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ABSTRACT  
 
In our SUGI 2006 presentation, we suggested using low-order autoregressive models, AR(1) and 
AR(2), in biosurveillance and outbreak detection (PROC ARIMA, SAS/ETS®). Our suggestion 
was based on empirical data. In the NESUG 2007 paper, we proposed strong theoretical grounds 
for this. Here we provide further development of our approach. Based on a classic susceptible-
infectious-recovered (SIR) model, we arrive at AR(1) models of epidemics where we need to 
estimate only one parameter, the first-order autoregressive coefficient. Its least squares estimate 
has a very simple epidemiological meaning. In the vast majority of applications, AR and ARMA 
are used as purely empirical, stationary models, with no specific substance matter meaning for 
coefficients. The value of our first-order autoregressive coefficient less than one corresponds to a 
stationary, no-epidemic regime. If the parameter is greater than one, we have an explosive case 
(an outbreak of epidemic). When the coefficient is equal to one, we have a unit root case. Based 
on the observed data in a chosen time window, least squares estimates and confidence intervals 
allow us to decide which case is more appropriate. The question of bias correction of our 
estimates is also discussed. After purely temporal analysis, we can proceed to the spatial step 
with logistic or Poisson regressions as in our SUGI 2006 paper. The approach described above 
can also be used in describing explosive behaviors of economic and financial time series (e.g., 
stock market bubbles). 
  
The intended audience: SAS users of all levels who work with SAS/STAT® and SAS/ETS®.   

INTRODUCTION  
 
Early recognition of either bioterrorist attacks or emerging epidemics is of greatest importance 
nowadays. With such highly infectious and rapidly spreading diseases as SARS, influenza, 
measles or smallpox it is a challenge to build adequate models for early detection of these 
exponentially developing processes. According to Mohtashemi, Kleinman and Yih (2007), 
temporal anomaly detection is a key component of real-time syndromic surveillance. Although 
space-time detection methods are sometimes more powerful at anomaly detection than purely 
temporal ones, spatial data are typically scarce. In addition, many health-care institutions 
routinely collect data in the form of time series. That is why effective purely temporal surveillance 
techniques are still needed. Autoregressive moving average (ARMA) processes are among the 
most popular and frequently used temporal models. The literature on using ARMA models in 
biosurveillance is abundant. Here we mention only the most important for us sources: Reis and 
Mandl (2003), Reis, Pagano and Mandl (2003), Earnest et al. (2005), and Lai (2005).  Also see 
Shtatland, Kleinman and Cain (2006) and Shtatland (2007) for numerous additional references. In 
spite of their popularity, AR and ARMA models in biosurveillance share a common disadvantage: 
they are used as purely empirical models, with no specific substance matter meaning for 
coefficients. Our suggestions in Shtatland, Kleinman and Cain (2006) on using low-order ARMA 
processes are based solely on the parsimony principle. In Shtatland (2007), we proposed strong 
theoretical grounds for this. In this presentation, we provide further development of our approach. 
In doing so, we are guided by the pioneering article by Mohtashemi et al. (2006) in which the 
workhorse model in epidemiology, a classic susceptible-infectious-recovered (SIR) model was 
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successfully used for early detection of respiratory infection outbreaks.  In the course of 
linearization of nonlinear SIR difference equations, which is justified by the requirements of early 
detection of the initial phase of the epidemic, we arrive at a linear AR(1) model of epidemics that 
inherits first principles of SIR. Here, we need to estimate only one parameter, the first-order 
autoregressive coefficient. This parameter and its least squares estimate have a very simple 
epidemiological meaning. It is interesting that in our approach detection thresholds are defined 
naturally in terms of this coefficient. In all papers cited above, thresholds are defined more or less 
arbitrarily. Our approach can also be used in describing explosive behaviors of economic and 
financial time series (e.g., stock market bubbles and higher frequency phenomena such as micro-
bubbles). See for example Phillips, Wu and Yu (2007), Shive (2006), Shiller (2005), Abreu and 
Brunnermeier (2003), and Brunnermeier and Pedersen (2002). 
 
SIR MODELS IN EARLY DETECTION   
 
A SIR model can be described by the following first-order nonlinear system of difference 
equations (we use the notations of Mohtashemi et al. (2006)): 
 
Sn + 1 = Sn - βSnIn, 
In + 1 = In + βSnIn  - δIn,                             (1)     
Rn + 1 = Rn + δIn
 
where Sn, In and Rn, represent the respective numbers of susceptible, infected and recovered 
individuals correspondingly on day n; β is the infection transmission rate and δ is the average rate 
of recovery from infection; 1/δ can be considered the mean duration of the infectivity (in days). 
Below, we will use another transmission parameter, alternative to β. Note that Mohtashemi et al. 
(2006) use only the first two equations in (1) with the motivation that there is not enough time for 
temporary removal of the recovered population to be of significance to the dynamics. Note also 
that in the context of their article (the emergency department of a large, academic pediatric 
hospital), variables Sn, Rn cannot be observed or measured systematically. Only In can be 
obtained indirectly, through some calculations, by using the observable daily number of patients vj 
presenting to the emergency department on day j. Mohtashemi et al. (2006) propose the following 
approximate formula for In: 
 
  In = Σn

j=n-d+1 vj                                                      (2) 
      
where d is an average number of days of infectivity per patient, i.e. d = 1/δ. Thus Mohtashemi et 
al. (2006) assume that the overall number of infected on day n can be approximated by the sum 
of the number of visits to the emergency department during the past d days. This is a reasonable 
approximation if parameter d is adequately chosen or estimated. Also Mohtashemi et al. (2006) 
suppose that the mean duration of infectivity d = 1/δ = 7, which is a clinically realistic assumption 
for influenza. And even though the assumption d = 7 is rather approximate (according to Wearing, 
Rohani and Keeling (2005), influenza lasts for 3 to 5 days), it is very convenient because it allows 
to compensate for the day of the week effect in vj  variability. According to Mohtashemi et al. 
(2006), the goodness of such approximation can potentially impact the accuracy of early 
detection results and is open to discussion. Summarizing, we can see an urgent need in a closed 
equation for In alone. Fortunately, such an equation can be obtained from the first two equations 
in (1) by eliminating unobservable variable Sn (see equation (2) in Mohtashemi et al. (2006)): 
 
  In + 2  = I2n + 1 / In  - βIn + 1 (In +1 - (1 - δ)In)            (3)      
 
Equation (3) is a strongly nonlinear second-order difference equation, which is not easy to 
interpret. In (3) we have only one parameter to estimate, β. Mohtashemi et al. (2006) use this 
equation for estimating β through least-squares regression for each time window of a chosen 
length. The authors proceed from the premise that the transmission rate β is seldom unchanging 
and may be considered approximately constant only over short time periods. For each day in a 
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year, they choose a time window of length T (from the present day to the past), form T - 2 
equations and estimate β by using least-squares regression. In their paper, the results for T = 7 
are reported. Again, this choice of T seems reasonable since it compensates for the day of the 
week variation in data. In addition, it is made in the spirit of early detection requirements. At the 
same time the choice T = 7 results in a very high everyday variability of the β estimates, 
comparable to the variability of the time series In itself. It looks unusual since β is the only 
fundamental parameter of our model. We can conjecture that the time window length of 14 would 
provide smoother estimates of β and in some cases serve the needs of early detection of 
outbreaks at the same level as T = 7. Though, sometimes it is necessary to work with T < 7 also. 
Unfortunately, there is no explicit formula for the least-squares estimates of β and it is not easy to 
investigate their properties, in particular sensitivity to the time-window length L. This disadvantage 
will be overcome within our autoregression modeling approach. After getting the estimate of β for 
each current day, Mohtashemi et al. (2006) compare it with the mean infection rate for the same 
day of year in their historical data (they have 7 training years). If the current estimate exceeds the 
threshold based on the training data (in terms of the mean and standard deviation of β), their 
detection algorithm generates an alarm. Mohtashemi et al. (2006) test the performance of their 
detection system by using simulated outbreaks.  
 
AUTOREGRESSIVE MODELS IN EARLY DETECTION   
 
In trying to build autoregressive models for early detection of epidemic outbreaks, we use SIR 
model (1) and equation (3). The 2nd order of equation (3) suggests that we can limit ourselves to 
AR(2) models. Thus, regrouping (3) we arrive at the equation of the form 
 
  In + 2  = a1 In + 1 + a2 In            (4)      
 
where 
 
 a1 = In + 1  / In - β(In + 1 - In)      (5) 
 
 a2 = - β δ In + 1                                  (6)                             
 
Equation (4) is a nonlinear difference equation with time- and state-dependent coefficients. This 
class of equations has been described, for example, in Kato and Ozaki (2002). Also, (4) can be 
considered an equation with slowly varying coefficients. Indeed, in the context of Mohtashemi et 
al. (2006) we can think that β ≈ 2/10000, δ ≈ 1/7, In + 1 ≈ 350, and (In + 1 - In) ≈ 20 or less at the 
early phase of epidemics. Thus, a2 ≈ 0.01, this coefficient can be neglected and our 2nd order 
difference equation is reduced to the 1st order equation. Further, it can be shown that term   
β(In + 1 - In) in (5) is usually less than 0.004 and can also be neglected. Thus, In + 1  / In can be 
considered the main part of parameter a1, and consequently this ratio  In + 1  / In should be a good estimate of 
parameter a1 ( see Hurwicz (1950), Zielenski (1999) and Luger (2005)). Below we will return to the ratio-
based estimates. Of course, both of the dropped terms can produce an effect on the course of 
epidemics during much longer time than the starting period of the epidemic in which we are 
interested. As shown, equation (4) can be reduced to the following 1st order linear equation (we 
change the time index:  n + 2 → n + 1): 
 
In + 1  ≈ a1 In .  
 
This equation can be considered an indication of an exponential growth.  Also, at the early phase 
of an outbreak, we can assume Sn  ≈  S0 ≈  N (where S0  is the initial number of susceptible at the 
beginning of the epidemic (if it ever happens) and N is the total number of people in our closed 
population: N = S + I + R, with no birth, no death). With this assumption we arrive at the equation
 
In + 1  ≈ (1 + βN - δ )In                    (7)  
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Now we introduce an alternative transmission rate β* = βN. Both β and β* are popular in the 
epidemiological community. For more information about various forms of transmission rates see, 
for example, McCallum, Barlow and Hone (2001). According to Begon et al. (2002), transmission 
rates β and β* discussed here are likely to remain benchmarks against which actual transmission 
dynamics are judged, and to remain key elements in most mathematical models of transmission. 
Note that β and β* have different dimensions.  With the alternative infection transmission rate, our 
difference equation takes a very simple form 
 
In + 1  ≈ (1 + β* - δ )In                       (8) 
 
Finally, note that we have performed a number of approximations in developing linear equation 
(8) from strongly nonlinear equation (3). Each of these approximations results in some small 
error, and it is not easy to take those errors into account individually and altogether. In addition, 
we have some stochastic variation in β and δ. Combining all these sources of uncertainty in one, 
we arrive at our final AR(1) model 
 
In + 1  = (1 + β* - δ )In  + wn                (9) 
 
where wn is an additive white Gaussian noise. At this moment, we are not interested in specifics 
of this noise. Note that we can derive the equations (7), (8) and (9) not from (4), but directly from 
the second equation in (1): 
 
In + 1 = In + βSnIn  - δIn
 
By using the same assumption Sn  ≈  S0 ≈  N as before, we immediately get linear models (7), (8) 
and (9). This is a result of linearization: our originally nonlinear system becomes (to a very good 
approximation) linear because the assumption S ≈ N turns our nonlinear transmission term βSI 
into a linear one, β*I. The sequence of approximations (4) - (9) discussed above can be 
symbolically expressed as SIR → AR(2) → AR(1). We adopt model (9) as our basic model for 
pre-epidemic and emerging epidemic processes. Note that almost all ARMA / ARIMA models for 
syndromic surveillance for respiratory diseases (influenza, SARS) use a 1st order autoregressive 
component (see Shtatland (2007)). That is why using AR(1) to describe a pre-epidemic process 
does not seem unusual. However, we are not interested in the most adequate description of a 
quiet, stationary period before the epidemic. Our intention is early detection of an outbreak, the 
take-off of the epidemic, and our very simple model (9) seems to be adequate for this purpose. 
When β* - δ < 0, i.e. the rate of recovery is greater than the transmission rate, we have a no-
epidemic, stationary regime. When β* - δ > 0, there is an exponential growth, outbreak of 
epidemic. If β* - δ = 0, we have the so-called unit root case. Thus, there is a natural threshold in 
terms of β* - δ to discriminate between these regimes. It is very important because of the lack of 
such a natural threshold in all previous works on time series modeling for biosurveillance. See, for 
example, Reis, Pagano and Mandl (2003) and Mohtashemi et al. (2006). Finally note that our 
AR(1) model (9) is based on the SIR model from which it inherits first principles. 
 
STATISTICAL INFERENCE ABOUT THE AR(1) MODEL 
 
ESTIMATING AR(1) PARAMETERS  
 
Statistical inference about model (9) (confidence intervals, hypotheses testing, etc.) is based on 
estimates of the sole autoregressive parameter a1 = 1 + β* - δ. For simplicity, we drop subscript 
index 1 here and to the rest of the paper. Thus, equation (9) can be written as In + 1  = aIn  + wn. It 
is safe to assume that a is always greater than 0 in our context. There exists a well-developed 
theory of estimating the AR(1) parameter. It includes ordinary least-squares, Yule-Walker, Burg, 
and various modified least-squares estimators (see, for example, Provost and Sanjel (2005) and 
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references therein). The most widely used estimator is the ordinary least-squares (OLS) method 
that provides the following estimate of parameter a based on the time series I1 , I2 , …, IT: 
 
â(T)= ∑T 

n=2 In In - 1 / ∑ T-1
n=1 I2n                             (10) 

 
T can be considered a baseline of historical data used for estimating parameters of the model and making 
decisions. Here and further in the paper, a typical value of T is 7, though larger values (e.g., T = 14) and 
especially smaller values (from 2 to 6) can be useful. Note that for general ARMA processes, a 
nonlinear iterative least-squares procedure must be used for estimating ARMA parameters. It is 
well known that this procedure does not always converge successfully for a given set of data, 
particularly if the starting values of parameters are far from the resulting least-squares estimates 
(SAS/ETS® User’s Guide (1993), pp 140-141). In case of AR(1), we have a very simple, explicit 
formula (10), which can be easily used and interpreted. The properties of estimate (10) are well 
known. It is consistent, i.e. â(T) → a (the real value of the autoregressive parameter) as T → ∞. 
At the same time â(T) is a biased estimator. The bias bT(a) depends on the real value of the 
parameter to be estimated and the time window T. According to Le Breton and Pham (1989), if  
0 < a < 1 (a stationary case), then  
 
 bT(a) ≈ - 2a / T                   (11) 
 
and if a > 1 (an explosive, outbreak case), then 
 
bT(a) ≈ - C T½ / aT                   (12) 
 
where C is  a known constant which depends on a. In Le Breton and Pham (1989), there is a 
more complicated formula for bT(a) in the unit root case (a = 1) that is similar to (11) with a 
different constant. This case is not as important to us as the two previous ones. In practice we are 
never in a position of knowing the true mean of the process of interest. If the mean is unknown, 
we have to use a model with intercept. In this case the bias becomes even larger than (11), it is 
given by following formula  
 
bT(a) ≈ - (1 + 3a ) / T                   (11’) 
 
(see Kendall (1954), Sawa (1978), Orcutt and Winokur (1969)). It is interesting that the bias bT(a) 
is always negative which means that the ordinary least-squares estimator always underestimates 
a. The bias can be rather substantial when the unknown parameter a is in the vicinity of 1. For 
example, according to (12) an outbreak value a = 1.1 might be estimated as 0.96 (the bias equals 
0.14 or 13% of the real value) with T = 7. Let us remind that T = 7 is used in Reis, Pagano and 
Mandl (2003) and Mohtashemi et al. (2006). The example above shows how easy it is to 
misspecify the real regime if we do not take the bias into account. It is important to remember that 
formulas (11), (11’) and (12) are asymptotic and ideally are meant to be used for large enough T. 
So using them for T = 7 is rather problematic. Instead of using formulas (11), (11’) and (12) for 
bias correction we can also use a modified least-squares estimator defined by formula (10’)  
 
â(T)= ∑T 

n=2 In In - 1 / ∑ T-1
n=2 I2n                             (10’) 

 
which differs from (10) only in the denominator (now summation is performed from n = 2 to n =  
T - 1, rather than from n = 1 to n = T - 1). The idea behind this correction is very simple: dropping 
a positive term in the denominator results in overall estimate increase. According to Provost and 
Sanjel (2005), this simple correction can be surprisingly effective, including cases with small 
values of T.  
 
Another interesting and more general approach to unbiased estimating of parameter a = 1 + 
β* - δ in (9), was initiated by Hurwicz (1950) and developed further by Zielinski (1999) and 
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Luger (2005). In particular, Hurwicz (1950) observed that every ratio In + 1  / In, n = 1, 2, …, T-1, is a 
median-unbiased estimator of a (though inefficient in statistical terms, since these ratios have a 
Cauchy distribution). Hurwicz (1950) hypothesized that the median of the ratios mentioned above 
would be a more efficient estimate of a and perhaps an unbiased one. This hypothesis has been 
proved by Zielinski (1999) who has showed that the Hurwicz estimator  
 
â Hur (T)=median(I2  / I1, I3  / I2,…, IT  / IT-1 )         (13) 
 
is median-unbiased, robust against any deviation from Gaussian distribution, including heavy tails 
as well as contamination with outliers. Moreover, it has been proved that innovations wn in (9) are 
not necessarily identically distributed. Luger (2005) has showed that the results mentioned above 
remain true under more general distributional assumptions, without assuming statistical 
independence. Thus, assumptions basic for the least squares theory which are very difficult to 
verify in practice or to prove theoretically, are not necessary for the median-unbiased estimator 
approach. The fact that ratio In + 1  / In is the main part of coefficient a in (5) (see above) and 
properties of this ratio as an unbiased estimator of a will allow us to use In + 1  / In  as the most local 
estimate which is based only on the two consecutive terms of time series. This locality will be 
important for us in the light of early detection requirements (epidemics and explosive behaviors in 
finance). Mohtashemi et al. (2006) propose the following classification of timeliness of detection 
(with 7-day time window and simulating outbreaks lasting 7 days): “early detection” is defined as 
detection during the first 3 days of outbreak, “intermediate detection” represents detection during 
the 4th and 5th days of outbreak, and “late detection” corresponds to detection in the last 2 days 
of outbreak. Using the SIR model with detection time window T = 7 and simulated outbreaks, 
Mohtashemi et al. (2006) report cumulative sensitivity of 10% on the very  1st day of the outbreak, 
30% - on the 2nd day, 50% - on the 3rd day, 63% - on the 4th day, 75% - on the 5th day, and 78% 
and 87.5% - on the 6th and 7th days correspondingly. Thus, according to Mohtashemi et al. (2006) 
their SIR model combined with Least-Squares estimation provides 50% sensitivity at the early 
stage of the epidemics (first 3 days) and 75% sensitivity at the end of the intermediate detection 
stage. Of course, real outbreaks may last well beyond 7 and even 14 days. Mohtashemi et al. 
(2006) and Reis, Pagano and Mandl (2003) focused on the first few days because useful 
detection systems should be able to recognize outbreaks within that time frame. Combining this 
information with theoretical results regarding formulas (10) – (13), the simulation results from 
Marriott and Pope (1954), Orcutt and Winokur (1969), Sawa (1978), Andrews (1993), and Provost 
and Sanjel (2005), and the outcomes of our simulations,  we can conclude: 
● As our AR(1) model is a linear approximation (and a good one) of the SIR model in Mohtashemi 
et al. (2006), we can expect a comparable performance for such short-term dynamics as flu-like 
epidemics (with seven-day simulated outbreaks). To achieve such a performance it is 
recommended to use a combination of estimates (10), (10’) and (13) with bias-corrections (11), 
(13) and (11’) not only for T = 7 but also for shorter time windows including T = 2. According to 
Reis, Pagano and Mandl (2003), time window T should be at most 7 days, i. e. the authors 
assume the possibility of T < 7. Also, to have a non-zero sensitivity on the 1st day, we must use 
the ratio In + 1  / In among other statistics. Note that for T = 2, both OLS estimator (10) and Hurwicz 
estimator (13) are equal to the ratio In + 1  / In. This is the only case when estimators (10) and (13) 
are equal and both represent the instant change on the recent day comparatively to the previous 
one. This is why the ratio In + 1  / In should be an important component of our statistical toolbox. 
● We have compared the OLS estimate (10) with â Hur estimate (13) using simulations. Our 
simulations results with 10,000 simulations for T = 4, 5, 6, 7 and 14, and a = 0.7, 0.8, 0.9, 1.0, 
1.1, 1.2 and 1.47 (the last value is taken as a parameter of exponential growth for simulating 
outbreaks in Mohtashemi et al. (2006)) show that â Hur (T) is much less biased and much less 
variable across the values of T than its OLS counterpart (10) for all combinations of T and a. Bias 
of all our estimates decreases with the increase in a for a > 1. When we average our OLS 
estimates across simulations, using median rather than mean, both bias and variability 
dramatically decrease. Also, the results depend on the fact whether we apply some induction 
period with discarding some terms (in our case 50 terms) of simulated time series. We find that 
discarding can significantly improve both bias and variability. See also Anderson (1979).                                     
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● Actually, statistics (10), (10’), (11), (11’), (12) and (13) are developed for steady-state regimes 
in which parameter a is unchanged during baseline T, and we have either a stationary regime or 
an exponential growth. In early detection, at some moments we are dealing with a mix of these 
regimes, so strictly speaking our statistics are not applicable. In particular, statistic â Hur(T) (with  
T = 7) being a robust and stable estimate is ideal for either stationary, pre-epidemic state or 
purely epidemic regime, but not for the periods including both pre-epidemic and epidemic days. 
For example, with T = 7 the estimate â Hur (T) will likely not react to the first days of the epidemic 
(from the 1st to the 3rd day), so we can miss the early detection at all. At the same time, OLS 
estimate can potentially react to the very 1st day, though probably in a rather weak form. To have 
this reaction stronger we have to use smaller time window, including T = 3 and even T = 2. As 
noted above, In + 1  / In is the only estimate capable of detecting change-point at the very first day. 
● Using higher-order moment estimates (Huzii (1981)) and a partial correlation approach 
(Anderson (1990)) is also a possibility. 
 
Finally, when estimating parameter a = 1 + β* - δ we actually estimate β* - δ, the difference 
between the transmission rate and recovery rate. This difference is a threshold parameter, closely 
related to another famous threshold parameter, R0 = β* / δ, which is known in epidemiology as the 
basic reproductive ratio. Parameter β* - δ can be called “an engine of the epidemic”. Also note 
that here we use β* as the transmission rate parameter, and not β. Another interesting 
observation is that the type of behavior (a no-epidemic vs. an outbreak regime) is determined not 
by β* and δ separately, but by their difference β* - δ. In our approach we do not need to estimate 
or make some assumptions about β* and δ separately (for example, assume that δ ≈ 1/7 and 
then estimate β*). We need to estimate only the difference β* - δ. 
 
CONFIDENCE INTERVALS AND HYPOTHESES TESTING FOR AR(1) MODELS  
 
As in the previous section, the theory below is developed only for stable regimes in which 
parameter a is unchanged. Thus strictly speaking, it cannot be very useful in early detection 
situation, when the first days of the time window T are non-epidemic and then the epidemic 
begins. Also, we consider here only OLS estimates though generalizations are possible to other 
classes of estimates, including median-unbiased ones (in the spirit of Andrews (1993) and Luger 
(2005)). We will return to confidence intervals for median-unbiased estimators elsewhere. 
 
Even with bias correction discussed above, the point estimate of the form (10) cannot serve as 
the sole basis to distinguish the case a < 1 (stationarity) from a > 1 (outbreak). The point estimate 
can be considered rather as the “best guess” for an unknown parameter. To choose between 
these possibilities, we have to use either confidence intervals, or hypotheses testing, or both.  
Although a statistician will recognize the typical hypothesis-testing problem in biosurveillance 
(with Type I and Type II errors), we prefer to use an equivalent confidence-interval language 
following Tukey (1991) who argues strongly that confidence intervals are more informative and 
more honest than p-values. Confidence interval results are based on the following statements: 
● If a < 1, then the probability distribution of  
 
(â(T) - a) T½ / (1 - â2(T) ) ½       
 
is close to the Gaussian distribution N(0,1) when the time window T is large enough (see Giraitis 
and Phillips (2006)). 
● If a > 1, then the probability distribution of 
 
(â(T) - a) âT(T) / (â2(T) - 1)  
 
is close to the standard Cauchy distribution C when the time window T is large enough (see 
Phillips, Wu and Yu (2007)). 
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As a result, we have the following two families of the approximate two-sided confidence intervals 
for parameter a: 
● If a < 1 (a stationary case), the 100(1 - α)% confidence interval for a is given by the formula 

(â(T) - ((1 - â2(T) ) ½ / T½ ) Nα ,  â(T) + ((1 - â2(T) ) ½ / T½ ) Nα )                 (14) 

where Nα is the two-tailed α percentile critical value of the standard Gaussian distribution. For 90, 
95 and 99 percent confidence intervals, these critical values are as follows: N0.10 = 1.645, N0.05 = 
1.96, N0.01 = 2.576. Note that for small sample sizes (e.g., T = 7), using confidence limits based 
on the Student’s t distribution rather than Gaussian one, is more appropriate. 
● If a > 1 (an explosive case), the 100(1 - α)% confidence interval for a is given by the formula 

(â(T) - ((â2(T) - 1) ) / âT(T) )Cα ,  â(T) + ((â2(T) - 1) ) / âT(T) )Cα )               (15)  

where Cα is the two-tailed α percentile critical value of the standard Cauchy distribution. For 90, 
95 and 99 percent confidence intervals, these critical values are as follows: C0.10 = 6.315, C0.05 = 
12.7, C0.01 = 63.657 (see Phillips, Wu and Yu (2007)). Gaussian critical values are much smaller 
than the corresponding Cauchy ones, which is not surprising since the Cauchy distribution has 
heavier tails.  
 

It is worth noting that we are confronted here with a rather unconventional hypothesis testing / 
confidence interval situation: 
● Both the null hypothesis of stationarity H0 (0 < a < 1) and the alternative hypothesis of outbreak 
H1 (a > 1) are composite, which makes hypothesis testing more difficult. The problem can be 
reduced to testing H0: a = 1 versus H1: a > 1, though we are not very interested in a borderline 
case of a = 1 (the unit root or random walk case) since it is too special for our practical needs and 
at the same time very difficult analytically.   
● Test statistics and their approximate distributions in (13) and (14) are different (which is 
unusual). 
● Confidence intervals in (14) are often too wide to be practical for the time window T = 7 adopted 
in Reis, Pagano and Mandl (2003) and Mohtashemi et al. (2006). For example, if â(T) = 1.25 
(with bias correction already taken into account and δ ≈ 1/7) which corresponds to a high value of 
the basic reproductive ratio: R0 ≈ 2.75, then the 90% two-sided confidence interval based on the 
Cauchy distribution is of the form: (1.25 - 0.36, 1.25 + 0.36). This interval contains the borderline 
value a = 1 and therefore we are in the “Grey Zone” and fail to detect a rather strong signal as a 
take-off of the epidemic. Now let us consider an example with â(T) = 1.5 (with bias correction 
already taken into account and δ = 1/7) which corresponds to β* ≈ 0.643 and R0 ≈ 4.5.  It is an 
important example, since â(T) = 1.5 is very close to the parameter of exponential growth for 
simulated outbreaks (λ ≈ 1.47) in Mohtashemi et al. (2006). Using 90 percent confidence interval 
(14) with C0.10 = 6.315, we obtain the interval (1.5 - 0.46, 1.5 + 0.46) which does not contain a = 1 
and thus we have to reject stationarity or a no-outbreak regime. But this rejection (with 10% 
significance level) is almost borderline. To improve the situation we can build a one-sided 
confidence interval, instead of the typically recommended two-sided one. As a result, we arrive at 
the 95 % confidence interval (1.5 - 0.46, + ∞) that does not cover a = 1. Of course, elevating the 
significance level from α= 10% to α= 5% makes us psychologically more ready to reject 
stationarity in favor of an outbreak. But what we did can be considered a kind of statistical trick to 
get a more or less tolerable (in terms of the level of confidence) confidence interval. We can add 
to this that early detection in syndromic surveillance is inherently multiple testing problem since 
estimating, testing and making decisions are performed daily. Thus, significance levels used in 
testing procedures cannot be taken at face value. Moreover, they could be absolutely misleading. 
Note that most probably our early detection problem with T = 7 (or even less) should not be 
considered in terms of statistical significance only, practical significance can be even more 
important. 
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APPLICATIONS TO ECONOMIC AND FINANCIAL TIME SERIES: 
SIR, AR(1) MODELS, STOCK MARKET BUBBLES AND MICRO-BUBBLES 
 
It can be shown that the results discussed above are applicable to the problems of testing 
explosive behaviors in economics and finance, in particular in date-stamping the origination of 
economic bubbles (see, for example, Phillips, Wu and Yu (2007), Phillips and Magdalinos (2007) 
and references therein). In economic and financial applications, only the time-scale can be 
different: time is usually measured in months, rather than days. But the autoregressive model 
AR(1) of the form (9), the least-squares estimate (10) and confidence intervals (13) and (14) are 
the same. However, a substantial difference between both applications is the following: in our 
epidemiological application, we are interested in early detection only; at the same time in 
economics, we are equally interested in the origination and collapses of economic bubbles. It is 
worth noting that the authors in Phillips, Wu and Yu (2007) use also one-sided tests, more 
exactly, they apply right-sided unit root tests against explosiveness to have more discriminatory 
power in detecting explosive processes.  
 
Note that the paper by Phillips, Wu and Yu (2007) being a fundamental research article on 
modeling bubble formation, uses AR(1) as an ad-hoc, purely empirical model, without any 
explanation of why AR models, in particular AR(1), should be used. In this connection, it is 
interesting to mention the paper by Shive (2006) in which the author used a SIR model as an 
epidemic model of investor behavior that results in building a stock market bubble. Shive (2006) 
reports periods of significant epidemic behavior in buying and selling that correspond to the 
dramatic price movements in some stocks in Finland from 12/1994 to 1/2004. The author refers to 
the book of Yale economics professor Robert Shiller (2005) in which he defines a speculative 
bubble “as a situation in which news of price increases spurs investor enthusiasm, which spreads 
by psychological contagion from person to person”. We can add to this that Shiller is world 
famous by predicting the year 2000 stock market crash. Also, he is one of the first 
econometricians to describe a new bubble in the making – the housing bubble. 
 
Thus, we can see that psychological and physiological contagion is a common and natural 
justification for using SIR models and their linear approximations, AR(1) models both in 
epidemiology and finance. The real strength of the approach with using SIR and then AR(1) 
models in financial applications is the straightforward, almost clinical way in which it explains how 
and why financial bubbles happen as they do. Still, we can conclude that using autoregressive 
models in describing explosive phenomena seems to be in an emerging state. 
 
See also Abreu and Brunnermeier (2003) for a comprehensive paper on bubbles and crashes, 
Brunnermeier and Pedersen (2002) for an interesting work on predatory trading, and Brunnermeier 
and Nagel (2004) for a very influential paper on hedge funds and technology bubbles. In Brunnermeier 
and Pedersen (2002), the authors focus more on higher frequency phenomena, including mini- or 
micro-bubbles, etc, rather than bubbles.  
 
WORKFLOW FOR EARLY DETECTING EXPLOSIVE BEHAVIORS 
 
 We suggest the following workflow for early detecting explosive behaviors:  

1) Each day, the ordinary least-square (OLS) estimate (10) and median-unbiased 
estimate (13) of the only autoregression parameter a are iteratively calculated, based 
on the past T values of the time series In (the present date value is included). The 
changes in the time index are obvious. 

                                      ↓ 
2) Bias correction is performed by using either formulas (11), (11’) and (12) or a 

modified least-squares estimator given by (10’). Comparing OLS and median-
unbiased estimates (13) can be useful here.  
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                                        ↓ 

3) The confidence intervals are built either of the form (14) if the OLS estimate â(T) is 
smaller than one or of the form (15) if this estimate exceeds one. 

                                        ↓ 
4) If the confidence interval (14) does not contain the borderline a = 1, the decision “No 

Alarm” can be made.  

                                                     ↓ 
5) If the confidence interval (15) does not contain the borderline a = 1, the decision 

“Alarm” can be made. 

                                        ↓ 
6) Steps 4 and 5 are formulated it terms of statistical significance. Taking into account                                 

the small length of the time window (at most T = 14, typically T = 7 or even less) and 
as a result large width of confidence intervals, most likely the final decisions “Alarm” 
or  “No Alarm” will be made very seldom based on confidence intervals only. 

                                        ↓ 
7) If the interval (14) or (15) covers a = 1, we are in the “Grey Zone”  and can apply 

some of  the following empirical rules (reasonable, though more or less arbitrary): 

a) If the most recent ratio In + 1  / In  is greater than 1, then “Alarm” . This rule 
maximizes the likelihood of the anomaly detection on the very first day, 
though at a prize of increase in the number of false alarms  

b) If two most recent ratios In + 1  / In in a row are greater than 1, then “Alarm”. 
This rule facilitate the outbreak detection during the first two days  

c) If three days in a row we have â(T) > 1, then “Alarm”, etc. 

 
In general, using multiple time windows (T = 2, 3, 4, 5, 6, 7 and 14) can be strongly advised and 
not only for the Grey Zone. The estimates obtained for time window T = 14 will be smoother and 
Gaussian / Cauchy distribution approximations more accurate. At the same time, estimates and 
confidence intervals with time window T = 14 would “feel” the start of epidemics even later than 
with T = 7. Comparing results for T = 7 and T = 2, 3, 4, 5, 6 and 14 might be helpful. 
 
SUMMARY AND CONCLUSIONS 
 
In this paper, we propose a simple but powerful model for early detection of epidemic outbreaks. 
First, based on a SIR model, a workhorse of epidemiology, we show that in the autoregressive 
approach we can limit ourselves with the models of the second or even first order. Then, by using 
methods of linearization, we conclude that the most appropriate model is AR(1). The 
autoregression coefficient of this model has a very simple epidemiological meaning and can be 
used as a natural threshold parameter in epidemic detection. To the best of our knowledge, this 
paper and Shtatland (2007) are the first publications that report this threshold parameter for early 
detection in biosurveillance applications. We can consider our AR(1) model as a paradigm-model 
for early detection of epidemic outbreaks. Note that AR(1) is already widely used as a paradigm-
model in the unit root theory. The proposed detection method is based on a combination of the 
least-squares estimator of the autoregressive coefficient with approximate two-sided and one-
sided confidence intervals (built by using the Gaussian and Cauchy limit distributions) and 
median-unbiased estimators. Note that typically ARMA processes are considered synonyms to 
the stationary models, and the explosive case is ignored as a nuisance. Here AR(1) model with 
autoregressive coefficient greater than one plays a major role. Our theoretical results are 
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comparable with the results of Mohtashemi et al. (2006), which are based on the real data from 
the emergency department of a large urban hospital, with simulated outbreaks. However, there is 
an important difference between our approach and that of Mohtashemi et al. (2006), which is 
worth mentioning. Mohtashemi et al. (2006) heavily use historical data (more than 4389 days), 
and we do not (14 days or less). Our approach can be preferred when historical data are either 
not available at all or are unrepresentative of the current behavior for a variety of reasons: 
changes in treatments, coding, and reporting practices, appearance of new influenza strains, etc. 
(See more about these extreme situations with historical data in Burkom, Murphy and Shmueli 
(2007)). In this respect, the two approaches can be considered complementary.  Also, our 
approach can be used in economic and financial time series and any application where we are 
interested in detection of abrupt switches from the normal, stationary regime to the exponential 
growth. Models of the form (9) seem well suited to capturing the essential features of epidemic, 
economic and financial processes that can undergo mildly explosive behavior (including stock 
market bubbles and higher frequency phenomena such as micro-bubbles, etc.) The purely 
temporal modeling results discussed above are interesting by themselves because they provide 
the key components of real-time syndromic surveillance. Following Shtatland, Kleinman and Cain 
(2006), we can add that such results could also be used in a more general, space-time detection 
schemes with possible application of logistic and Poisson regressions. 
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