Paper 260-2008

Revisiting DDE: An Updated Macro for Exporting SAS® Data into
Custom-Formatted Excel® Spreadsheets

Part Il - Programming Details

Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA

ABSTRACT

There are a number of ways to export data from SAS® into Microsoft® Excel®. However, very few allow for exporting into
custom-formatted spreadsheets such as those demanded for specific reports, in which explicit attributes such as font sizes and
column widths are required. Traditionally, Dynamic Data Exchange (DDE) was the only way to do this. Now there are newer
methods for this which are considered superior, and DDE is thought to be obsolete. Part | (“Usage and Examples”) argues that
DDE is in fact far from obsolete, that it outperforms the newer methods in some cases that often arise in practice. Furthermore,
Parts | and Il offer an accessible, flexible and modifiable macro which exports data from SAS into custom-formatted Excel using
DDE. The macro extends the functionality of a previously published macro and addresses some criticisms of DDE in general.
Using this macro requires no knowledge of DDE programming and thus brings the full power of DDE to any PC SAS user. Part
| (“Usage and Examples”) describes the usage and provides examples, while Part Il (“Programming Details”) explains some
details of the macro program itself. This macro should work on all versions of PC Base SAS, Windows, and Excel.

Keywords: DDE, Excel, Export, X4ML.

This paper is an excerpﬂ from |Derby| (2007), which may be updated and can be downloaded for more information.

INTRODUCTION

This paper is intended for advanced users who wish to understand and/or modify the $exportToXL code described in Part
| of this paper. Any PC SAS user with moderate programming skills should have no problems using $exportToXL without
learning these details.

This macro is based on Vyverman’s (2000) macro $sastox1, but with added functionality (e.g., allowing for template sheets)
and more robustness (e.g., not crashing when the input data set is empty or nonexistent). As such, this macro’s structure is
similar to that of $sastox1, but with one important difference: Following suggestions of|Watts| (2005), it is broken up into a set
of smaller macros. This makes it easier to understand and modify various components of the code.

As explained in Part | of this paper, the code itself is found in the downloaded exportToXL directory, where there are many SAS
files. The main file, exportToXL. sas, is shown in Figureﬁ} Following conventional use, each macro is defined in the SAS
program file of the same name —e.g., $setVariables is defined in setvVariables.sas. Some of these macros use other
macros. Each macro code is liberally supplied with commented explanations of what is happening, which covers more than
what is explained in this paper — The interested reader should refer to the macros themselves for more information. Here we
just present a summary of some of the main ideas behind each macro program.

The parameters in Figure [T] are explained in Part | of this paper. The variables local to $exportToxL are all used in the
various component macros — most notably, in $setvariables, as explained below. smisspar and smissparextmpl are
0-1 variables set to 1 only if there are errors in the inputs (e.g., the input SAS data set does not exist), thus causing SAS to go
to $mguit and bypass the main parts. Various details about each macro are detailed below.

%$info

This contains only commented instructions on the use of $exportToXL, analogous to those in the header of $sas2x1. This
macro is completely optional, as it has no effect on the rest of the code.

"Reprinted with permission of the author.

SAS Global Forum 2008 Reporting and Information Visualization

$MACRO exportToXL(libin = work, tmplsheet = , statvars = ,
dsin = , deletetmplsheet = no, weightvar = ,
celllrow = 1, savepath = c:\temp, mergeacross = 1
celllcol =1, savename = exportToXL Output, mergedown = 1,
nrows = , sheet = , exporttmplifempty = no,
ncols = , wsformat = default, exportheaders = yes,
tmplpath = , lang = en, exportvarfmts = yes,
tmplname = , sumvars = , endclose = yes) ;

$LOCAL misspar missparexptmpl cnotes csource csource2 cmlogic csymbolg cmprint tab ulrowlab ulcollab
lrrowlab lrcollab ulrowdat ulcoldat lrrowdat lrcoldat ulrowstat ulcolstat lrrowstat lrcolstat lrecl
types vars i1 colind closeExcel weightvar crash maxmrow printHeaders macrosheet sasnote saswarning
saserror c r alignment appactivate appmaximize average border clear columnwidth copy editcolor error
false fileclose filter fontproperties formatfont formatnumber formulareplace freezepanes getdocument
getworkbook halt max median min new open pastespecial patterns percentile quit rowheight run saveas
select selection sendkeys sendkeycmd setname setvalue sheetname sum sumproduct true windowmaximize
workbookactivate workbookcopy workbookdelete workbookinsert workbookmove workbookname workbooknext;

%$info;
%% Gives basic information about how to use EXPORTTOXL. ;

$setVariables;
%+ Initializes many of the local macro variables listed above. ;

$checkParms;
%* Checks the parameters. ;

$IF &misspar S$THEN $GOTO mquit;

%$openDDE;

%+ Opens Excel and sets up a DDE dialogue with it. ;
%$setTemplate;

%+ Sets up the template and gathers information about it. ;

$IF &missparexptmpl $THEN $GOTO mquit;

%$inputData;
%% Pours the data in. ;

$IF &wsformat NE none %THEN %$format_&wsformat;

%+ Formats the Excel worksheet if formatting is desired. ;
Smquit:
%$closeDDE;

$+x Closes the file and the DDE connection. ;

$MEND exportToXL;

Figure 1: The $export ToXL macro. Semicolons are included after each macro call for debugging purposes (i.e., each macro
can be commented out via a preceding %x).

$setVariables

Here most of the macro variables local to $export ToXL are initialized — most notably, the translations of the X4ML commands
into the native language of the Excel application. SAS uses these commands to tell Excel what to do, as explained in|Vyverman
(2000, 20011, [2002) and |Watts| (2004, [2005). These commands are fully detailed in a help file from Microsoft, Macrofun.hlp,
which can be downloaded from this project’s website at http://exporttoxl.sourceforge.net| or from Microsoft at
http://www.microsoft.com/ learninJﬂ However, these only work for the English version of Excel —if Excel is in another
language, the X4ML commands in that language are needed. For example, the English Excel cell formula “=suM (A1:2A5)”
would need to be “=SUMME (A1 :2A5)” for the German version of Excel.

Sexport ToXL gets around this language problem by issuing each X4ML command as a macro variable, defined in $1ang_xx,
where xx is the language code. For example, for English (¥1ang_en) and German ($1ang_de) we have

2Search for and run the file Macrofun.exe.

http://exporttoxl.sourceforge.net
http://www.microsoft.com/learning

$MACRO lang_en $MACRO lang_de;

$LET ¢ = c; $LET ¢ = s;
$LET r = r; SLET r = z;
$SLET appactivate = app.activate; $LET appactivate = anw.aktivieren;
$LET appmaximize = app.maximize; $LET appmaximize = anw.vollbild;
SLET average = average; $LET average = mittelwert;
$LET border = border; $LET border = rahmenart;

$MEND lang_en; $MEND lang_de;

Later in the $exportToXL code, when we want to use an X4ML command such as app.maximize (which maximizes the
application window), instead of using it directly, we use sappmaximize and thus provide the appropriate translation from
within $1ang_xx. Doing this for each X4ML command allows an easy switch from one Excel native language to another, or to
add another language not currently supported.

For good measure, we also assume that the SAS installation is in the same language as the Excel installation and translate
the SAS log keywords NOTE, WARNING and ERROR, respectively stored as ssasnote, &saswarning and ssaserror.
These will be used for the notes, warning and error log notes generated by $export ToXL.

$setVariables chooses the appropriate language (defined by s«1ang) by cycling through the list of available languages:

$LET langs = da de en es fi fr it nl no pt ru sv;

%+ The available languages. ;
SLET i1 = 1;
$LET nullid = ;

%$DO SUNTIL(%scan(&langs, &ii) = &nullid);

$IF $SCAN(&langs, &ii) = &lang AND $SYSFUNC(FILEEXIST(&exroot\lang_s&lang..sas)) = $THEN %DO;
%+ Double check to make sure the language file exists. ;
$lang_⟨
%$GOTO quit;
SEND;

SLET ii = SEVAL(&ii + 1);

SEND;

$PUT &saserror: The language code chosen for the Excel application, &lang, is not supported!;
$LET misspar = 1;

Squit:
An error message appears if a language is chosen for which there is no translation file available. A few further notes:

e While most X4ML commands need to be translated, some of them (like QUIT) appear to work untranslated in at least
two languages (English and German). To be safe, translations are provided for all commands.

e The code listed here has only been tested for English and German versions of Excel — for any other language, the input
may have been misspelled, which would cause it to fail. The macro $1ang_xx would be the place to rectify this.

e In particular, one X4ML commancﬂ was not listed in the Excel translation file, so it is a guess at this time for languages
other than English and German. If the reader is using this with another supported native Excel language (i.e., Danish,
Dutch, Finnish, French, ltalian, Norwegian, Portuguese, Russian, Spanish, or Swedish), please contact the author about
this.

e Any user who wishes to add another language or more X4ML commands would do so here — see|Derby|(2007) for details.

$checkParms

Basic parameter checks are performed here. The macro variables smisspar and emissparexptmpl (localto $export ToXL)
are 0-1 variables, set to 1 within this macro if there are problems with the 1ibin or dsin parameters:

e If smisspar is set to 1, the main code in Figure] skips to $mquit after $checkParms, so that nothing is exported.
e If smissparexptmpl is set to 1, the main code skips to $mquit after $setTemplate, so that only the template sheet
(without any data places into it) is exported.

Which of the two is chosen is determined by the value of sexporttmplifempty, explained in Part | of this paper:

e If either 1ibin or dsin is not given, misspar is set to 1 and nothing is exported. This is done regardless of the value
of cexporttmplifempty — if we don’t even have the names of the library or data set, we shouldn’t go any further. In
practice, since the default value of 1ibin is work, this only occurs if dsin is not given.

3sendkeycmd — not actually an X4ML command, but rather the key commands to merge cells: ALT+O — E — A — ALT+M — RETURN in English. Since the
early versions of Excel did not allow for merging cells, X4ML does not have a command for this. This is a way to work around this limitation.

e If both 1ibin and dsin are given but the data set is empty or nonexistent, smissparexptmpl is set to 1 and the
template will be exported if exporttmplifempty = 1. Otherwise, smisspar is set to 1 and nothing is outputted.

Further parameter checks include the following:

e Ifcelllrowor celllcol is not given, the missing values are each assigned to their default values of 1.
e If savepath or tmplpath has a backslash at the end, the backslash is deleted (required for the rest of the code).
e |f savepath or savename is not given, the missing value is assigned to its default values.

e Thevalues of endclose or exportheaders are translated to the 0-1 macro variables scloseExcel and sprintHeaders,
both local to $export ToXL.

e If nrows or ncols is either not given or larger than the actual number of rows or columns of the data set, it is set to the
actual numbers of rows/columns.

e If either of tmplpath or tmplname is not given or nonexistent, a standard template is used.

Note that we translate the parameters endclose and exportheaders into 0-1 macro variables. We do this for robustness
and flexibility — so that we allow endclose and exportheaders to take on values such as “true”, “1” or “YES’E]:

%$IF %among($UPCASE (%$SUBSTR(&endclose, 1, 1)), Y T 1) STHEN %LET closeExcel = 1;
%$IF %among(%UPCASE($SUBSTR(&exportheaders, 1, 1)), Y T 1) %THEN %LET printHeaders = 1;

Lastly, in this macro many SAS system options (e.g., NOTES, SOURCE, SYMBOLGEN) are turned off, to minimize the amount of
extraneous information shown in the log.

%$openDDE

This is where a DDE dialogue with Excel is established, using the method introduced by |Roper| (2000), described by |Vyverman
(2001},2002) and used by |Watts| (2005).

$setTemplate

This is where the template is set up — the target workbook and worksheet that the data is to be poured into. This involves
collecting information about the target workbook (e.g., the names of the existing worksheets), naming the template worksheet,
and setting up a DDE dialogue between SAS and this worksheet. This macro runs as follows:

1. If tmplpath and tmplname are given (and exist, as verified in $checkParms), we open it. Otherwise, we open a
standard workbook.

2. Save the above file (our template workbook) as savename, in the savepath directory.

3. A macro worksheet must be established to carry out the X4ML instructions. Specifically, at each group of steps, a set
of X4ML commands will be listed on this sheet, then executed. This worksheet will be named MacroN, where Macro is
in the language of the Excel application (e.g., Macro in English, Makro in German) and N is the lowest positive integer
not already used for the name of a macro worksheet. Rather than provide a translation of Macro in $1ang_xx, we can
simply look at the name of the worksheets before and after adding the macro worksheet, then look at the name of the
added worksheet, assigning it to the local macro variable smacrosheet. We do this following the method of |[Vyverman
(2003).

4. We move the macro sheet (smacrosheet) to the first position of the workbook, so that we will always know where it is.
This will be important in subsequent macros.

5. A DDE connection to the macro sheet is established.

6. To prepare for the actual writing of the data, some worksheet logic is implemented:

(a) If stmplname and stmplpath are both blank, this is a standard template with one worksheet, whose name can
be found via a PROC SQL statement.

i. If the sheet parameter is given, this worksheet is renamed.
ii. Otherwise, sheet equals to the name found in the PROC sQL statement.
(b) Otherwise the path and name of the template workbook are given and exists, so $1oadNames (described below) is

used to collect the names of the worksheets in it. If stmplsheet is given, we check to see if it exists among these
worksheets:

i. If the sheet parameter is left blank, we remember the names of the worksheets from before. Then we add
another worksheet and note its name (via $1oadNames and a PROC SQL statement, as above), dropping that
value into sheet.

4samong is a temporary replacement for the macro IN operator, which was introduced in SAS 9, disabled in SAS 9.1.3, and will be back in a future SAS release.
This code for $among is from|SAS Institute| (2006} p. A-10) and is included as an $export ToXL component macro.

7.

ii. Otherwise, the code checks to see if sheet already exists in the workbook. If it does not exist, we add a new
sheet and rename it as sheet. Otherwise, it exists, so there is no new sheet to create.
If the template sheet exists (checked above), we delete the new worksheet just created and copy the template worksheet
instead, renaming it sheet. If deletetmplsheet is indicated, the template worksheet is deleted (unless sheet has
the same value as tmplsheet, in which case we merely moved tmplsheet to the end of the workbook).

It may seem inefficient to use this process to incorporate a template sheet, but it always get the right value of sheet,
notably when it is not given and thus given the value of SheetN.

Note: One problem with $sas2x1 is that it will crash if the resulting Excel file name has a period in it (e.g., file.01.x1s).
This is avoided by adding the . x1s suffix explicitly in various parts of the code, as in

ddecmd = "[&saveas ("|| "’ | |"&savepath" ||\’ | |"&savename"| | .x1s")]’;
PUT ddecmd;

rather than

ddecmd = "[&saveas (" || "’ | |"&savepath" ||\’ | |"&savename)]";
PUT ddecmd;

which works as long as there is not a period in the resulting file name. This is done wherever possible in various macros.

%$inputData

This is where $exportToxL pours the SAS data into our desired Excel workbook. It is the most important component macro,
as well as the most complex. This macro follows the following pseudocode:

1.

2.

o

10.

11.

We compute the number of rows to add to the range of cells where data will be exported. This is based on whether the
fields sumvars, statvars and weightvar are empty.

This range of cells is partitioned into rows corresponding to the headers, the data, and the sum/summary statistics. Each
of these partitions is given a range of cells. For instance, in Figure 2(d) of Part | of this paper, all partitions have columns
1-5. The header is row 1, the data is rows 2-20, and the sum/summary statistics are rows 21-29.

. Metadata for the variable formats and names are gathered on the input data set dsin from PROC CONTENTS output.

These are separated by spaces and put into local macro variables stypes (TYPE), & fmts (FORMAT), s fmt1s (FORMATL),
&fmtds (FORMATD), &vars (NAME), and slengs (LENGTH). For example, for sashelp.class, we have svars =
Name Sex Age Height Weight and ¢types = 1 1 2 2 1.

. We define the local macro variables s sumnumlist and &statnumlist to give the numbers (ordered, separated by

a space) of columns corresponding to columns of variables indicated by sumvars or statvars. For instance, if we
export sashelp.class with sumvars = Weight and statvars = Weight Height, we have &sumnumlist = 5
and &statnumlist = 4 5.

. If exportvarfmts is indicated, we format the cells before pouring data into them:

(a) We make the Excel formats from $makeExcelFormats (described below). This gives us a local macro variable,
&x1fmts, which contain the Excel version of the formats, separated by exclamation points (since that is a character
not used in any Excel format). If no format is listed, the entry is NONE. For instance, for sashelp.class, we have
&x1lfmts = @!Q@!NONE!NONE!NONE (since the numeric variables are unformatted).

(b) If printHeaders=1, we format the first row as text. Then we format the rest of the rows as the formats dictated by
&x1fmts (left unformatted if NONE).

We then define DDE links to the ranges of cells for the header, data, and summary data that we defined in step 2 above.
If sprintHeaders, we pour the variable labels into the first row, skipping columns and rows if mergeacross or
mergedown > 1. (The cells will be merged later — for now, they are merely skipped)

We use smakevVarList (explained in|Derby| (2007)) to make an array of variable names separated by an appropriate
number of tabs (as dictated by mergeacross — again, we skip them for now, to be merged later), resulting in svarlist.
Finally, we pour the data in, using svarlist. We make sure not to insert an extra space in any cell (which was a problem
with $sastoxl).

If sumvars or statvars is given, we export the formulas for sum/summary statistics:

(a) We first define the local macro variable swvarnum as the column number of the weight variable weightvar. For
example, if we set weightvar = Age for sashelp.class, we have swvarnum = 3. If none is found, an error
message shows in the SAS log, and weightvar is set to a blank.

(b) We write the sum and stat summary data, indexing through the variable number svarnum — if it equals a number
on &sumnumlist, we put in the formula. The same is done for s statnumlist.

Note that SAS outputs the row labels for the sum/summary data whenever sumvars or statvars is given, whether or
not these variables exist in the data set (e.g., the misspelling statvars = Waight for sashelp.class). Also, the
column indices starts at 2 — no sum/summary statistics can be shown for the first variable.

Lastly, we merge the cells, across and and down, using the s sendkeycmd.

Note that only those variables with a SAS format are formatted on the worksheet.

SAS format Excel format string Excel format name
$8. @ Text
8.2 0.00 Number, 2 decimal places
z28.2 00000.00 (none)
percent8.2 0.00% Percentage, 2 decimal places
mmddyyS8 . mm/dd/yy Date, type “03/14/01”
commal2.?2 #,##0.00 Number, 2 decimal places, with comma separator
dollarl2.2 | _(S$x #,##0.00°);-(Sx (#,##0.00);_($* —2?_);-(Q.) Accounting, 2 decimal places

Figure 2: A few SAS formats and their Excel equivalents.

$makeExcelFormats

Given a column number of the input SAS data set dsin, this macro makes the Excel version of the SAS format for the
corresponding variable. This Excel format will be used within $inputData to properly format the variable — so that each entry
of the resulting Excel worksheet will have roughly the same format as the corresponding entry of dsin.

Here, “Excel format” refers to the options available in the Number tab of Format — Cells within Excel. Each Excel format name
(i.e., the name under Category and the various options) has a corresponding format string, which can be found under the
Custom category. However, some Excel format strings do not have a corresponding name. Examples are shown in Figure [2]—
a more complete list can be found under Microsoft Excel XLS Files: ACCESS Procedure: XLS Specificsin
the SAS Help files (search for it).

Note that there is not a one-to-one relationship between SAS and Excel formats:

e The Excel format m/d/yy deletes leading zeroes for the month and day values, returning values like “9/4/07” and
“10/17/07". There is no standard SAS format for thig®l

e The dollarw.d SAS format has many matches in Excel:

— The Currency category places the dollar sign next to the number (like [$500]) and allows negative numbers to
be displayed with a negative sign, in red, in parentheses, or in red and in parentheses.

— The Accounting category places the dollar sign to the left of the cell (like [3 5.00]).
Overall, the user must pick and choose. For example, because of the author’s personal preference, the accounting Excel

format is used for the dol1larw.d SAS format — but any user can change this. See the [MAKING A NEwW VARIABLE FORMAT]
subsection for details. If no Excel format is found (or SAS provides no format), NONE is returned.

The outcome is the macro variable &«x1fmts, which is a string of formats separated by exclamation points. For example,
@!Q!'mm/dd/yy!#,##0.00!0.00% would indicate that the first two variables would be text, followed by a date, followed by
comma, followed by a percent. An exclamation point is used because (unlike a space) it is not used in any Excel formats.

One final note: Strictly speaking, the equivalent to the Excel accounting format is
(SH #,##0.00°) ; (S (#,##0.00);($*x "="272_);_(Q.)

rather than what is shown in the table (the difference being "-"2?2 rather than -2 ?), but then that would result in the X4ML
command

[format.number ("_($* #, ##0.00_) ; _(S* (#,##0.00);_(S$Sx "=-"22.);_(@_)") 1,

which gives an error because of the two sets of quotation marks. The solution here is a little different from the accounting
format, but gives the same result.

$format _&wsformat

Worksheet formats, as described in Part | of this paper, can be classified into two types:

e General: Can be applied to any SAS data set or Excel worksheet. No specific data set is accessed, and no specific
range of cells is called. Since it is general, the code file should be included in the same directory as the rest of the
$export ToXL macro files.

e Specific: Can be applied to one specific SAS data set or Excel worksheet. A specific data set or range of cells is involved,
and using it for another data set or worksheet would result in an error or unintended consequences. The code file should
be in a directory with other files pertaining to this specific project, rather than with the other $export ToXL macros.

SHowever, one can be created, as in PROC FORMAT; picture date8. (default=8) low-hight=‘%m/%d/%0y’ (datatype=date); RUN;
(suggested by SAS support).

SAS Global Forum 2008 Reporting and Information Visualization

There are nine kinds of general worksheet formats, as described in|Derby| (2007). The code should be relatively straightforward,
reflecting the modular structure of the X4ML commands. For example, the default format, $format_default, is defined as

o

Formats the Excel worksheet if formatting is desired.

o

o

FONT: MS Sans Serif, 8.5 pt

HEADER: Bold

COLUMN WIDTH: Best fit

ROW HEIGHT: 12.00 (The default for Excel)
FREEZE PANES

o

o oo
LR S

o

$MACRO format_default;

DATA _NULL_;
LENGTH ddecmd $200.;
FILE sas2xl;
PUT "[&error (&false)]";

ddecmd = "[&workbookactivate (" || "’ ||"&sheet" || "' ||",&false)]";
PUT ddecmd;
ddecmd = "[&select ("|| " ||"&r&ulrowlab&c&ulcollab:&r&lrrowstat&c&lrcolstat™ || Y")]1’;
PUT ddecmd;
ddecmd = "[&formatfont"|| ‘("MS Sans Serif"’ ||",8.5,&false,&false,&false, &false,0,&false,&false)]";
PUT ddecmd;
ddecmd = "[&select ("|| 'Y ||"&r&ulrowlab&c&ulcollab:&r&lrrowlab&c&lrcollab" || Y")]’ ;
PUT ddecmd;
ddecmd = "[&formatfont" || ‘("MS Sans Serif"’ ||",8.5,&true,&false,&false, &false,0,&false, &false)]™;
PUT ddecmd;
ddecmd = "[&columnwidth(0," || "’ ||"&c&ulcollab:&c&lrcollab" || " ||",&false,3)]1";
PUT ddecmd;
ddecmd = "[&rowheight (12.75," || ‘"’ ||"&r&ulrowdat:&r&lrrowstat" || "' ||",&false)]";
PUT ddecmd;
ddecmd = "[&freezepanes (&true,"||SEVAL (&celllcol+&mergeacross—1) | |"," | |%EVAL (&celllrow+&mergedown-1) [[")]";
PUT ddecmd;
RUN;

$MEND format_default;

Each DDE command (ddecmd) is made indirectly, accessing the translation from the $setvariables macro, using the macro
variable defined in one of the language macros (%1ang-xx). This allows SAS to translate the commands to that of the Excel
application — if, e.g., row.height were used rather than s rowheight, this would not work in a non-English Excel installation.
Details are explained in the [¥setVariables|subsection.

The macros for the other general worksheet formats are a variation of this, and all have the same summary note at the top.

Specific worksheet formats may or may not have a different structure from the above code. As an example, the code for the
color worksheet format of Example 5°, found in the Macros directory for that example, is as follows:

$MACRO format_color;
$LOCAL colnum name;

$LET name = $SYSFUNC(LOWCASE (&sheet));
$IF %$SYSFUNC(EXIST(&name.stats)) = $THEN %GOTO endhere;

DATA _NULL_;

set &name.stats;

IF agec = ‘OVERALL’ THEN CALL SYMPUT(‘colnum’, TRIM(LEFT(ROUND((meanh - 55.5) / 2) + 2)));
RUN;

DATA _NULL_;
LENGTH ddecmd $200.;
FILE sas2xl;
PUT "[&error (&false)]";

ddecmd = "[&workbookactivate ("||*"’ | |"&sheet" || "' | |", &false)]";
PUT ddecmd;
ddecmd = "[&select ("|| ‘" ||"&r.5&c.&colnum" || *")]";

PUT ddecmd;

PUT "[&patterns(1,0,1)1";

PUT "[&fontproperties(,,,rrrrrs2)1";
RUN;

%$endhere:

$MEND format_color;

8This is similar to the colorl and color2 worksheet formats of Example 4 of Part | of this paper.

Like the default worksheet format, all X4ML commands are issued indirectly via a translation, but now we have a specific
data set and worksheet range:

e Specific data set: The sname.stats is a specific SAS data set that is being accessed. In this case, we first check to
see if this data set exists, and if so, extracts a specific value from it — the variable meanh from the observation where
agec=0VERALL. If this data set does not exist, SAS skips to the endhere entry and no worksheet formatting is done.

e Specific range: Assuming the sname. stats data set exists, we are working with the fifth row, as shown in the sixth line
of the DATA _NULL. statement. This macro is thus designed for a worksheet with something special in the fifth row (i.e.,
the bar shown at the top of each worksheet in Figure 6 of Part | of this paper), and wouldn’t work for another worksheet.

For either reason above, this is a specific (rather than generalized) worksheet format.

Note that this macro is designed to not give any errors — if the data set sname.stats does not exist, the formatting code is
skipped completely. No error is given if a different template is chosen — but most likely it would be inappropriate for a certain
cell in the fifth row to be colored black.

%$closeDDE

This closes the DDE connection, as well as Excel itself if endclose is indicated.

MAKING MODIFICATIONS

Through the use of macro components such as $wsformat_xxx and $lang_xx, $exportToXL can easily be modified to
accommodate new worksheet formats, languages, and Excel formats. Here we present only a couple aspects of making
modifications — for more information, see |Derby| (2007).

MAKING A NEW WORKSHEET FORMAT

As explained in Part | of this paper, the worksheet format refers to anything involved with changing the appearance of the
resulting worksheet — e.g., changing a font, adding colors to some cells, or adding a pivot table.

One of the features of $export ToXL is that making a new worksheet format is actually quite simple. First of all, for a worksheet
format that is equivalent to the default one but with just a couple changes (say, without the frozen panes and with a row
height of 12.00), all that is needed is to modify the format_default.sas code (including the header) appropriately. For
consistency, rather than change the code directly, it would be better to leave that file as is and to name the modified format as
something else, such as format_default_rh12.00nofp.sas.

For an entirely new format, called xxx, create the SAS code file format_xxx.sas, to be saved in either the same directory
as the other $exportToXL macros (for a general worksheet formaﬂ) or in the corresponding project-specific directory (for a
specific one). The code in this file should have the following structure:

$MACRO format_xxx;

DATA _NULL_;
LENGTH ddecmd $200.;
FILE sas2xl;

RUN;
$MEND format_xxx;

The body of the above macro will contain the X4ML commands. Some of them just need to be quotes — e.g., the command
[error (false)] is entered into the macro sheet if the line PUT " [serrorsfalse)]"; is entered into the macro above.

However, most X4ML commands have an argument that must be enclosed in double quotes. For example, [select ("r5c6")]
is the X4ML command to select the cell in the fifth row, 6th column. This cannot be entered in as PUT " ["&r.5&c.6"]1";
because of the two sets of double quotes. The solution is to resolve it via concatenation operators (| |) with ddecmcﬂ:

ddecmd = "[&select ("|| ‘"' ||"&r.5&c.&colnum"||*")]1";
PUT ddecmd;

When writing new worksheet formats, it is not necessary to use the macro variables representing the translations if the macro
in question is always going to be used with Excel in one language. For example, it is perfectly acceptable to use the command
put "[error (false)]" above rather than PUT "[serror (&false)]" if the worksheet format macro is always going to

"The two types of worksheet formats, general and specific, are explained in thesubsection.

8Watts| (2004, [2005) has an alternative way of doing this, using $unquote and $bquote.

be used with the English version of Excel. However, if a new worksheet format is intended to be multilingual, a translation
of each X4ML command must be found within each translation macro ($1ang_xx). Although the translation macros included
here include many of the most popular X4ML commands, translations of new commands may be required. In that case, the file
Excel Functions Translated.xls should be used.

MAKING A NEW VARIABLE FORMAT

Making a new variable format, or changing an existing one (since there is not a one-to-one relationship between SAS and
Excel formats, as discussed in the [$makeExcelFormats|subsection) follows the following process:

1. Determine the Excel format string for the desired SAS format. One way to do this is to find it in the menu of Excel formats
and then click on Custom, thus showing the code of what was just entered. Another source of information is under
Microsoft Excel XLS Files: ACCESS Procedure: XLS Specifics inthe SAS Help files (search for it).

2. Determine how to build this format stringf] using stypes, &lengs, &fmts, sfmt1ls and s fmtds, as explained in step 3
of the[sinputDatalsubsection.

3. Using step 2 above, add or modify code in $makeExcelFormats that maps onto this format string from stypes,
&lengs, &fmts, &fmtls and s« fmtds.

Steps 2 and 3 above may be made easier by looking at the existing code for $makeExcelFormats.

CONCLUSIONS

Currently (1/29/08), it is not known whether $exportToXL will be further developed — it will depend on user interest, as well
as time and energy of either the author or other developers. There are ideas for further development, such as implementing
customized graphical output, components for Excel formulas, and compatibility with OpenOffice.org Calc — further details are
documented in |Derby| (2007). For updates, see the project website listed under[CONTACT INFORMATION]

REFERENCES

Derby, N. (2007), User’s guide to $exportToXL, version 1.0.
http://exporttoxl.sourceforge.net/docs/exporttoxlvl.0-ug-cur.pdf

Roper, C. A. (2000), Intelligently launching Microsoft Excel from SAS, using SCL functions ported to Base SAS, Proceedings
of the Twenty-Fifth SAS Users Group International Conference, paper 97-25.
http://www2.sas.com/proceedings/sugi25/25/cc/25p097.pdf

SAS Institute (2006), SAS Macro Programming: Advanced Topics, SAS Institute, Inc., Cary, NC.

Vyverman, K. (2000), Using dynamic data exchange to pour SAS data into Microsoft Excel, Proceedings of the Eighteenth
SAS European Users Group International Conference.
http://www.sas—consultant.com/professional/SEUGI18-Using-DDE-to-Pour-S.pdf

Vyverman, K. (2001), Using dynamic data exchange to export your SAS data to MS Excel - Against all ODS, Part |, Proceedings
of the Twenty-Sixth SAS Users Group International Conference, paper 011-26.
http://www2.sas.com/proceedings/sugi26/p011-26.pdf

Vyverman, K. (2002), Creating custom Excel workbooks from Base SAS with Dynamic Data Exchange: A complete
walkthrough, Proceedings of the Twenty-Seventh SAS Users Group International Conference, paper 190-27.
http://www2.sas.com/proceedings/sugi27/pl90-27.pdf

Vyverman, K. (2003), Excel exposed: Using Dynamic Data Exchange to extract metadata from MS Excel workbooks,
Proceedings of the Tenth Southeastern SAS Users Group Conference.
http://www8.sas.com/scholars/05/PREVIOUS/2001_200.4/2004_MOR/Proceed/_2003/Tutorials/
TUl5-Vyverman.pdf

Watts, P. (2004), Highlighting inconsistent record entries in Excel: Possible with SAS ODS, optimized in Microsoft DDE,
Proceedings of the Seventeenth Northeast SAS Users Group Conference.
http://www.nesug.info/Proceedings/nesug04/io0/1i001.pdf

Watts, P. (2005), Using single-purpose SAS macros to format Excel spreadsheets with DDE, Proceedings of the Thirtieth SAS
Users Group International Conference, paper 089-30.
http://www2.sas.com/proceedings/sugi30/089-30.pdf

Sor something very much like it, as in the Accounting format string as discussed in thel%makeExcelFormats subsection.

http://exporttoxl.sourceforge.net/docs/exporttoxlv1.0-ug-cur.pdf
http://www2.sas.com/proceedings/sugi25/25/cc/25p097.pdf
http://www.sas-consultant.com/professional/SEUGI18-Using-DDE-to-Pour-S.pdf
http://www2.sas.com/proceedings/sugi26/p011-26.pdf
http://www2.sas.com/proceedings/sugi27/p190-27.pdf
http://www8.sas.com/scholars/05/PREVIOUS/2001_200.4/2004_MOR/Proceed/_2003/Tutorials/TU15-Vyverman.pdf
http://www8.sas.com/scholars/05/PREVIOUS/2001_200.4/2004_MOR/Proceed/_2003/Tutorials/TU15-Vyverman.pdf
http://www.nesug.info/Proceedings/nesug04/io/io01.pdf
http://www2.sas.com/proceedings/sugi30/089-30.pdf

SAS Global Forum 2008 Reporting and Information Visualization

ACKNOWLEDGMENTS

| am deeply indebted to Koen Vyverman and Perry Watts for their earlier works on this subject — in particular, for Vyverman’s
work on $sastox1, which is the basis for $export ToxL. | merely filled in the details to their big ideas.

Furthermore, | thank many of the good people at SAS technical support, who kept me going when | got stuck — especially
Peter Ruzsa (who made me realize that X4ML commands are language-specific), Russ Tyndall (who helped me with macro
variables and made $makeExcelFormats functional) and Jennifer B (who answered my ODBC and OLE questions).

At SAS | also thank Eric Gebhart for checking my facts on the ExcelXP tagset, and Jim Simon for making my basic version of
$makeExcelFormats much cleaner.

I thank Ron Fehd for providing me with a IKTEX template for SAS conference papers (used here).
| thank whomever first composed the list of Excel function translations (original source unknown).

Lastly, and most importantly, | thank Charles for his patience and support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Nathaniel Derby

Statis Pro LLC

815 First Ave., Suite 287

Seattle, WA 98104-1404

206-973-2403
nderbyQusers.sourceforge.net
http://exporttoxl.sourceforge.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

http://exporttoxl.sourceforge.net

	2008 Table of Contents

