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Modeling Zero-Inflated Count Data with Underdispersion and Overdispersion 
Adrienne Tin, Research Foundation for Mental Hygiene, New York, NY 

ABSTRACT 
 
A common problem in modeling count data is underdispersion or overdispersion. This paper discusses the distinction 
between overdispersion due to excess zeros and overdispersion due to values that are greater than 0. It shows how 
to use exploratory data analysis to determine the dispersion patterns and that the dispersion patterns can change 
depending on the predictors and the subpopulation that are included in the analysis. Further, the paper discusses 
how to fit zero-inflated models using PROC NLMIXED and compares the model fit. The data is from the National 
Health and Nutrition Examination Survey (NHANES 2003-2004). 

BACKGROUND 
 
In its simplest form, the Poisson distribution models the number of events from a memoryless exponential process 
where the event rate is constant. The Poisson density function only depends on the mean number of events, u. 
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 1/u is the event rate.  
 
However, the occurrence rates of many events are not constant. This can be a result of individual or group 
heterogeneity, contagious effect, or spells (Long, 1997; Eaton, 1978). This background section summarizes the 
various metamorphism of the Poisson distribution for accommodating heterogeneity. The formulas are largely from 
Long (1997). Some of the notations are adapted to match what are commonly used in SAS documentation.  
 
If the event rate depends on individual characteristics, then the Poisson model can be modified to let the mean, u, be 
a function of individual characteristics, xi. Then 
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Each case has its expected mean, ui, but the variance is still constraint to be the mean. If xi does not contain all the 
relevant predictors, then the model may not account for all the overdispersion (Agresti, 2002). In SAS, GENMOD or 
GLIMMIX can estimate a dispersion parameter, k, of a Poisson model using the deviance or the Pearson statistics, 
although k is not a parameter in the distribution. With this technique, Var(ui) = kui where k > 0. When k < 1, the 
variance is less than the mean. Therefore, the Poisson model with a dispersion parameter can model both under- and 
over-dispersion. 
 
The next extension of the poisson model is letting the expected number of events, ui, be a function of xi, and some 
unobserved random variable, ei: 
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Assuming that exp(ei) has a gamma distribution with an expected value of 1 and a shape parameter, 1/k, where k > 0, 
then Pr(yi | xi) has a negative binomial distribution. 
 

ky
ii

y
ii

ii
i

i

kuky
kuky

xy /1)1)(/1(!
))(/1(

)|Pr( ++Γ
+Γ

=  

 
Since ))(exp())(exp()(,1))(exp( BxEeBxEuEeE iiiii =+== , the expect value of ui does not change 
whether we assume a Poisson or a negative binomial distributions. However, the variance functions are different. 
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With the negative binomial distribution, var(yi |xi) = ui(1+kui) > ui, because k > 0. Therefore, the negative binomial 
assumes that the variance is greater than the mean. It is only appropriate for modeling overdispersion and not for 
underdispersion.  
 
With some types of data, a high percentage of zero count occurs at all levels of the predictors and cannot be 
accounted for by the variance functions of the Poisson or the negative binomial distributions. To model this excess of 
zeros, a zero-inflated model may be appropriate. This kind of models assumes that the observations may belong to 
two groups. One group, g1, is very likely to have a count of zero. The other group, g2, follows one of the count data 
distribution, which is either Poisson or negative binomial. The group membership is estimated by a probability, p, 
which depends on a set of predictors, zi, that may be different from the count data model. 
 
Assuming that  
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then a zero-inflated model has this general form: 
 

)()1(),|Pr( iiiiii ugppzxy −+=  if yi = 0 (Equation 1) 

)()1(),|Pr( iiiii ufpzxy −=       if yi > 0 (Equation 2) 

 
where g(ui) = Pr(yi=0 | xi) in the count data model, and f(ui) is the density of either the Poisson or the negative 
binomial distribution. Equation 1 assumes that the zeros are generated from two sources based on the probability of 
whether a case belongs to group 1 or group 2.  
 
The expected value of a zero-inflated Poisson or negative binomial model is: 

iiiiii puuzxyE −=),|(  

 
For the zero-inflated Poisson (ZIP) model, the variance is: 

)1)(1(),|( iiiii pupuzixiyVar +−=  

 
For the zero-inflated negative binomial (ZINB) model, the variance is:  
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The four models discussed above offer different ways to fit the mean and variance relationship. The Poisson model 
with a dispersion parameter assumes that the variance is a linear function of the mean. The negative binomial model 
assumes that the variance is a quadratic function of the mean. Both variance functions are monotone in the first 
quadrant. The Poisson variance function may be monotone non-increasing or non-decreasing, while the negative 
binomial variance function is monotone increasing. On the other hand, the variance functions of the ZIP and ZINB 
models concave downward in the first quadrant, allowing the variance to increase and then decrease with the mean. 
 
The rest of the paper consists of three examples in modeling zero-inflated count data. The outcome is the number of 
hospitalization in a 12-month period from the National Health and Nutrition Examination Survey (NHANES 2003-
2004). The first example presents a simple model to fit the hospitalization data using age as the only predictor. The 
second example shows that the dispersion pattern in a subgroup differs from the overall disperson pattern. The third 
example is an attempt to achieve a better fit of the hospitalization data by using age, gender, marital status, and 
higher order terms as predictors.  
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EXAMPLE 1 -- EXCESS ZEROS AND UNDERDISPERSION WHEN THE COUNTS ARE GREATER 
THAN 0 
EXPLORATORY DATA ANALYSIS 
 
The National Health and Nutrition Examination Survey (NHANES) of 2003-2004 has a total of 10117 cases with 
hospitalization information. Around 90% of the cases have no incidence of hospitalization in the 12-month survey 
period (Table 1). In the substantive sense, a zero-inflated model may be appropriate because we can imagine certain 
segment of the population tend to be hospitalized because of some chronic illnesses. This part of the data can be 
fitted by a count data model. For the rest of the population, hospitalization is often the result of an accident, which can 
be estimated by a logit or probit model.  
 
Figure 1 plots that mean numbers of 
hospitalization by age group and gender. The x-
axis has the midpoint of each age group. For 
example, 5 represents the age group from birth 
to 9 years old. The plot shows that the number 
of hospitalization tends to increase with age, 
except for female during the child-bearing 
years. This suggests that age, gender, and 
marital status are good predictors of the number 
of hospitalization. In this first example, as a way 
of illustrating the differences between the 
Poisson, negative binomial, ZIP, and ZINB 
models, we use age as the only predictor. In the 
third example, we will consider age, gender, 
and marital status as predictors. 
 
Since age is a continuous variable, the cases 
were grouped by age in decade to analyze the 
relation between mean and variance. When all 
cases were included, the data exhibits a pattern 
of overdispersion. In Figure 2, the variances are 
always above the means. If we only consider 
the cases with at least one hospitalization, then 
the data exhibits a pattern of underdispersion. 
In Figure 3, the variances are below the means 
for most age groups, except when ages are 
between 50 to 59. Since there is overdispersion 
when all cases are included, if we use an one-
part model, then it is very likely that the negative 
binomial model will have a better fit. If we use a 
two-part model, then it is very likely that the ZIP 
model is a better fit, since there is 
underdispersion when the counts are greater 
than zero.  
 

Table 1 Frequencies of number of hospitalization 
Number of 
Hospitalization Freq. Percent 

Cumulative 
Frequency 

0 9118 90.13 9118 
1 725 7.17 9843 
2 165 1.63 10008 
3 57 0.56 10065 
4 17 0.17 10082 
5 14 0.14 10096 
6 21 0.21 10117  

 
Figure 1 Proportion of subjects with hospitalization by age 
group 

 
Figure 2 Means and variances by age group (all 
cases are included.) 
 

Figure 3 Means and variances by age group (only cases with at 
least one hospitalization are included.) 
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MODEL RESULTS AND COMPARISONS 
 
The programs for fitting the ZIP and ZINB models are in appendix I. The Poisson model with dispersion and the 
negative binomial models are fitted using PROC GLIMMIX. Table 2 lists the results of this simplistic model with age 
as the only predictor. The Poisson and the negative binomial models are nested models, they can be compared using 
the log likelihood, likewise with the ZIP and ZINB models. The negative binomial model has one more parameter and 
a much lower -2 log likelihood than the Poisson model, this means that the negative binomial model is a better fit 
even without a formal likelihood ratio test. Between the ZIP and the ZINB model, the ZIP model has a much lower -2 
log likelihood. The likelihood ratio test with one degree of freedom confirm that the ZIP model is a better fit over the 
ZINB model with a p-value < 0.0001.  
 
Since the one-part models and the two-part models are not nested models, we cannot compare them using the log 
likelihood. We can compare them informally by how well they predict. Figure 4 and 5 plot the mean number of 
hospitalization by age group and compare it with the predictions. There are no big differences among the Poisson, 
negative binomial, and ZIP. However, ZINB performs extremely poorly. The scale parameter estimate in ZINB model 
is very close to 0. This is an indication of the lack of overdispersion among cases with at least one hospitalization. 
 
Table 2 Parameter estimates from the one-part models 

 One-part Models 
Poisson w. 
Dispersion 

Negative 
Binomial 

 -2 Log Likelihood 9248.66 8190.53 
     
  Estimate (S.E) Estimate (S.E.) 
Intercept  -2.6052*(0.0686)  -2.5632 (0.0644) 
Age / 10 0.1883 (0.0133) 0.1767 (0.0139) 
Scale 2.0031 5.1960 (0.3565) 
   

 
Table 3 Parameter estimates from the two-part models 

Two-part Models ZIP ZINB 
 -2 Log Likelihood 8312 8598 
     
Logit Part 
 (Pr[case follows a 
count data 
distribution])    
Intercept  -2.0094 (0.0917)  -1.1883 (0.0573) 
Age / 10 0.1414 (0.0175)  -0.0043 (0.0152) 
     
Poisson / Neg. Bin    
Intercept  -0.4657 (0.0816)  -0.2495 (0.0244) 
Age / 10 0.0703 (0.0141) 0.0287 (0.0107) 
Scale NA 5.73E-09  

Figure 4 Observed and predicted from one-part 
models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Observed and predicted from two-part 
models 
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EXAMPLE 2 - DATA WITH EXCESS ZEROS AND OVERDISPERSION AT ALL LEVELS 
 
Example 1 shows that when the number of hospitalization is greater than zero, the data exhibits underdispersion. 
However, within some subgroups, the relationship between mean and variance may be different. It turns out that 
among Black females between the ages of 40 and 89, the data shows an overdispersion pattern when the number of 
hospitalization is greater than zero. In Figure 6 and 7, the variances are above the mean for all age groups. 
 
Figure 6 Means and variances of the number of 
hospitalization among Black females. 
 

Figure 7 Means and variances of the number of 
hospitalization among Black females when count > 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
For this subgroup, because of overdispersion at all levels of the data, we can anticipate that the ZINB model fits 
better than the ZIP model. The ZIP model has a -2 loglikelihood of 447.6. On the other hand, a ZINB model has a -2 
loglikelihood of 443.8. Likelihood ratio test indicates that the zero-inflated negative binomial model is more likely at 
the 0.05 level.  
 
When comparing the standard error estimates between the two models in table 4 and 5, the ZIP model has the 
common problem of underestimated standard errors when overdispersion is not model properly. For example, the p-
value of Age in the ZIP logit model is 0.0586, while that in the ZINB logit model is 0.09. 
 
Table 4. ZIP model of older Black females 
    Estimate Std. Error DF t Value Pr > |t| 
Logit part Intercept -2.772 0.8134 318 -3.41 0.0007 

  
Age in 
decade 0.2448 0.129 318 1.9 0.0586 

Poisson part Intercept -0.1573 0.5806 318 -0.27 0.7866 

  
Age in 
decade 0.101 0.08783 318 1.15 0.2508 

 
Table 5. ZINB model of older Black females 
    Estimate Std. Error DF t Value Pr > |t| 
Logit part Intercept -2.635 0.877 318 -3 0.003 

  
Age in 
decade 0.234 0.138 318 1.7 0.090 

Negative Binomial Intercept -0.367 0.715 318 -0.51 0.608 

  
Age in 
decade 0.115 0.107 318 1.08 0.282 

  Dispersion 0.211 0.146 318 1.44 0.150 
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EXAMPLE 3 – A MORE SATISFACTORY MODEL 
EXPLORATORY DATA ANALYSIS 
 
Since Figure 1 strongly suggests that in addition to age, gender and marital status may be good predictors of the 
number of hospitalization, we conduct some exploratory analysis on the relationship between mean and variance 
when the subjects are divided into subgroups by age, gender, and marital status. Figure 8 and 9 plot the mean versus 
the variance within the subgroups. The diagonal line represents x=y. The points above the line represent the 
subgroups with the variance is higher the mean. When all cases are considered, 90% of the subgroups have variance 
greater than the mean. This implies that if we use a one-part model, then the negative binomial model may be a 
better fit because of the overdispersion pattern. When only cases with at least one hospitalization are considered, 
only 21% of the subgroups have variance above the mean. Therefore, underdispersion is still the dominant pattern 
when the counts are greater than zero. 
 
Figure 8. Mean and Variance by age group, gender, 
and marital status 
 

Figure 9. Mean and Variance by age group, gender, and 
marital status when count is greaten than 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MODEL FITTING, RESULTS AND COMPARISONS 
  
MODEL RESULTS AND COMPARISON 
 
We tested all four models (Poisson, Negative Binomial, ZIP, and ZINB) up to third order interaction terms and the 
fourth order term of age since the curve in Figure 1 suggests a fourth order polynomial. The final models include all 
the significant higher order terms and their lower order terms. The results are in table 6 and 7. Age is measured in 
decade and is centered to avoid the problem of collinearity when interaction and higher order terms are included. 
Within the one-part models, the negative binomial has a better fit with a -2 log likelihood of 7978 versus 8912 for the 
Poisson model. Within the two-part models, NLMIXED converged only with the ZIP model and did not converge with 
the ZINB model as more second order terms were added. This is probably due to underdispersion, which leads to 
difficulty in estimating the scale parameter as more predictors are added.   
 
When we compare the predicted means from the negative binomial and the ZIP models, they are not very different by 
age group (see Figure 10). However, when the subjects are separated by gender and married status, the ZIP model 
does considerably better among young married females (see Figure 12). This may be attributed to the logit part of the 
ZIP model, which estimates the probability of hospitalization. If most young married females were hospitalized due to 
childbirth, then they are hospitalized only once. Estimating their number of hospitalization is like estimating their 
probability of having a child.  
 
It is worth noting that in the ZIP model results, the signs of the terms diverge in the logit part and the Poisson part. 
The logit part models the probability of hospitalization (q=1-p). In the logit part, the signs of the coefficient for Female 
and Married are positive. This means among people who were around the age of 30, married females had a higher 
probability of hospitalization. In the Poisson part, the sum of the coefficients of Female, Married, and their interaction 
is negative. This means that among people who were around the age of 30 and were hospitalized, married females 
tended to have lower counts. Therefore, a two-part model provides more opportunities for hypothesis testing when 
the probability of an event and the event counts may be driven by different subject characteristics. 
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Figure 10 Observed and predicted means 

 
 
Figure 11. Observed and predicted means of  unmarried 
females 

Figure 12. Observed and predicted means of married females 
 

 
Figure 13. Observed and predicted means of unmarried 
males 

Figure 14. Observed and predicted means of married males 
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Table 6. 
Poisson and 
negative 
binomial model 
results from 
GLIMMIX Poisson 

Negative 
Binomial 

-2 Log 
Likelihood 8912.42 7977.84 
AIC  (smaller is 
better) 8942.42 8009.84 
BIC  (smaller is 
better) 9050.75 8125.39 
Pearson Chi-
Square 19194.91 12363.64 
Pearson Chi-
Square / DF 1.9 1.22 
   

Predictors             Poisson Estimate  

Negative 
Binomial 
Estimate 

   
Intercept -2.5016 (0.1378) -2.4381 (0.1233) 
(Age-30)/10   0.5271 (0.0707)  0.5686 (0.0664) 
Female   0.4671 (0.1578)  0.4804 (0.1483) 
Married -1.2106 (0.4490) -1.2278 (0.3554) 
Female * (Age-
30)/10   0.1143 (0.0434)  0.1143 (0.0418) 
Married* (Age-
30)/10  0.3451 (0.3505)  0.1699 (0.3151) 
Female*Married  1.494 (0.4864)  1.4186 (0.3931) 
(Age-30)/10 * 
Female*Married -1.4643 (0.3300) -1.4311 (0.2861) 
[(Age-30)/10]**2 0.03085 (0.0223)  0.0112 (0.0225) 
Female * [(Age-
30)/10]**2  -0.0447 (0.0143) -0.0456 (0.0147) 
Married * [(Age-
30)/10]**2   0.1081 (0.1104)  0.2094 (0.1163) 
Female*Married 
* [(Age-
30)/10]**2   0.2541 (0.0558)   0.2510 (0.0529) 
[(Age-30)/10]**3  -0.0578 (0.0074)  -0.0623 (0.0070) 
Married * [(Age-
30)/10]**3  -0.0292 (0.0125)  -0.0423 (0.0142) 
[(Age-30)/10]**4 0.00861 (0.0014)   0.0098 (0.0015) 
Scale 1.9001   4.3381 (0.3064)  

 

Table 7. ZIP model results  
Parameter 
Estimate 

Logit Part (Pr[case follow a 
Poisson distribution])  
Intercept -2.6534 (0.1612) 
(Age-30)/10  0.2507 (0.0751) 
Female  1.3302 (0.2288) 
Married  1.0138 (0.3079) 
Female * (Age-30)/10  -0.1911 (0.0885) 
Married* (Age-30)/10 -1.1297 (0.2411) 
[(Age-30)/10]**2  0.1654 (0.0237) 
Female * [(Age-30)/10]**2  -0.1545 (0.0332) 
Married * [(Age-30)/10]**2   0.2095 (0.0465) 
[(Age-30)/10]**3  -0.0249 (0.0061) 
Female * [(Age-30)/10]**3   0.0244 (0.0077) 
Poisson Part  
Intercept  0.1000 (0.1485) 
(Age-30)/10  0.2324 (0.0866) 
Female -0.6203 (0.2043) 
Married -1.8847 (0.4148) 
Female * (Age-30)/10  0.3121 (0.0855) 
Married* (Age-30)/10  1.2576 (0.3292) 
Female*Married  1.6594 (0.4021) 
(Age-30)/10 * 
Female*Married  -1.7129 (0.3084) 
[(Age-30)/10]**2  -0.0826 (0.0251) 
Female * [(Age-30)/10]**2   0.0841 (0.0286) 
Married * [(Age-30)/10]**2  -0.1028 (0.0987) 
Female*Married * [(Age-
30)/10]**2   0.2918 (0.0533) 
[(Age-30)/10]**3  -0.0263 (0.0082) 
Female * [(Age-30)/10]**3  -0.0220 (0.0067) 
Married * [(Age-30)/10]**3  -0.0203 (0.0111) 
[(Age-30)/10]**4   0.0064 (0.0013)  

 

CONCLUSION 
 
When we analyze count data with over- or under-dispersion, it is useful to investigate the patterns of dispersion using 
exploratory data analysis. The pattern of dispersion may differ within subgroups. The four models discussed in this 
paper offer different ways to fit the mean and variance relation. A zero-inflated model provides additional 
opportunities for testing hypotheses on group heterogeneity as well as subject heterogeneity.   

Statistics and Data AnalysisSAS Global Forum 2008

 



 9

REFERENCE 
 
Agresti, A. (2002), Categorical Data Analysis, NJ: John Wiley & Sons, Inc.. 
 
Eaton, W., Fortin, A. (1978), A Third Interpretation for the Generating Process of the Negative Binomial Distribution, 
American Sociological Review, 43:264-267. 
 
Flynn, M. (2005), Fitting Extended Count Data Models to Insurance Claims, 
www.casact.org/education/ratesem/2005/handouts/flynn2.ppt 
 
Long, J. Scott, (1997), Regression Models for Categorical and Limited Dependent Variables, CA: Sage Publications. 

Statistics and Data AnalysisSAS Global Forum 2008

 



 10

APPENDIX I 
 
The NLMIXED program to fit a zero-inflated Poisson or negative bionomial model has four parts. The first part 
specifies the starting values. For this particular model and dataset, the convergence is not very sensitive to starting 
values. The default values are set to 0. The second and third parts specify the logit and the Poisson models 
respectively. The last part states the loglikelihood function that combines the two parts. In the program, q0 = (1-p) 
presents the probability of the case following the Poisson distribution. In this way, greater estimates in both parts 
mean higher probability or larger count in hospitalization.  
 

*** ZIP Model 
proc nlmixed data=nhanes.data;  
 /* starting values *; 
      parms  b0 0 b1 0 bp0 0 bp1 0;  
 
 /* the logit model. Agedec is age/10 */ 
 eta_p = bp0 + bp1*agedec; 
 q0 = exp(eta_p)/(1+exp(eta_p)); 
 
 /* the Poisson model */ 
 eta = b0 + b1*agedec; 
      mu = exp(eta);  
 
/* the ZIP loglikelihood function that combines two parts of the model */ 
 /* q0 represents the probability of the case following  
a Poisson distribution*/ 
 if numhosp=0 then loglike = log(1-q0 + (q0)*exp(-mu)); 
else loglike = log(q0) + numhosp*log(mu) - mu - lgamma(numhosp+1); 
 

   model numhosp ~ general(loglike);  
 
/* ask NLMIXED to output the predictions for both models */ 
predict mu out=work.zip_eta; 
predict q0 out=work.zip_etap; 
run; 
 
*** ZINB Model 
proc nlmixed data=nhanes.data;  
 
 /* the starting values */ 
parms  b0 0 b1 0 bp0 0 bp1 0 k 1; 
 
 /* the logit model. Agedec = age/10 */ 
eta_p = bp0 + bp1*agedec;  
 q0 = exp(eta_p)/(1+exp(eta_p)); 
 
 /* the negative binomial model */ 
 eta = b0 + b1*agedec; 
      mu = exp(eta);  
 
/* the ZINB loglikelihood function that combines the two parts of the mdoel */ 
 /* q0 = 1-p = the probability of a case  
having the negative binomial distribution */ 
if numhosp=0 then loglike = log(1-q0 + q0*exp(-mu)); 
else  loglike = log(q0) + lgamma(numhosp + (1/k) - lgamma(numhosp+1) -    
lgamma(1/k) + numhosp*log(k*mu) - (numhosp+(1/k))*log(1+k*mu)); 
 
model numhosp ~ general(loglike);  
run; 
 

Statistics and Data AnalysisSAS Global Forum 2008

 



 11

CONTACT INFORMATION  
  
Your comments and questions are valued and encouraged.  Contact the author at: 

Adrienne Tin 
Research Foundation for Mental Hygiene 
105Riverside Drive 
New York, NY 10032 
Work Phone: 212-543-1152 
E-mail: tinad@pi.cpmc.columbia.edu 

 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   

 
 

Statistics and Data AnalysisSAS Global Forum 2008

 


	2008 Table of Contents



