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ABSTRACT

Real-life count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models
provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a
mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or
a negative binomial data-generating process. The result of a Bernoulli trial is used to determine which of the two
processes generates an observation.

OVERVIEW

The COUNTREG (count regression) procedure analyzes regression models in which the dependent variable takes
nonnegative integer or count values. The dependent variable is usually the number of times an event occurs. Some
examples of event counts are:

� number of claims per year on a particular car owner’s auto insurance policy

� number of workdays missed due to sickness of a dependent in a 4-week period

� number of papers published per year by a researcher

In count regression, the conditional mean E.yi jxi / of the dependent variable, yi , is assumed to be a function of a vector
of covariates, xi . Possible covariates for the auto insurance example are:

� age of the driver

� type of car

� daily commuting distance

MARGINAL EFFECTS IN COUNT REGRESSION

Marginal effects provide a way to measure the effect of each covariate on the dependent variable. The marginal effect
of one covariate is the expected instantaneous rate of change in the dependent variable as a function of the change
in that covariate, while keeping all other covariates constant. Unlike in linear models, the derivative of the conditional
expectation with respect to xi;j is no longer equal to ˇj —that is, @E.yi jxi /=@xi;j ¤ ˇj . For example, for the Poisson
regression with E.yi jxi / D ex0

i
ˇ is

@E.yi jxi /

@xi;j
D ˇj ex0

i
ˇ

D ˇj E.yi jxi / (1)

Therefore the marginal effect of the change in covariate xi;j depends not only on ˇj , but also on all other estimated
coefficients, and on all other covariate values. Another interpretation is that a one-unit change in the j th covariate leads
to a proportional change in the conditional mean E.yi jxi / of ˇj .

BASIC MODELS: POISSON AND NEGATIVE BINOMIAL REGRESSION MODELS

The Poisson (log-linear) regression model is the most basic model that explicitly takes into account the nonnegative
integer-valued aspect of the dependent count variable. In this model, the probability of an event count yi , given the
vector of covariates xi , is given by the Poisson distribution:

P.Yi D yi jxi / D
e��i �

yi

i

yi Š
; yi D 0; 1; 2; : : :
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The mean parameter �i (the conditional mean number of events in period i ) is a function of the vector of covariates in
period i :

E.yi jxi / D �i D exp.x0
i ˇ/

where ˇ is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0, and the coefficients for the k covariates are ˇ1; : : : ; ˇk .)
Taking the exponential of x0

i ˇ ensures that the mean parameter �i is nonnegative. The name log-linear model is also
used for the Poisson regression model because the logarithm of the conditional mean is linear in the parameters:

lnŒE.yi jxi /� D ln.�i / D x0
i ˇ

The Poisson regression model assumes that the data are equally dispersed—that is, that the conditional variance
equals the conditional mean. The COUNTREG procedure uses maximum likelihood estimation to find the regression
coefficients. The following statements demonstrate how the Poisson model can be estimated:

proc countreg data=a;
model ypoizim=x1 x2/dist=poisson;

run;

The Poisson model has been criticized for its restrictive property that the conditional variance equals the conditional
mean. Real-life data are often characterized by overdispersion—that is, the variance exceeds the mean. The negative
binomial regression model is a generalization of the Poisson regression model that allows for overdispersion by intro-
ducing an unobserved heterogeneity term for observation i . Observations are assumed to differ randomly in a manner
that is not fully accounted for by the observed covariates. In the negative binomial model,

E.yi jxi ; �i / D �i �i D ex0
i
ˇ�i

where �i follows a gamma(�; �) distribution with E.�i / D 1 and V.�i / D 1=� . Conditional on both xi and �i , the
dependent count variable Yi is still Poisson distributed:

P.Yi D yi jxi ; �i / D
e��i �i .�i �i /

yi

yi Š

However, conditional on only xi , Yi is distributed as a negative binomial:

P.Yi D yi jxi / D
�� �

yi

i �.� C yi /

�.yi C 1/�.�/.�i C �/�Cyi

The distribution has conditional mean �i and conditional variance �i .1C.1=�/�i /. It is more straightforward to estimate
˛ D 1=� instead of � . With this substitution, the conditional variance is �i .1 C ˛�i /. Negative binomial and Poisson
models are nested because as ˛ converges to 0, the negative binomial distribution converges to Poisson. Cameron
and Trivedi consider a general class of negative binomial models with mean �i C ˛�

p
i , where in general �1 < p < 1

(Cameron and Trivedi 1986). PROC COUNTREG estimates two negative binomial models, corresponding to p D 2

(with variance �i C˛�2
i ) and p D 1 (with variance �i C˛�i ). The first is estimated with the option DIST=NEGBIN(p=2),

and the second is estimated using DIST=NEGBIN(p=1). The following statements show how to estimate the first:

proc countreg data=a;
model ypoizim=x1 x2/dist=negbin(p=2);

run;

ADVANCED MODELS: ZERO-INFLATED MODELS

The main motivation for zero-inflated count models is that real-life data frequently display overdispersion and excess
zeros (Lambert 1992; Greene 1994). Zero-inflated count models provide a way of modeling the excess zeros in addition
to allowing for overdispersion. In particular, for each observation, there are two possible data generation processes; the
result of a Bernoulli trial determines which process is used. For observation i , Process 1 is chosen with probability 'i

and Process 2 with probability 1 � 'i . Process 1 generates only zero counts, whereas Process 2, g.yi jxi /, generates
counts from either a Poisson or a negative binomial model. In general:

yi �

�
0 with probability 'i

g.yi jxi / with probability 1 � 'i
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The probability of fYi D yi jxi g is

P.Yi D yi jxi ; zi / D

�
'.
 0zi / C f1 � '.
 0zi /gg.0jxi / if yi D 0

f1 � '.
 0zi /gg.yi jxi / if yi > 0

When the probability 'i depends on the characteristics of observation i , 'i is written as a function of z0
i 
, where z0

i is
the vector of zero-inflated covariates and 
 is the vector of zero-inflated coefficients to be estimated. The function F

that relates the product z0
i 
 (which is a scalar) to the probability 'i is called the zero-inflated link function, and it can be

specified as either the logistic function or the standard normal cumulative distribution function (the probit function).

To estimate a zero-inflated model with the COUNTREG procedure, use the ZEROMODEL statement with a dependent
variable (the same dependent variable as in the MODEL statement), a vector of covariate variables zi , and a link
function. The following statements demonstrate the use of the ZEROMODEL statement:

proc countreg data=a;
model ypoizim=x1 x2/dist=poisson;
zeromodel ypoizim ~ x3 /link=normal;

run;

The mean and variance of the zero-inflated Poisson model (ZIP) are:

E.yi jxi ; zi / D �i .1 � 'i /

V .yi jxi ; zi / D �i .1 � 'i /.1 C �i 'i /

The mean and variance of the zero-inflated negative binomial model (ZINB) are:

E.yi jxi ; zi / D �i .1 � 'i /

V .yi jxi ; zi / D �i .1 � 'i /.1 C �i .'i C ˛//

Both zero-inflated models demonstrate overdispersion: V.yi jxi ; zi / > E.yi jxi ; zi /.

SIMULATED EXAMPLE

In this section we generate four large (n D 10000) data sets from each of the Poisson, negative binomial, zero-inflated
Poisson (ZIP), and zero-inflated negative binomial (ZINB) distributions. Then we try to fit each of these data sets with
the four corresponding count regression models. The Poisson and negative binomial data sets are generated using the
same conditional mean:

�i D e1C0:3x1i C0:3x2i (2)

In addition, the negative binomial model further uses the parameter � D ˛ D 1. The zero-inflated models use 'i D

ƒ.2x3i / (the standard normal cumulative distribution function) for the zero-inflated link function, such that the probability
of fYi D yi jxi g is:

P.Yi D yi jxi ; zi / D

�
ƒ.
 0zi / C f1 � ƒ.
 0zi /gg.0jxi / if yi D 0

f1 � ƒ.
 0zi /gg.yi jxi / if yi > 0

where g.:/ is either a Poisson distribution (with conditional mean �i ) or a negative binomial distribution (with conditional
mean �i and parameter � D ˛ D 1).

The following algorithm summarizes our method:

1. Generate 10000 count observations each using distribution i D 1; 2; 3; 4.

2. Estimate each count data set i by using four models j D 1; 2; 3; 4.

3. Compare the outcomes of the estimation with the actual values.

The first step is achieved with the following statements:
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data a; /* generate the data */
call streaminit(1234);
do kk=1 to 10000;

x1 = rannor(1234);
x2 = rannor(1234);
x3 = rannor(1234);
theta = 1;
mu = exp(1 + .3*x1 + .3*x2);
parm1 = 1/(1+mu/theta);
yneg = rand(’NEGB’,parm1,theta);
ypoi = ranpoi(1234,mu);
pzero = cdf(’LOGISTIC’,x3*2);
if ranuni(1234)>pzero then do;

ynegzim = yneg;
ypoizim = ypoi;

end;
else do;

ynegzim = 0;
ypoizim = 0;

end;
y=ynegzim;
output ;

end ;
run;

The second step involves four estimation procedures for each of the four different dependent variables. We focus on
two cases in detail. Our goal is to demonstrate how a fitted zero-inflated negative binomial model performs in the
presence of model misspecification. In Case 1, a zero-inflated negative binomial model is fit to the data generated
by the zero-inflated negative binomial distribution (dependent variable ynegzim). In Case 2, a zero-inflated negative
binomial model is fit to the data generated by the plain negative binomial distribution (dependent variable yneg).

/*** Case 1 ***/
proc countreg data=a;

model ynegzim=x1 x2 / dist=zinb method=qn;
zeromodel ynegzim ~ x3;
ods output ParameterEstimates=pe;

run;

/*** Case 2 ***/
proc countreg data=a;

model yneg=x1 x2 / dist=zinb method=qn;
zeromodel yneg ~ x3;
ods output ParameterEstimates=pe;

run;

Figure 1 shows the output from Case 1, and Figure 2 shows the output from Case 2.

Figure 1 PROC COUNTREG Results for ZINB Estimation (True Model is ZINB)

The COUNTREG Procedure

Model Fit Summary

Dependent Variable ynegzim
Number of Observations 10000
Data Set WORK.A
Model ZINB
ZI Link Function Logistic
Log Likelihood -13144
Maximum Absolute Gradient 0.0004233
Number of Iterations 27
Optimization Method Quasi-Newton
AIC 26301
SBC 26344
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Figure 1 continued

Parameter Estimates

Standard Approx
Parameter DF Estimate Error t Value Pr > |t|

Intercept 1 1.026066 0.022038 46.56 <.0001
x1 1 0.279170 0.017555 15.90 <.0001
x2 1 0.266697 0.017215 15.49 <.0001
Inf_Intercept 1 0.046080 0.052786 0.87 0.3827
Inf_x3 1 1.989918 0.069677 28.56 <.0001
_Alpha 1 0.991183 0.049308 20.10 <.0001

Figure 2 PROC COUNTREG Results for ZINB Estimation (True Model is NB)

The COUNTREG Procedure

Model Fit Summary

Dependent Variable yneg
Number of Observations 10000
Data Set WORK.A
Model ZINB
ZI Link Function Logistic
Log Likelihood -21659
Maximum Absolute Gradient 0.0006253
Number of Iterations 35
Optimization Method Quasi-Newton
AIC 43331
SBC 43374

Parameter Estimates

Standard Approx
Parameter DF Estimate Error t Value Pr > |t|

Intercept 1 1.005908 0.017418 57.75 <.0001
x1 1 0.293607 0.011888 24.70 <.0001
x2 1 0.284540 0.011864 23.98 <.0001
Inf_Intercept 1 -4.354450 1.008171 -4.32 <.0001
Inf_x3 1 0.227890 0.325382 0.70 0.4837
_Alpha 1 0.995485 0.041769 23.83 <.0001

The main difference between the two estimations is the value of Inf_Intercept. When this variable is statistically significant
and significantly negative, it is a strong sign that a negative binomial specification is preferred to the zero-inflated
negative binomial.

In addition, the negative binomial model (respectively, the zero-inflated negative binomial model) has a built-in test
for whether the underlying data are Poisson (respectively, zero-inflated Poisson). Recall that the Poisson distribution
possesses the property of equal dispersion (the mean is equal to the variance). When fitting a negative binomial model
(respectively, a ZINB model), a test of whether _Alpha is significantly different from zero is a way to evaluate whether
the true specification is Poisson (respectively, zero-inflated Poisson).

In Case 1, we can reject the zero-inflated Poisson model, because _Alpha is significantly different from zero (_Alpha
D 0:991 with p-value < 0:0001). In Case 2, we also reject the zero-inflated Poisson model (_Alpha D 0:995 with p-value
< 0:0001).

To accurately test whether the data used in Case 2 (dependent variable yneg, generated by the negative binomial)
is Poisson, we must test it against the negative binomial model, not against the zero-inflated negative binomial. The
statements below present Case 3, in which a negative binomial model is now fitted to the data used in Case 2 (that is,
the model is now correctly specified). Figure 3 shows the output from Case 3.

/*** Case 3 ***/
proc countreg data=a;

model yneg=x1 x2 / dist=negbin(p=2) method=qn;
ods output ParameterEstimates=pe;

run;
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Figure 3 presents the estimation results.

Figure 3 PROC COUNTREG Results for NB Estimation (True Model is NB)

The COUNTREG Procedure

Model Fit Summary

Dependent Variable yneg
Number of Observations 10000
Data Set WORK.A
Model NegBin
Log Likelihood -21660
Maximum Absolute Gradient 0.0005555
Number of Iterations 13
Optimization Method Quasi-Newton
AIC 43328
SBC 43357

Parameter Estimates

Standard Approx
Parameter DF Estimate Error t Value Pr > |t|

Intercept 1 0.992781 0.011971 82.93 <.0001
x1 1 0.293645 0.011938 24.60 <.0001
x2 1 0.284071 0.011901 23.87 <.0001
_Alpha 1 1.032787 0.022156 46.61 <.0001

The results demonstrate that we can indeed reject the hypothesis that the process is Poisson, since _Alpha D 1:033

with p-value< 0:0001, and thus the variance of the process is larger than the mean. The graph in Figure 4 shows that
the zero-inflated negative binomial model (NegBinZIM) describes the empirical probability distribution very well, even
though they are not nested. The key to understanding this behavior lies in the intercept value of the zero-inflated part.
A relatively large negative constant shows that the zero-inflated part is quite small and that the zero-inflated negative
binomial model is observationally equivalent to the negative binomial model.

We turn now to the last step of the algorithm. One of the most popular approaches for comparing the performance
of different models is to compare the sample probability distribution of the data to the average probability distributions
predicted using the estimated models (Long 1997, p. 223)—that is, we have to compare Pr.Y D yi /

Pr.Y D m/ D
1

N

NX
kD1

I.yk � m/

I.yk � m/ D

�
1 if yk D m

0 otherwise

(3)

with the average probabilities implied by the estimated models

cPr.Y D m/ D
1

N

NX
kD1

cPr.yk D mjxk/ (4)

Equations 3 and 4 can be evaluated in the following way. After fitting the data with each model, the PROBCOUNTS
macro computes the probability that yi is equal to m, where m is a value in a list of nonnegative integers specified in the
COUNTS= option. The computations require the parameter estimates of the fitted model. These are saved using the
ODS OUTPUT statement and passed to the PROBCOUNTS macro by using the INMODEL= option, as shown in the
following statements. Variables containing the probabilities are created with names that begin with the PREFIX= string
followed by the COUNTS= values and are saved in the OUT= data set. For the Poisson model, the variables poi0, poi1,
: : :, poi10 are created and saved in the data set predpoi, which also contains all of the variables in the DATA= data
set. The PROBCOUNTS macro is available from the Samples section at http://support.sas.com. The following
statements compute the estimates for the four models and construct average probability distributions.
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proc countreg data=a;
model y=x1 x2 / dist=zip;
zeromodel y ~ x3;
ods output ParameterEstimates=pe;

run;

%probcounts(data=prednb,
inmodel=pe,
counts=0 to 20,
prefix=zip, out=predzip)

proc countreg data=a;
model y=x1 x2 / dist=zinb method=qn;
zeromodel y ~ x3;
ods output ParameterEstimates=pe;

run;

%probcounts(data=predzip,
inmodel=pe,
counts=0 to 20,
prefix=zinb, out=predzinb)

proc summary data=predzinb;
var poi0-poi8 nb0-nb8 zip0-zip8 zinb0-zinb8;
output out=mnpoi mean(poi0-poi8) =mn0-mn8;
output out=mnnb mean(nb0-nb8) =mn0-mn8;
output out=mnzip mean(zip0-zip8) =mn0-mn8;
output out=mnzinb mean(zinb0-zinb8)=mn0-mn8;

run;

data means;
set mnpoi mnnb mnzip mnzinb;
drop _type_ _freq_;

run;

proc transpose data=means out=tmeans;
run;

The summarized results of the third step are shown in Figure 4 and Figure 5. Figure 4 shows the averages of the
estimated probability distributions (blue and red lines) in addition to the empirical probability distribution for the four
different data generation processes. Figure 5 presents the differences between the estimated (Equation 4) and the
empirical (Equation 3) probability distributions. Since the sample is reasonably large (n D 10000), we conclude that the
empirical distributions are “close enough” to the population distributions. The same is true for the estimated models.

Each figure contains four subplots. Each subplot corresponds to the estimation of the different data generation pro-
cesses. The first row shows the estimation results for Poisson and zero-inflated Poisson (PoissonZIM) data, and the
second row shows the same for the negative binomial (NegBin) and zero-inflated negative binomial (NegBinZIM) data.
The results are easy to interpret. The first subplot shows how well Poisson data can be predicted using the count mod-
els we consider. It can be concluded that these models capture the features of Poisson data equally well. Analytically, it
is straightforward to show that the Poisson model is a special case of the negative binomial model and the zero-inflated
Poisson model is a special case of the zero-inflated negative binomial model.

In contrast, it is not possible to transform a zero-inflated Poisson model (respectively, a zero-inflated negative binomial
model) to a plain Poisson (respectively, to a plain negative binomial model) by using any finite vector of coefficients
(Greene 1994). The reasoning is the following: in order to reduce a zero-inflated model to its non-zero-inflated coun-
terpart, it is necessary to have a cumulative distribution function F.z0

i 
/ D 0. Since both the logistic and the standard
normal cumulative distribution functions are strictly increasing and defined on the entire real line, F.z0

i 
/ D 0 if and
only if z0

i 
 D �1. However, as long as the vector of variables zi contains an intercept or there is a linear combination
of variables that is strictly negative or strictly positive, then 
 can be chosen in a way that for all practical purposes
ˆ.ı0

i 
/ D 0. The regression results shown in Figure 2 support this assertion. The data generation process in this case
is negative binomial, while the estimation model is zero-inflated negative binomial. They are not nested. However, in
Figure 4 they demonstrate observationally equivalent behavior. This feature occurs because the zero-inflated intercept
is quite negative (Inf_InterceptD �4:355) and thus F (Inf_Intercept+Inf_x3 x3i ) is sufficiently close to zero.

Finally, we summarize the performance of each of the four fitted models when fitted to each of the four types of
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generated data:

� The data generated by the Poisson distribution can be predicted equally well by each of the four models that we
consider.

� The data generated by the zero-inflated Poisson can be predicted most accurately using either a zero-inflated
Poisson or a zero-inflated negative binomial model. The negative binomial model performs next best. The
Poisson model fares the worst: it significantly underpredicts the number of zeros and overpredicts the number of
ones.

� The data generated by the negative binomial process can be predicted equally well by either a negative binomial
or a zero-inflated negative binomial model. These models are followed by the zero-inflated Poisson and the
Poisson.

� The data generated by the zero-inflated negative binomial model can be predicted best by a zero-inflated negative
binomial, followed by a negative binomial, a zero-inflated Poisson, and a Poisson.

Notice that the Poisson model provides the worst fit in all cases other than in the case of Poisson-generated data. Thus,
a Poisson model should be used only in cases where there is strong evidence that it is the correct specification. As
long as data sample is reasonably large, a slight loss of efficiency is, on average, more preferable compared to model
misspecification.
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Figure 4 Relative Performance of Different Models, Average Probability Distribution over the Sample
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Figure 5 Relative Performance of Different Models, Deviations from the Empirical Probability Distribution

CONCLUSION

This paper studies the performance of different count models on a simulated example. The results demonstrate that
among the count models we consider, in many cases a Poisson model tends to be overly restrictive. If model specifi-
cation is unknown, it is safer to start from more general model (for example, zero inflated negative binomial) and then
test whether this model specification can be reduced to more restrictive ones.
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