Paper 114-2007

Using SAS® to Process Repeated Measures Data — A Hands-On Approach
Terry Fain, RAND Corporation, Santa Monica, CA
Cyndie Gareleck, RAND Corporation, Santa Monica, CA

ABSTRACT

Data that contain multiple observations per case are called “repeated measures data.” Common examples are
medical records, credit card charges, and airline travel history. During this hands-on workshop, attendees will use the
SAS® DATA step to process repeated measures data, in order to generate summary data for reports or for
submission to analytic techniques (e.g., regression). We will address both horizontal repeated measures (using
arrays) and vertical repeated measures (using RETAIN, FIRST., LAST., OUTPUT, and other SAS statements and
options), as well as how to convert horizontally structured data to vertically structured data and vice versa.

INTRODUCTION

Repeated measures data generally take one of two forms: (1) one record per case, with the repeated measures in an
array and different variable names for each individual observation, or (2) multiple records per case, with each record
containing data for a single episode (such as a medical visit or a credit card transaction). This paper will discuss the
advantages and disadvantages of data stored in these two formats, with an emphasis on how to use the SAS DATA
step to process these two forms of repeated measures data. We will also see how to convert from one record per
case to multiple records per case, and vice versa. This is a basic workshop that introduces the appropriate SAS tools
for processing repeated measures data.

WHY PROCESS REPEATED MEASURES DATA?

By definition, repeated measures data involve multiple events. But most of the time, we are less interested in the
individual events than in a summary of some or all of the events. For example, let's say you had a dataset of all your
credit card transactions for the past year and you wanted to know how many times you used your card to buy
groceries, and how much you spent altogether on groceries for the entire year. Or, you might be interested in
knowing how many times you bought groceries during the month of April, and how much you spent in April on
groceries. If we have a record of each individual transaction, we can count the number of occurrences and sum the
amounts spent. We can also bracket or filter our counting and summing to include only the part of the data that we
are interested in, e.g., only transactions in April. When we are finished, we want to have one output record that gives
us the total number of times we charged groceries during the year, the total amount spent during the year on
groceries, the total number of times we charged groceries during April, and the total amount spent during April.
These four functions--counting, summing, bracketing, and filtering--are the most common methods that we use to
process repeated measures data in order to generate a single output record.

Now, let's take it a step further. Suppose we had a SAS data set on credit card charges, not just for one person, but
for everyone who uses a particular kind of credit card (e.g., everyone who has a Visa card issued by Bank of
America). We could ask the same questions for each individual, generating one output record per individual. We
could then use PROC MEANS to determine the mean number of transactions per credit card, and the mean amount
spent on groceries. Or we could use PROC FREQ to see how many had more than 50 transactions during the past
year, or PROC PRINT to list the amount spent on groceries by each credit card holder. In fact, repeated measures
data, once reduced to one record per case, may serve as input for any SAS PROC.

In this workshop, we will use a simple dataset to illustrate various ways to process multiple measures data. The
same techniques may be used, regardless of the size or complexity of your data.

PROCESSING ARRAY DATA

Continuing with our example of credit card transactions, consider the sample data shown in Figure 1 (this figure
shows only part of the data set, which actually contains up to 11 transactions for each of the 4 customer IDs). To
simplify our example, we have restricted our sample data set to include only transactions for buying groceries and
gasoline for four credit card holders, and only two months’ worth of data (March and April).*.



id

1234
1235
1236
1237

id

1234
1235
1236
1237

purpose |

ga=sol ine
grocer ies
grocer ies
ga=sol ine

transdated

0351572004
031372004
0351272004
0351172004

tranzsdatel

0370572004
0350372004
03/02/2004
03/01/2004

amount3

$54 .44
S88.34
$25.56
$67.98

amount1

$20.30
$63.45
$32.30
$33.84

purposed

grocer ies
gasoline
grocer ies
grocer ies

purpose?

grocer ies
ga=ol ine
grocer ies
grocer ies

transdated

0373072004
03282004
0352772004
032652004

tranzdate?

03/07/2004
0370572004
0370472004
03/03/2004

amount4

$78.34
$3%.30
$90. 34
$91.88

amount?2

$53.45
524 .44
$65.45
$66.99

purposes

gaszoline
grocer ies
gaszoline
grocer ies

purposed

grocer ies
grocer ies
gasol ine
grocer ies

transdateb

0373072004
03/28/-2004
0352772004
032652004

Figure 1--Part of a Repeated Measures Data Set in Array Format

Since the data already contain only a single record per case, we can use the SAS ARRAY statement to answer our
questions. First we need to use a PROC CONTENTS to determine the maximum number of elements in each array
we’ll be looking at. The output of the PROC CONTENTS for our sample array data, shown in Figure 2, tells us that
each person in our data set may have up to 11 transactions.

The CONTENTS Procedure

----- Variables Ordered by Position---

# VYariable Tvpe Len Format

1 id Hum 8

2 purpose | Char 11

3 purposed Char 11

4 purposze3d Char 11

5 purposed Char 11

[ purposeb Char 11

T purposeb Char 11

8 purpose’ Char 11

9 purposed Char 11

10 purposed Char 11

11 purposelQ Char 11

12 purposell Char 11

13 transdatel Hum 8 MHDDYY190.
14 transdate? Hum ] MMDDYT10.
15 transdate3 Hum 8 MHDDYY190.
16 transdated Hum ] MMDDYT10.
17 transdateb Hum 8 MHDDYY190.
18 transdateb Hum ] MMDDYT10.
13 transdate’ Hum ] MMDDYT10.
20 transdate8 Hum 8 MHDDYY190.
21 transdatei Hum ] MMDDYT10.
22 transdatel0 Hum 8 MHDDYY190.
23 transdatell Hum ] MMDDYT10.
24 amountl Hum 8 DOLLAR1O.2
25 amount? Hum ] DOLLAR1D.2
26 amount3d Hum ] DOLLAR1O.2
27 amountd Hum 8 DOLLAR1O.2
28 amounths Hum ] DOLLAR1O.2
23 amountb Hum 8 DOLLAR1O.2
30 amounty Hum ] DOLLAR1O.2
31 amountd Hum 8 DOLLAR1O.2
32 amountd Hum 8 DOLLAR1O.2
33 amount190 Hum ] DOLLAR1O.2
34 amount11 Hum 8 DOLLAR1O.2

Figure 2--PROC CONTENTS Output for Sample Array Data Set

This allows us to produce a DATA step that will tell us the total number of grocery transactions and the amount of
money spent on groceries, both for the entire period and for the month of April only. We will build up the DATA step
code needed to answer these questions in separate pieces, so that we can understand each step in the process.

First, we use a DATA statement with a KEEP= data set option to keep only the summary variables that we are going
to generate, plus an ID for each individual:

data answer (keep=id alltrans totalamt aprtrans apramt);
set vector;

Next, we set up arrays to simplify processing the variables that we will be using for filtering, counting, and summing.
Note that since we already know that an individual has a maximum of 11 transactions, we could specify the exact

2



number of elements in the array. Alternatively, we can let SAS determine the number by counting the number of
variables that we specify in the definition of the array, by using an asterisk for the array size. These statements
illustrate the latter:

array purpose {*} purposel-purposell;
array transdate {*} transdatel-transdatell;
array amount {*} amountl-amountll;

Now we need to initialize the summary variables that we will use to hold our counts and totals. To add clarity, we
also include a LABEL statement to associate a label with each created variable:

alltrans =
totalamt
aprtrans =
apramt = O;

11
[eNe)

label
alltrans
totalamt
aprtrans
apramt

“total number of transactions for groceries”
"total amount spent on groceries”

"number of transactions for groceries in April*
"amount spent on groceries in April”~;

We are now ready to write the code to use the variables in the PURPOSE array as filters, those in the AMOUNT
array as counters and summands, and the dates in the TRANSDATE array to bracket the variables we are creating
that pertain only to April:

doi =1 to 11;
if purpose {i} = "groceries” then do;

alltrans + 1;

totalamt + amount {i};

if month (transdate {i}) = 4 then do;
aprtrans + 1;
apramt + amount {i};
end;

end;

end;

This code filters the PURPOSE variables so that we are only counting purchases for groceries, ignoring the gasoline
purchases that are also in the data set. Whenever we find a transaction for groceries, we increment ALLTRANS, the
variable counting all transactions, and add the amount of the transaction to TOTALAMT, which is going to give us the
total amount spent on groceries. Using the TRANSDATE variables, we set up a DO loop that is only used if the
transaction occurred in April, and repeat a similar counting and summing process within the DO loop.

Finally, to make sure our created data looks the way we want it to, we add a FORMAT statement:

format totalamt apramt dollarl0.2;

This completes the entire DATA step that we need. If we then add

run;

and submit the job, we will create a new data set that contains the variables we are interested in. Figure 3 shows a
PROC PRINT output for this data set.



id alltrans totalamt

1234 T $511.81
1235 6 $503.38
1236 5 H3vv.98
1237 8 $645.43

Figure 3--PROC PRINT Output for Summary Data from Example Array Data Set

As we have already noted, this new data set can now be used as input to any SAS PROC. Figure 4 shows the output

from a PROC MEANS as an example.
The MEANS Procedure

apr trans

fu Pd 20

apramt

$325.58
$258.25
H189.89
$379.74

Variable Label Mean Median
alltrans total number of transactions for groceries 6.50 6.50
totalamt total amount spent on grocer ies 509.65 507 .60
aprtrans nunber of transactions for groceries in April 3.25 3.50
apramt amount spent on groceries in April 288 .37 291.92
Variable Label Minimum Maoc i mum H
alltrans total number of transactions for groceries 5.00 8.00 4
totalamt total amount spent on grocer ies 377.98 645.43 4
aprtrans nunber of transactions for groceries in April 2.00 4,00 4
apramt amount spent on groceries in April 189.89 3r9.74 4

Figure 4--PROC MEANS Output for Summary Data from Example Array Data Set

PROCESSING MULTIPLE RECORD DATA

Many software programs include functions that allow you to process array data in much the same way that we have
illustrated above. The particular strength of SAS is in processing repeated measures data where you have a variable
number of records per individual. And in contrast to the example above, we do not have to determine the maximum
number of observations per individual in order to process multiple records data.

Suppose we have the same data as above, but rather than one record per case with observations listed array-style,
we have a separate record for each transaction. Figure 5 shows a portion of the multiple records data set.

pLIIpOSE | id | transdate | arnount |
1 gazoline 1234 03/05/2004 $20.30
2 aroceries 1234 03/07/2004 $53.45
3 aroceries 1234 0311542004 5444
4 aroceries 1234 03/30/2004 $78.34
] gazoline 1234 03/30/2004 $25.30
B aroceries 1234 04/06/2004 $93.34
7 qroceries 1234| 041 3/2004 7744
g gazoline 1234 04/15/2004 $23.55
9 aroceries 1234 042242004 $88.45
10 aroceries 1234 04/29/2004 $76.35
11 aroceries 1235 03/03/2004 $63.45
12 gazoline 1235 03/05/2004 $24.44
13 aroceries 1235 03411342004 $00.34
14 gazoline 1235 03/28/2004 $35.30
15 aroceries 1235 03/28/2004 $93.24
16 gazoline 1235 04/11/2004 $32.55
17 aroceries 1235 0441342004 $90.45
18 aroceries 1235 04/20/2004 $86.35
19 aroceries 1235 04/27/2004 $73.45

Figure 5--Part of a Multiple Records Data Set of Repeated Measures

Let us look at how we might use these data to generate the same summary variables that we produced with array
processing. As before, we will build up the DATA step code gradually, so that each step in the process is clear.
First we need to make sure that the data set is sorted by ID:



proc sort data=sugi.example
out=example;
by id;
run;

Now, just as before, we use a DATA statement with a KEEP= data set option to save only the summary variables and
an ID for each individual. But now we introduce a new concept into the DATA step, the BY statement, which in this
context works with the SET statement. We have paved the way for this usage by the PROC SORT code above,
since a BY statement used in a DATA step requires that the data be sorted by the variable(s) specified in the BY
statement. Using a BY statement allows us to determine the first and last observation in the “by-group,” i.e., all the
records with the same value in the variable specified in the BY statement (and often called the “by-variable”). When
you use a BY statement in the DATA step, SAS creates two temporary variables that may be used only in that DATA
step. These are FIRST.byvariable and LAST.byvariable. FIRST.byvariable has a value of 1 for the first observation
that takes on a new value for the by-variable, O otherwise. Similarly, LAST.byvariable has a value of 1 only for the
last observation in the by-group, and O for all other observations. We will see below that this is a powerful and
extremely useful tool in process these types of data.

data answer (keep=id alltrans totalamt aprtrans apramt);
set example;
by id;

We also need to use a RETAIN statement for the summary variables we will be creating. RETAIN tells SAS to save
the value of the variable even when it goes to the next observation. This is very important in processing repeated
measures data in the multiple records format. Without the RETAIN statement, each new observation will start with
missing data, rather than your accumulating counts and totals, and the resulting summary variables will not be
accurate.

retain alltrans totalamt aprtrans apramt;

Next, we must initialize the summary variables, as we did when processing array data. In this instance, though, since
we have multiple records for the same individual, we need to initialize the summary variables only when we
encounter a new ID. This is where it becomes critical to identify the first instance of a particular value in the by-
variable. We do this with the use of the FIRST. (“first-dot”) feature. Here, since our by-variable is ID, we will use
FIRST.ID to identify the first time we encounter a new ID:

if first.id then do;
alltrans = 0;
totalamt = O;
aprtrans = 0O;
apramt = O;
end;

We now count the number of transactions and accumulate the total amounts spent, in much the same way we did
above when the data were in an array. However, with multiple records per case, we do not need to use array
processing, since we want to do the same thing for every record we encounter. The SAS code looks like this:

if purpose = "groceries” then do;
alltrans + 1;
totalamt + amount;
if month (transdate) = 4 then do;
aprtrans + 1;
apramt + amount;
end;

end;

Finally, when we have passed through all the records for the by-group, i.e., when we come to the last record for a
given value of the variable ID, we are ready to write out the resulting summary variables. To do this, we use the
LAST. (“last-dot”) feature and an explicit OUTPUT statement. In DATA steps that do not include an explicit OUTPUT
statement, SAS assumes an implicit OUTPUT statement at the end of the DATA step. The explicit OUTPUT
statement tells SAS to create an output record only when we want to do so. Combining the LAST. feature and the

5



explicit OUTPUT statement tells SAS to create an output record each time we come to the last record in the by-
group:

if last.id then output;

Although LABEL and FORMAT statements can go anywhere in a DATA step, it seems to make sense to place them
after the OUTPUT statement when processing multiple records per case.

label
alltrans = "total number of transactions for groceries”
totalamt = “total amount spent on groceries”
aprtrans = "number of transactions for groceries in April”
apramt = "amount spent on groceries in April~;

format totalamt apramt dollarl0.2;

A RUN statement causes the DATA step to be executed:

run;

Figure 6 shows a PROC PRINT output for the data set created by the DATA step. A comparison with Figure 3 above
shows that we have produced exactly the same result using multiple record processing as we did using array
processing.

id alltrans totalamt apr trans apramt
1234 T $511.81 4 $325.58
1235 [ $503.38 3 $258.25
1236 LY $377.98 2 $189.89
1237 L] $645.43 4 H$379.74

Figure 6--PROC PRINT Output for Summary Data from Example Multiple Records Data Set

USING FUNCTIONS WITH REPEATED MEASURES DATA

What if you wanted to know the mean time between visits for a unique id or the mean time between visits for all
observations in the file? One way to do this is with the DIF and LAG functions. These two queuing functions are
used for accessing prior values of a variable. In simple terms, the LAG function stores values in a queue and returns
values from prior calls. The queue is created when the LAG function is called and is initialized as a missing value.
The DIF function returns the difference between the value of the current observation and its lag.” In order to get
accurate results when calling both the DIF and LAG functions, it's critical that the data be sorted in the correct order
e.g., chronologically.

Let’s use these functions to calculate, for each unique ID, both the average time between visits and the average
difference in amount between visits. First we sort the data by ID and date, and for the sake of simplicity we will keep
only data on grocery visits:

proc sort data=sugi.example (where=(purpose="groceries”))
out=example;
by id transdate;
run;

We now create a new data set and generate three new variables: one for the lag of amount spent on groceries, one
for the difference between the amount spent at the current visit and the preceding observation, and one to store the
number of days between the current visit and the preceding visit. As we did earlier, we will use a BY statement in the
data set to create the temporary variable FIRST.byvariable, which we will use later on in the data step.



data lag_difg;
set example;
by id transdate;
format amount_lag amount_dif dollarl0.2;
amount_lag = lag(amount);
amount_dif = dif(amount);
days_dif = dif(transdate);

If we add a RUN statement and stop here, data for the first eight records in the file are shown in Figure 7.

amount_ amount_

id purpose transdate amount lag dif dayvs_dif
1234 grocer ies 0370772004 £53.45 . . .
1234 grocer ies 0371572004 554 .44 $53.45 $0.99 8
1234 grocer ies 0372072004 5$78.34 554 .44 $23.90 15
1234 grocer ies 04/06/ 2004 $83.34 578.34 $5.00 7
1234 grocer ies 041372004 577 .44 583.34 $=-5.90 7
1234 grocer ies 04/22/2004 588.45 577 .44 $11.01 9
1234 grocer ies 042972004 576.35 588.45 $=-12.10 7
1235 grocer ies 0350372004 $63.45 $76.35 $=-12.90 =57

Figure 7--Results of LAG and DIF Functions

But note that the calculated values for the first occurrence of ID 1235 actually reflect the data from the last occurrence
of ID 1234, producing erroneous results. To correct this problem, we use the temporary variable FIRST. to set the
value of each new occurrence of an ID to missing. Note that this must be done after using the LAG and DIF functions
in the data step.

if first.id then do;
amount_lag=.;
amount_dif=.;
days_dif=_;
end;

run;

The corrected results are shown in Figure 8.

amount_ amount_

id purpose tranzdate amount lag dif dav=_dif
1234 groceries 03/0?f2t@4 $53.45 . . .
1234 grocer ies 03/15/2004 554 .44 $53.45 $0.99 8
1234 grocer ies 03/30/2004 578.34 554 .44 %23.90 15
1234 grocer ies 040672004 583.34 578.34 $5.00 7
1234 grocer ies 04/13/2004 577.44 583.34 %-5.90 7
1234 grocer ies 04/22/2004 588.45 577.44 511.01 9
1234 grocer ies 0472972004 $76.35 588.45 $-12.10 7
1235 grocer ies 0350372004 563.45 . . .
1235 grocer ies 0371372004 588.34 $63.45 %24.89 10

Figure 8--Re-initializing the First Record of a By-group After Using LAG and DIF Functions

Now let's Use PROC MEANS to calculate the average time between visits for each and the average difference in
amount spent.

proc means data=lag_difg mean maxdec=2;
class id;

var amount_dif days_dif;

run;

Figure 9 shows the resulting output.



customer id Obs= Var ira\hle Mean
1234 7 Elml:ll_lh‘?t_d if 3.82
davs_dif 8.83

1235 [ amount_dif 2.00
dayvs_dif 11.00

1236 L amount_dif 17.04
davs_dif 12.00

1237 g amount_dif 3.27

days _dif ¥.5¥

Figure 9--Mean Difference Computed by LAG and DIF Functions

CONVERTING ARRAY DATA TO MULTIPLE RECORDS PER CASE

We have seen how we can use different approaches to achieve the same results with array data and multiple records
data. From time to time, you may feel that you want to convert your data set from array format to multiple records.
For example, if some cases have a large number of entries while others have only a few, the multiple record format
may save a lot of storage space. We will now look at how to convert a data set with an array into a data set which
has multiple records per case.

We will use the same array data set as in Figure 1 above, with an array size of 11, since a given ID may have as
many as 11 transactions. As you will see, this process involves ARRAY and OUTPUT statements in a slightly
different way than we have used them up to now. We begin with a DATA statement that includes a KEEP= option,
since we only want to keep the four output variables we will be creating.

data multiple (keep=id purpose transdate amount);
set sugi.vector;

We now use ARRAY statements, as we did before, to simplify processing:

array pur {*} purposel-purposell;
array trans {*} transdatel-transdatell;
array amt {*} amountl-amountll;

Next we want to combine array processing with an explicit OUTPUT statement, so that we generate multiple records.
We accomplish this by including the OUTPUT record in a DO loop. We also use an IF statement to make sure we
only write a new record if the array elements are not missing. The SAS code looks like this:

do i =1 to 11;

if pur {i} ~= "" then do;
purpose = pur {i};
transdate = trans {i};
amount = amt {i};
output;
end;

end;

As before, we may add labels and specify formats:

label
id = “customer id"
purpose = "purpose of transaction”
transdate = "transaction date”
amount = "transaction amount”;
format transdatel-transdatell mmddyy10.;
format amountl-amountll dollarl0.2;

Finally, a RUN statement tells SAS to execute the DATA step.

8



run;

The result is a new data set which has a variable number of records per ID, and only the four variables that we
created. Figurel0 shows the first two records for this new data set. A comparison with Figure 5 above shows that
we have successfully produced the multiple record data set from the array data set.

id purpose transdate amount
1234 gasol ine 14135 20.30
1234 grocer ies 16737 £3.45
1234 grocer ies 16145 54 .44
1234 grocer ies 16160 7g.34
1234 gasol ine 16160 25.30
1234 grocer ies 16167 83.34
1234 groceries 16174 fr.44
1234 gasol ine 16176 23.55
1234 grocer ies 16183 88.45
1234 grocer ies 16190 6. 35
1235 grocer ies 16133 63.45
1235 gasol ine 16135 24 .44
1235 grocer ies 16143 88.34
1235 gasol ine 16158 35.30
1235 groceries 16158 93.34
1235 gasol ine 16172 23.55
1235 grocer ies 16174 98.45
1235 grocer ies 16181 86.35
1235 grocer ies 16188 73.45

Figure 10--Part of a Multiple Record Data Set Converted from Array Data

CONVERTING MULTIPLE RECORDS DATA TO ARRAYS

Now let us suppose we want to go the other way, converting from a multiple records per case format into a data set
that includes only a single record per case. To do this, we must first determine the size of the arrays we will need in
order to store all the data. This requires a simple DATA step, combined with a PROC FREQ, to give us the maximum
number of records per case. To simplify matters, we will only keep a single variable, which gives the number of
records for each ID. This will involve another use of the by-group processing and RETAIN and OUTPUT statements
that we have used above. First, we make sure that the data are sorted by ID, which allows us to use by-group
processing:

proc sort data=example;
by id;
run ;

Next we define a new DATA step, complete with a BY statement to set up our by-group:

data count (keep=count);
set multiple;
by id;

We will now define a new variable in order to count the number of records in each by-group. We want to retain its
value, so we need a RETAIN statement:

retain count;

We initialize this variable when we encounter a new value in our by-group, then increment it each time we encounter
a new record within the by-group, and finally write it out when we come to the last record in the by-group:



if first.id then count = 0;
count + 1;

if last.id then output;
run;

Figure 11 shows the output a PROC FREQ, using the data set we have just created.

The FREQ Procedure

Cumulative Cumulative
count Frequency Percent Frequency Percent
8 1 25.00 l% 1 25.00
9 1 25.00 2 L0.00
10 1 25.00 2 7500
11 1 25.00 4 100.00

Figure 11--Number of Records per Case in Example Data Set

This tells us that the maximum number of records within the ID by-group is 11, so we need to size our arrays at 11.
We are now ready to start creating the new data set. As before, we will use a KEEP= data set option so that our new
data set includes only the variables we want.

data vector (keep=id purposel-purposell transdatel-transdatell amountl-amountll);
set multiple;
by id;

We need a LENGTH statement to make sure the variables we will be creating have enough storage space. The
LENGTH statement has to come before any other statements.

length purposel-purposell $ 11;

Because we need to process multiple records before we write an output record, we need to use a RETAIN statement
to specify all the new variables, along with the variable (i) that we will use as the index of the arrays.

retain i purposel-purposell transdatel-transdatell amountl-amountll;

Next we define the arrays, as we have done above.

array pur {*} purposel-purposell;
array trans {*} transdatel-transdatell;
array amt {*} amountl-amountll;

When we first encounter a new by-group, we must re-initialize all the retained variables.

if first.id then do j = 1 to 11;
pur g} = "7;
trans {J} = .;
amt g} = -;

end;

In addition, we need to re-initialize the indexing variable:

if first.id then i1 = 0;

Each time we encounter a new record within the by-group, we increment the indexing variable:

i+ 1;

10



We are now ready to assign values within the arrays we have set up. The indexing variable indicates where in the
array each value goes.

if purpose = "" then do;
pur {i} = purpose;
trans {i} = transdate;
amt {i} = amount;
end;

When we come to the end of the by-group, we are ready to output the data.

if last.id then output;

Finally, we add any LABEL or FORMAT statements needed, and execute the resulting DATA step.

format transdatel-transdatell mmddyyl1O0.;
format amountl-amountll dollarl0.2;
run;

Figure 12 shows part of a PROC PRINT output for this newly created data set. As we expected, this new data set
has a single record per ID, and separate variables to store data for up to 11 transactions.

id purpose 1 transdatel amountl purpose? transdate? amount? purposed
1234 gasoline 03505/2004 %$20.30 groceries 0370772004 %53.45 groceries
1235 groceries 0370372004 %09.45 gasoline 0350572004 %24 .44 groceries
1236 groceries 03/702/2004 $3?.30 groceries 0370452004 %65.45 gasoline
1237 gasoline 0350172004 %33.84 groceries 0370372004 %66.99 groceries

id tranzsdated amountd purposed tranzdated amountd purposeb tranzdateb
1234 037515/2004 %54 .44 groceries 0373072004 %$78.34 ogasoline 0353072004
1235 0351372004 %88.34 gasoline 0372852004 $35.30 groceries 0372852004
1236 035122004 %$25.56 ogroceries 03/727/2004 $90.34 gasoline 0352772004
1237 03511/2004 $67.98 ogroceries 0372652004 $91.88 groceries 0372652004

id amount5h purposeb transdateb amountbh purpose¥ tranzdate¥ amounty?
1234 %25.30 groceries 0450672004 583.34 ogroceries 0451372004 577.44
1235 %93.34 gasoline 04511./2004 $33.55 groceries GE/13/72004 £98.45
1236 %37.30 groceries 0451052004 %89.44 gasoline 04512/,2004 %35.55
1237 %38.84 ogroceries 0450252004 $96.88 ogroceries 040972004 %90.98

Figure 12--Part of a PROC PRINT Output for the Array Data Set After Conversion from Multiple Records

CONCLUSION

In this workshop, we have introduced the concept of repeated measures processing, and illustrated these concepts
with sample data and SAS DATA step code. We have seen how to process repeated measures data in both array
and multiple records formats within a SAS DATA step, and how to convert multiple records to arrays and vice versa.
As we have seen, SAS includes several powerful concepts and statements for processing repeated measures data.
Using by-group processing, along with RETAIN, ARRAY, IF, DO, and OUTPUT statements, allows us to easily
manipulate repeated measures data regardless of its format.

CONTACT INFORMATION

We value and encourage your comments and questions. You may contact the authors:
Terry Fain Cyndie Gareleck
RAND Corporation RAND Corporation
1776 Main Street 1776 Main Street
Santa Monica CA 90401 Santa Monica CA 90401
310-393-0411x7804 310-393-0411x7815
fain@rand.org cyndie@rand.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

11



SAS Global Forum 2007 Hands-on Workshops

Other brand and product names are trademarks of their respective companies.

! Repeated measures data imported from other software programs are often represented as arrays because some
software lack the ability to process multiple records per case.

12



	2007 Table of Contents



