
Paper 035-2007

Hanging On By a STRING? Using Functions To Untie Text Strings
Jeanina Worden, Pacific Data Designs, Inc., San Francisco, CA

ABSTRACT
Have you ever felt tied down, knotted up, and barely holding on by a STRING? Almost every data
programmer can give an example of a variable that, due to data entry requirements, has to be characterized
as a text string. They can also describe how problematic they are when, prior to analyzing the data, find
these strings need to be cleaned up, formatted and sometimes compared. SAS® provides solutions through
a “bundle” of functions you can use on strings. Some can be used to untangle the text by grabbing what is
needed, or dropping out what is not needed, like: SCAN, and COMPRESS. While others can evaluate the
contents of the string and make a comparison to a constant or another variable, such as: LENGTH, SPEDIS
and COMPARE. The functions in this paper are of several levels of difficulty, but can all be used within
SAS® version 9.1.

INTRODUCTION
One might think the problem with strings in a dataset is they can contain 1 to 32767 characters, numbers (as
characters) and symbols, and that the combinations are endless. But the “problem” is that strings aren’t just
strings of characters but an exact string of characters. Text strings are to SAS®, an exact combination of
characters, in an exact case, in an exact order, so “String” is not the same as “string”. Therefore when trying
to work with the strings within these character fields, SAS requires you to be exact as well. As a data
programmer, when QCing strings, one way to identify problematic strings is by using one or more of the
functions SAS® provides. Determining the “right” function to unravel a text string depends, first, on what you
are trying to find out.

In this paper some common issues will be discussed:

- Determining the completeness of a delimited date
- Determining the completeness of a phone number
- Determine length of a text string
- Identify misspellings or synonyms of a given string
- Compare two variables

And how the use of these SAS® functions can unravel strings:
 - SCAN
 - COMPRESS
 - LENGTH
 - SPEDIS

- COMPARE

WARNING: STRINGS ATTACHED
Before looking at the functions you must put yourself in the role of a data programmer working in the world
of pharmaceutical data. With the understanding that, with this data come certain rules, one being that the
FDA requires raw data to be entered as it is given. That means if Site A fills out the field for STATE as CA,
and Site B fills in Ca, data entry must key strings into the “raw” database exactly as they appear. As was
said, these two strings mean completely different things to SAS®, and since the data must be in a format
that is consistent and usable for analysis, some sort of manipulation will have to take place. Of course
knowing the data well enough to know when there is a problem is critical to completing string related tasks.
And while there are several ways in which these functions can be used, the focus of this paper will primarily
be to summarize or highlight the issues with strings. We’ll start by using a small table of subjects with each
variable entered in different formats. While this is an exaggeration, it does represent some issues that may
appear in the raw datasets.

Table 1
Lname Start_dt Phone CellPhone Comments MedHx Quest1_v1

Doe 1/1/01 (555) 867-5309 (555) 867-
5309

Some sort of
comment Hpertension Yes

 1

SAS Global Forum 2007 Coders’ Corner

Smith 01/01/2001 5558675309 456789 Another sort of
comment Hypertensive Yes

Jones 01/UNK/01 555 867 5309 123 456 789
Another

comment but a
little longer

CHF N

STRINGS HAPPEN
Lets start by considering the date field, which is START_DT in the Table 1 dataset. Any date is a tricky
string since, in most cases, it is actually three strings tied together; the part for the month, day and year. So,
in an attempt at uniformity, the form designer has taken great care in providing the delimiter of which should
be applied to the date, however, in our example, “strings happen”. What if you want to untie these pieces to
verify the presence of each piece? The multiple lengths between each delimiter limit your options, with one
being the SCAN function. The SCAN function, simply put, pulls out the pieces between the delimiter without
regard to the length of each piece. The syntax is:

SCAN(string, n<, delimiter(s)>)

Here’s how it works. The STRING portion of the statement is self-explanatory as it specifies the variable
name that contains the string. The delimiters, if used, are the characters you want to use to separate the
“words” in a string. So, if you have a string with “one|two|three”, and use the ‘|’ as your delimiter, the “words”
in the string are “one”, “two” and “three”. This helps to understand how N represents the number of the
“word” in the string you want to scan. So if you were to use ‘2’ as the N, the scan function returns “two”, the
second “word” from the delimiter. An especially handy feature of this function is that you can also use
negative N values. When using a negative N, SCAN returns the “word” with the count starting from the left.
For this example if you use ‘-1’ as the N the SCAN function will return “three”. Let’s look again at our sample
date variable.

To get the strings into the three individual parts, the code looks like this:

data test2;
set test;
mm = scan(start_dt,1,’/’);
dd = scan(start_dt,2,’/’);
yy = scan(start_dt,3,’/’);
run;

Just to demonstrate the negative N, the code could also look like this:

data test2;
set test;
mm = scan(start_dt,1,’/’);
dd = scan(start_dt,2,’/’);
yy = scan(start_dt,-1,’/’);
run;

This example shows, using the “/” delimiter, the month is the first word from the left, so we use a positive N
and the year is the first word from the right.

With the resulting columns:
 From: To:
Start_dt MM DD YY
1/1/01 1 1 01
01/01/2001 01 01 2001
01/UNK/01 01 UNK 01

One last note on SCAN, two or more contiguous delimiters only count as one in determining the “word”
SCAN will return. So if a date such as “01//2001” appears in the dataset, the string for DD will be 2001.

PULL THE RIGHT STRING
Next we have the variables PHONE and CELLPHONE, how can we determine if the full phone number is
present without them being entered in the same format? The easiest way to get a common format is to

 2

SAS Global Forum 2007 Coders’ Corner

remove the spaces and special characters that divide the number. Up to and including version 9.1,
COMPRESS has been a valuable tool used frequently to remove unwanted characters. To show how to cut
the unwanted characters from the string variable PHONE, we start with the syntax:

COMPRESS(<source>, <chars>)

SOURCE specifies the variable in which the string resides. CHARS are the characters you want to remove.
So, the unwanted “()“ and “-“, as well as the spaces, are removed from the string, with the following code:

data test2;
set test;
phone = compress(phone,”()- “);
run;

With the resulting columns:
From: To:
Phone Phone
(555) 867-5309 5558675309
5558675309 5558675309
555 867 5309 5558675309

It’s worth noting, if no CHARS are specified the default results in only the space being removed.

That’s pretty straight forward, but the 9.1 upgrade to this function really boosts the power of COMPRESS
with a third argument, the modifiers.

COMPRESS(<source>, <chars><,modifier>)

As with the above example, with no MODIFIER the characters in the CHARS list are removed. However the
MODIFIERS can be used in two ways. The first is that the modifiers can be used to expand the CHARS list
with a group of characters. For instance, if you wanted to ensure all punctuation and spaces (including
blank, tabs, lf, cr) were removed from the PHONE variable, but didn’t want to list every possibility, “P” can be
added to specify the removal of punctuation and “S” specifies spaces.

data test2;
set test;
phone = compress(phone, ,” ps“),;
run;

Resulting in the same columns as above:
From: To:
Phone Phone
(555) 867-5309 5558675309
5558675309 5558675309
555 867 5309 5558675309

The second way to use the new modifiers is to instruct COMPRESS to keep the CHARS list. With the
MODIFIER “K” the characters specified within the CHARS list are kept rather than removed. Like this:

data test2;
set test;
cellphone = compress(cellphone,’0123456789’,”k“),;
run;

or (using just modifiers)…

data test2;
set test;
cellphone = compress(cellphone,’’,”dk“);
run;

Resulting in the same columns as above:
From: To:
Phone Phone

 3

SAS Global Forum 2007 Coders’ Corner

(555) 867-5309 5558675309
456789 456789
123 456 789 123456789

The additional modifiers that can be used are as follows with more specific information in the COMPRESS
documentation (modifiers are not case sensitive):

 A: adds letters of the alphabet (A - Z, a - z) to the list of characters
 C: adds control characters to the list of characters
 D: adds numerals to the list of characters.

F: adds the underscore character and letters of the Latin alphabet (A - Z, a – z) to the list of
characters.
G: adds graphic characters to the list of characters.

 I: ignores the case of the characters to be kept or removed.
 K: keeps the characters in the list instead of removing them.
 L: adds lowercase letters (a - z) to the list of characters.

N: adds numerals, the underscore character, and letters of the Latin alphabet (A - Z, a - z) to the list
of characters.
O: processes the second and third arguments once rather than every time the COMPRESS
function is called.

 T: trims trailing blanks from the first and second arguments.
 U: adds uppercase letters (A - Z) to the list of characters.

W: adds printable characters to the list of characters ("W" for writable, because "P" is used for
punctuation).

 X: adds hexadecimal characters to the list of characters.

STRINGS ON AND ON
Now we move on to the COMMENT field. Let’s suppose this variable will be used in a listing with space for
only 25 characters, will they all fit? To determine the length of these strings we can use, surprisingly
enough, the function LENGTH. The LENGTH function returns an integer that represents the position of the
rightmost non-blank character in string. The syntax for LENGTH is:

LENGTH(string)

Where STRING specifies the variable with the string to be verified. So to get the length of COMMENT we
could use:

data test2;
set test;
len = length(comment);
run;

Resulting in:
 Variable: Length Variable:
COMMENT LEN
 Some sort of comment 20
 Another sort of comment 23
 Another comment but a little longer 35

One caveat to using LENGTH is that, though it will not count trailing blanks, if the whole field is blank it will
return a 1 not a 0.

THE HIGH COST OF STRINGS
Up next is the MEDHX variable. Can we identify any records containing “HYPERTENSION” for a use in a
comparison, merge, or so on? If you look at the records in the Table 1 dataset, there are none equal to
“HYPERTENSION”. Since strings need to be exact when doing any sort of matching, we need a way to
identify if two strings are similar to try to correct any misspellings or make adjustments to synonyms.
Though unlikely to be used for merging or matching two strings directly, the function SPEDIS can be used to
identify misspellings and similar strings so that further action can be taken where necessary. SPEDIS
computes an asymmetric spelling distance between two. For each operation the conversion of the keyword

 4

SAS Global Forum 2007 Coders’ Corner

to the query word must go through (delete a letter, add a letter, and so on) there is a cost associated. The
distance, or total cost, is then calculated by dividing the conversion cost by the length of the query string.
The documentation for SPEDIS lists each operation and its cost:

Operation Cost Explanation
match 0 no change
singlet 25 delete one of a double letter
doublet 50 double a letter
swap 50 reverse the order of two consecutive letters
truncate 50 delete a letter from the end
append 35 add a letter to the end
delete 50 delete a letter from the middle
insert 100 insert a letter in the middle
replace 100 replace a letter in the middle
firstdel 100 delete the first letter
firstins 200 insert a letter at the beginning
firstrep 200 replace the first letter

To more clearly explain the concept of SPEDIS, here is a simple example:

The conversion from SUGI to SGF :

Start with SUGI…
Delete U (delete a letter in the middle) = 50
Delete the I (delete a letter from the end) = 50
Add the F (add a letter on the end) = 35
…to get SGF
Cost = 135

The distance, or the result of running the SPEDIS function is the Cost divided by the length of the keyword:
Distance = (135/3) = 45

The syntax for the SPEDIS function is:

SPEDIS(QUERY,KEYWORD)

So for our example the statement would be:

SPEDIS(‘SUGI’,’SGF’)

The code for the MEDHX variable would be:

data test2;
set test
mhxcomp = spedis(propcase(MedHx),’Hypertension’);
run;

Resulting in:
Variable: Distance Variable:
MedHx Mhxcomp
 Hypertension 0
 Hypertensive 16
 CHF 266

The total cost of the conversion is a nonnegative value that is usually less than 100 but never greater than
200 with the default costs. So, if we want to identify similar strings, the lower the number the better. With
this information we can list out the strings within a range that ensures the specificity we are comfortable with.
Then, if misspellings are identified, corrections can be made, and “similar” strings can be coded accordingly.

 5

SAS Global Forum 2007 Coders’ Corner

IT’S THE SAME STRING
The last function to be covered will help determine the similarity between two response variables using the
COMPARE function. COMPARE returns the position of the leftmost character by which two strings differ, or
returns 0 if there is no difference. So let’s look at the last variable in the dataset, Quest1. Let us suppose
this question is something like, “Have you ever smoked?” We have a second dataset with the same
questionnaire given at a second visit. We merge the information together for the two visits into Table 2:

 Table 2

Quest1_v1 Quest1_v2
Yes Yes
 y Yes
N Yes

We want to identify if the responses are consistent between the two questionnaires. While this is similar to
the previous task with SPEDIS, let’s look at the cost differences:

 Variable: SPEDIS results:
Quest1_v1 Quest1_v2 Distance
 Yes Yes 0
 y Yes 150
 N Yes 90

Our previous example of SUGI to SGF gave 45 as the result of two quite different strings, so we would use a
cutoff lower than 45, right? Based on the cutoff of 20, only the first would be identified as the same and if
the cutoff was “loosened” to accommodate the second record then the third would also get flagged.
COMPARE, on the other hand, has modifiers that can be applied to help with the formatting issues.

You can use one or multiple modifiers (they are not case sensitive):
 I = ignores the case in string1 and string2
 L = removes leading blanks in string1 and string2 before comparing the values

N = removes quotation marks from any argument that is an n-literal and ignores the case of string1
and string2
: = truncates the longer of the two strings to the length of the shorter string or to one, whichever is
greater

The syntax for the COMPARE function is:

COMPARE(string-1,string-2<,modifiers>)

For our example the code would be:

data test2;
set test
RespComp = compare(quest1_v1,quest1_v2,':il');
run;

Resulting in:
Variable: Length Variable:
Quest1 Quest2 RespComp
Yes Yes 1
 y Yes 1
 N Yes

CONCLUSION
So instead of spending a bundle of time sorting through strings let SAS® functions help. This paper detailed
functions that could aid in untying troublesome string variables. Using them we can grab what is needed,
drop out what is not needed, or just evaluate the contents of the string and make a comparison to a constant
or another variable.

 6

SAS Global Forum 2007 Coders’ Corner

First we discussed how SCAN could help split a date into three parts: one for month, one for day and one for
year, to verify each pieces presence. Then, a review of how COMPRESS can be used to strip away the
special characters and spaces in a phone number and how it can also be used to keep the digits either listed
or with a modifier. LENGTH was used to determine if a string would fit if used in a 25-character space.
SPEDIS was used to flag records that had a medical history with an exact or similar match to
“HYPERTENSION”. Finally, COMPARE was used to identify if two character strings represent the same
value though differing formats.

REFERENCES
SAS Institute Inc. 2004. SAS® 9.1 Language Reference: Dictionary, Volumes 1, 2,and 3. Cary, NC: SAS
Institute Inc.

Cody, Ronald (2006), "An Introduction to SAS® Character Functions," Proceedings of the Thirty-One Annual
SAS Users Group International Conference.

ACKNOWLEDGMENTS
The programming team at Pacific Data Designs, Inc. contributed extensively to the development of this
paper. Their support is greatly appreciated.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Jeanina Worden
353 Sacramento, Ste 800
San Francisco, CA 94111
Phone: 415-776-0660
E-mail: jworden@pdd.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

 7

SAS Global Forum 2007 Coders’ Corner

	2007 Table of Contents

