sub;
  set prx.checkfile;
  if _n_=1 then do;
    retain re;
    re = prxparse('/\w \w.+/');
    if missing(re) then do;
      putlog 'ERROR: a regex is malformed';
      stop;
      end;
    end;

  call prxsubstr(re,lastname,re_start,re_len);
  tail = substrn(lastname, re_start+2, re_len-2);
  if re_start > 0 then output;
  run;

proc print data=check_sub;
  var lastname tail re_start re_len;
  title 'tail component of last names';
  run;

This program generates the following output.  Note that the TAIL variable has been designed so that the undesired 
part at the beginning of the regex has been dropped.  There are more advanced Perl regular expression features 
which would actually permit us to eliminate the need for this kind of adjustment, but there simply isn’t room for a 
complete exposition on all the regular expression features that are available.

Obs    lastname        tail        re_start    re_len

1     Ma rx           rx              2         14
 2     von Trapp       Trapp           3         13
3     van den Hoff    den Hoff        3         13

 4     Mac Heath       Heath           3         13

Also note that the RE_START value still shows where the regex actually began matching, and the RE_LEN value 
demonstrates that the regex matched all the trailing blanks as well as the desired letters.
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PRXPOSN AND CALL PRXPOSN

While CALL PRXSUBSTR facilitates the use of the SUBSTR() and SUBSTRN() functions, the PRXPOSN function 
and the CALL PRXPOSN routine help us pull out capture buffers at the specified positions in the regular expression.  
If we have more than one set of capturing parentheses in a regex, then we have more than one capture buffer.  We 
may want to pull these pieces out for special use, and we may need to know which capture buffer is which.  
PRXPOSN() and CALL PRXPOSN help us with that task.  

The form of the PRXPOSN function is:

output-text  = prxposn( re, capture-buffer-number, source-string );

The PRXPOSN() function uses RE, the return from PRXPARSE(). The CAPTURE-BUFFER-NUMBER is a number 
(from one up to the number of capturing parentheses in the regex) telling which buffer to use.  The SOURCE-
STRING is the name of the character variable to which we apply the regex.  If all you need is the contents of the 
capture buffer, this is simpler than the call routine below - but it is a SAS 9.1 feature.

The form of the CALL PRXPOSN routine is:

call prxposn( re, capture-buffer-number, buf-start <,buf-length> );

The variable RE is still the return from PRXPARSE().  The CAPTURE-BUFFER-NUMBER is (as before) a number 
telling which buffer to use.  BUF-START is the name of the variable holding the starting position for the string 
referenced by the given capture buffer, just as the optional BUF-LENGTH is the variable holding the length of said 
string.  BUF-START and BUF-LENGTH are variables created by the call routine, and you can give them any name 
you want.  The call routine does not need you to tell it the name of the source string.

Let’s work with our phone numbers again.  This time we’ll set up three capture buffers, one each for the area code, 
the exchange, and the number end.  Then we can use PRXPOSN() to retrieve capture buffer contents, and CALL 
PRXPOSN to return variables holding the start position and (optionally) the length of the matching string so that we 
can catch the strings using SUBSTR() .

data check_posn;
  set prx.checkfile;
  if _n_=1 then do;
   retain re;

    re = prxparse('/\((\d{3})\) ?(\d{3})-(\d{4})/');
    if missing(re) then do;
      putlog 'ERROR: regex is malformed';
      stop;
      end;
    end;

  if prxmatch(re,phonenum) then do;
    areacode = prxposn( re, 1, phonenum);
    exchange = prxposn( re, 2, phonenum);
    call prxposn( re, 3, endgstart, endglen);

ending   = substr(phonenum, endgstart, endglen);
output;
end;

  run;

proc print data=check_posn;
  var phonenum lastname areacode exchange ending;
  title 'Phone number matching (xxx) ?xxx-xxxx ';
  run;

Note that in this case, we are using CALL PRXPOSN in a fairly trivial way: the PRXPOSN() function would serve as 
well.  CALL PRXPOSN becomes more useful when you want to do more than just retrieve the contents of the 
capture buffer.  The resulting output looks like:
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Obs       phonenum       lastname    areacode    exchange    ending

 1     (909) 555-3389      Marx        909         555        3389
 2     (404)555-9977     Marx          404         555        9977
 3     (664) 555-8574    Ma rx         664         555        8574
 4     (703) 555-6732    Matrix        703         555        6732
 5     (854)555-8493     MacDuff       854         555        8493
 6     (646) 555-3324    Potter        646         555        3324
 7     (646) 555-3324    Potter        646         555        3324

CALL PRXNEXT

The CALL PRXNEXT routine becomes valuable when we have a regex which matches multiple times (or an 
unknown number of times) in our string of interest.  Then we can use the call routine to get the next occurrence of 
the matching pattern.  The syntax of CALL PRXNEXT is:

call prxnext( re, search-start, search-stop, varname, re_posn, re_length);

There are no optional variables this time.  SEARCH-START and SEARCH-STOP let us define starting and stopping 
positions within which to search for matches.  If you want to look through the entire length of the variable VARNAME, 
you set SEARCH-START to 1 and SEARCH-STOP to either -1 (the end of the variable) or to LENGTH(VARNAME) 
(the end of the variable, not counting trailing blanks).

We now want to search through a database which has our earlier last names and first names (after some repair 
work), along with a long string which may contain one or more ID codes.  Legal ID codes will be  defined as having 
length 4 or 5 only.  Here’s what our data set looks like:

Marx           Chico      4546
Marx           Harpo      5474 or 13373 or 1774
Marx           Groucho    no idcodes
Marx           Karl       4385 and 49387  
Marx           Zeppo      6485 
Matrix         Jon        77553 | 24653
von Trapp      Maria      2263
van den Hoff   Friedrich  548236842 
MacDonald      Ole        90510  
MacDuff        Killegan   @NA  
McMurphy       Randall    227  
MacHeath       Mack        .      
Potter         Lily       46455
Potter         James      46454

Anyone who has had to read in Excel spreadsheets recognizes the kinds of problems that occur here.  But these are 
the kinds of problems that make the PRX functions even more useful.  Note that some of the strings have 
unexpected notes, and some have more than one ID code.  Also note that the eighth row has a number too long to 
be legal, while the eleventh record has a number that is too short to be a legal ID code.  We can handle both those 
problems with a regex which only allows 4 or 5 digits.  /\b\d{4,5}\b/ uses the \b metacharacter to mark the 
beginning and end of the number sequence (remember that digits count as ‘word’ characters, so we can use \b to 
spot the beginning and end of digit strings too).  In between the \b characters, the only regex which will match will be 
a sequence of exactly four or five digits.  Our program becomes:

data check_next;
  array ids{3} id1-id3;
  set prx.checkfile2;
  if _n_=1 then do;
    retain re;
    re = prxparse('/\b\d{4,5}\b/');
    if missing(re) then do;
      putlog 'ERROR: a regex is malformed';
      stop;
      end;
    end;
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  start = 1;
  stop = length(idcodes);
  call prxnext(re,start,stop,idcodes,startposn,len);
  do i = 1 to 3 while(startposn > 0);
    ids{i} = input(substr(idcodes,startposn,len),5.);
    call prxnext(re,start,stop,idcodes,startposn,len);
    end;
  run;

proc print data=check_next;
  var lastname idcodes id1 id2 id3;
  title 'legal ID codes from the string IDCODES';
  run;

Note that the array will only hold three IDs; a longer array might need to be defined in some cases.  When CALL 
PRXNEXT fails to find another matching occurrence, it will return a zero for the start position of the match.  At that 
point, the do-loop will stop and the remaining entries in the array will be left with a missing value.  So the output 
looks like:

Obs    lastname        idcodes                   id1      id2      id3

  1    Marx            4546                      4546        .       .
  2    Marx            5474 or 13373 or 1774     5474    13373    1774
  3    Marx            no idcodes                   .        .       .
  4    Marx            4385 and 49387            4385    49387       .
  5    Marx            6485                      6485        .       .
  6    Matrix          77553 | 24653            77553    24653       .
  7    von Trapp       2263                      2263        .       .
  8    van den Hoff    548236842                    .        .       .
  9    MacDonald       90510                    90510        .       .
 10    MacDuff         @NA                          .        .       .
 11    McMurphy        227                          .        .       .
 12    MacHeath        .                            .        .       .
 13    Potter          46455                    46455        .       .
 14    Potter          46454                    46454        .       .

The regex successfully parses out one legal ID code each time, until there are none left.  Note that the use of the 
regex in the PRXPARSE function allows us to avoid worrying about what sort of separators or words are used 
between the ID codes.  Another point of interest is that the program used the INPUT() function to turn the substrings 
(which are still character strings) into numeric variables, thus making them easier to work with in some 
circumstances.  You can see from the alignment of the variables in the output above that the first two variables are 
character, while the last three variables are numeric.

THE PRXPAREN FUNCTION

The PRXPAREN function is less common than the previous functions and CALL routines.  It is useful when you have 
alternation with capturing parentheses, and you want to see which capture buffer was used.

prxparen(re)

is the form we use.  It only requires the regex RE, although it does need PRXMATCH to be previously invoked, so 
that there is a matched regular expression to work with.

Suppose that we are still working with the above ID code database, and we want to capture three-, four-, or five-digit 
codes.  (Recall that before, we only used four- and five-digit codes.)  If we use the regex

/(\b\d{3}\b)|(\b\d{4}\b)|(\b\d{5}\b)/

We will match the beginning of the digit sequence, three or four or five digits, and the end of the sequence.  Note 
that each of the three alternates is enclosed in parentheses.  Which will match on any given record?  Since a regular 
expression matches leftmost first, we won’t be surprised that this will match the lefthand ID code (of three to five 
digits).  So we can use PRXPAREN() to see which of the alternates matched.
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data check_paren;
  set prx.checkfile2;
  if _n_=1 then do;
    retain re;
    re = prxparse('/(\b\d{3}\b)|(\b\d{4}\b)|(\b\d{5}\b)/');
    if missing(re) then do;
      putlog 'ERROR: a regex is malformed';
      stop;
      end;
    end;

if prxmatch(re,idcodes) then do;
  match_num = prxparen(re);
  output;
  end;  

  run;

proc print data=check_paren;
  var lastname idcodes match_num;
  title 'matching syntax from IDCODES';
  run;

This only outputs the matching records, as opposed to the previous output, so we get the following output.  We can 
see that, when there are multiple ID codes, the regex matches “leftmost first”, meaning that it matches starting at the 
left, and once successful, does not try repeatedly to make longer matches further right in the string.  When there is 
only one ID, that is of course matched.  When there are more than one, the lefthand digit sequence is matched, 
whether it is the longest possible match or not.

Note that MATCH_NUM is only equal to 3 (representing the longest digit sequence) when the first matching digit 
sequence is of length five, in records 5, 7, 9, and 10.  In record 2, there is a possible five-digit match.  But there is an 
earlier sequence that matches our regular expression, so that one will be found instead.

Obs    lastname        idcodes                  match_num

  1    Marx            4546                        2
  2    Marx            5474 or 13373 or 1774       2
  3    Marx            4385 and 49387              2
  4    Marx            6485                        2
  5    Matrix          77553 | 24653               3
  6    von Trapp       2263                        2
  7    MacDonald       90510                       3
  8    McMurphy        227                         1
  9    Potter          46455                       3
 10    Potter          46454                       3

CONCLUSION

The Perl regular expressions give us a wide variety of choices in matching patterns, even though there are really 
only five general principles to follow.  The PRX functions and CALL routines give us handy ways of using these 
regular expressions to search for complex patterns and to make changes in our text strings.  The two together give 
us new tools that extend the utility of the DATA step.

The regular expressions available in SAS 9 are built on the functionality of Perl 5.6.1.  But there are more Perl 
regular expression features than we have been able to show in one short paper.  And there are Perl regular 
expression features which are not available in SAS.  Details on the features not available in SAS 9.x are given in the 
SAS Online documentation.  For full details of the features available in Perl, the Perl documentation is extensive and 
free.  And there are many free tutorials on Perl regular expressions on the Internet.

In addition, there are more PRX.. functions and CALL routines we have not mentioned.  CALL PRXDEBUG(1) can 
be executed in order to get debugging information printed to the log.  This can help debug a malfunctioning regular 
expression as well as help explain why (or why not) a puzzling match occurs.  CALL PRXDEBUG(0) then turns this 
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feature off.  CALL PRXFREE(regex-name) frees up the memory allocated to regex-name once it is no longer
needed.  In a normal DATA step, this is seldom required, since the memory will be automatically freed at the 
conclusion of the DATA step processing.

And there is a "Perl Regular Expression Tip Sheet" in PDF format, which you can download from the SAS website.  
The URL is  http://support.sas.com/rnd/base/topics/datastep/perl_regexp/regexp-tip-sheet.pdf .  This sheet covers 
the Perl regular expression features you can use in SAS PRX functions, the PRX functions themselves, and five 
complete examples showing how to use these tools.

There are lots more features, and more things that we can do with these features, than we can fully demonstrate in 
anything short of a small textbook.  But the power comes from the functionality of the Perl regular expression engine 
under the hood.  As you practice with regular expressions, you will gain an appreciation for the breadth of 
applicability these functions have.  And the more you learn about regular expressions, the more you will be able to 
do with the PRX functions.
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