
1

Paper 251-2008

ColdFusion and SAS®: No Pain Meds Required
Carol Martell, UNC Highway Safety Research Center, Chapel Hill, NC

ABSTRACT
This paper describes a method of integrating dynamic SAS output into an Adobe ColdFusion application. The
SAS/IntrNet Application Dispatcher responds to a request from the ColdFusion server, and the results are displayed
in a ColdFusion page having the .cfm extension. The advantages to using this approach include isolating the SAS
programmer from the design aspects of Web development.

The technique requires that SAS/IntrNet Application Dispatcher be available with the accompanying SAS/IntrNet
Application Server, and that you have access to a ColdFusion Server. The paper does not address setting up or
configuring either Application Dispatcher or ColdFusion Server. The intended audience is Web application developers
with experience using Application Dispatcher and with the desire to stop using PUT statements for enhancing Web
design.

INTRODUCTION
The Web as we see it today is delivered to us through the use of a myriad of software applications. Information is
delivered, collected, combined, refined and generally bandied about in a most amazing way. The competition for our
attention as Web site visitors has created a new industry with new job titles containing the word ‘Web’. With evolving
Web site complexity, industry software tools evolved from basic HTML text editors to Web design packages that
insulate you from the actual markup language and Web designers evolved into Web developers. Static content
evolved to dynamic content, creating a demand for Web application servers. An early application server offering for
creating dynamic Web content, ColdFusion is no longer in its infancy and enjoys widespread use. This paper is
written for SAS/IntrNet Developers who find themselves in a work setting where ColdFusion is available.

WHY BOTHER?
What is the benefit of integrating SAS with ColdFusion? The code behind an attractive and interesting Web page can
be copious. Choosing ‘View Source’ from your favorite browser illustrates this point. In order for the results from a
SAS program called through the Application Dispatcher to conform to the design of a Web site, the copious design
code must somehow be included. While it is possible to write SAS code that will create the entire page as output, it is
no fun at all.
A common approach is to sandwich the SAS program between two null DATA steps. The first DATA step writes all the
window dressing code that must precede the SAS output, and the second DATA step writes the code that finishes
dressing the page. The actual program uses ODS HTML, with directives to omit HTML header and footer code.

DATA _NULL_;
FILE _WEBOUT;
- put statements for beginning of page -
RUN;
ODS HTML FILE=_WEBOUT(NO_TOP_MATTER NO_BOTTOM_MATTER);
- SAS procedure(s) -
ODS HTML CLOSE;
DATA _NULL_;
FILE _WEBOUT;
- put statements for end of page -
RUN;

Why is the above no fun? The copious window dressing code contains quotation marks – both double and single.
Consider this one anchor tag of Web page source code:

<a onmouseover="doit('men1','visible')" onMouseOut="doit('men1','hidden')"
href="javascript:void(0)">

The SAS PUT statements required to write the tag above follow, with each literal string on a separate line:
PUT ‘<a onmouseover="doit(’
 “'men1','visible'”
 ‘)" onMouseOut="doit(’
 “'men1','hidden'”
 ‘)" href="javascript:void(0)">’;

Alternatively, one can use two single quotes in a row to represent a single quote within the literal:
PUT ‘<a onmouseover="doit(‘‘men1‘‘,‘‘visible‘‘)"
 onMouseOut="doit(‘‘men1‘‘,‘‘hidden‘‘)" href="javascript:void(0)"> ’;

Reporting and Information VisualizationSAS Global Forum 2008

2

The first approach makes it easier to find the individual literal strings; the second more closely resembles the desired
result. Either one will make you go cross-eyed.
An alternative to writing literal strings is to place the desired code into two files, one to prepend, the other to append.
The SAS output can be sandwiched between these files using null DATA steps. The files are streamed to _WEBOUT
using INPUT and PUT _INFILE_:

DATA _NULL_;
FILE _WEBOUT;
INFILE ‘prependfile’ lrecl=xx;
INPUT;
PUT _INFILE_;
RUN;
ODS HTML FILE=_WEBOUT(NO_TOP_MATTER NO_BOTTOM_MATTER);
- SAS procedure(s) -
ODS HTML CLOSE;
DATA _NULL_;
FILE _WEBOUT;
INFILE ‘appendfile’ lrecl=yy;
INPUT;
PUT _INFILE_;
RUN;

Given the luxury of being able to modify the configuration file for the Application Broker, the sandwich effect can again
be achieved. The files can be attached to the output of every program executed by the Broker, or by a specific service
defined to the Broker by using one of the following pairs of configuration file directives:

PrependFile filepath
AppendFile filepath
ServicePrependFile filepath
ServiceAppendFile filepath

In addition to being difficult to code in the first place, the window dressings – the images, the thematic look, the layout,
even the navigational aspects – are often a moving target. Because development of the SAS program is often
concurrent with development of the entire Web site, window dressing changes can occur frequently, providing an
opportunity to again have no fun at all. By divorcing the SAS program from the window dressing, it is possible to avoid
rewriting the SAS program every time the look of the site is tweaked or a new navigational component is added.

SOLUTION
The solution offered here is to allow ColdFusion to have all the window dressing code and let SAS be responsible for
analyzing data or otherwise presenting information. ColdFusion uses customized markup tags to provide enhanced
functionality in a Web page. One of these tags, the <CFHTTP> tag, sends out an HTTP request and holds the
response as a variable. Normally, a request sent to a SAS Application Broker returns the results of a SAS program
directly to the browser window. When the same request is sent using the <CFHTTP> tag, those results are
intercepted by ColdFusion rather than being streamed directly to the browser window. The SAS results can then be
displayed in a ‘dressed’ browser window. The containing page is a ColdFusion page, which remains part of an overall
ColdFusion Application, a point which carries weight with ColdFusion development. As we will see, the SAS results
can also be intercepted and tweaked prior to display.
The examples that follow represent neither sophisticated SAS code nor sophisticated ColdFusion code. Few style
modifications are illustrated to enhance the combined application results. Because only SAS Version 8 Broker is
available to the author at the time of this writing, the style MINIMAL is used whenever ODS HTML is employed.
Version 9 of SAS provides many more style offerings that could prove useful when invoking SAS from ColdFusion.

CALLING SAS: THE <CFHTTP> TAG
This tag can have quite a few parameters, but the minimal set for these purposes would point to the SAS Application
Broker and specify a method. A closing tag is required:

<cfhttp method=”post” url = "server_and_broker_path">
</cfhttp>

PASSING PARAMETERS: THE <CFHTTPPARAM> TAG
One piece of information required by the Broker but missing from the <CFHTTP> tag above is the name of the
requested SAS program. Name/value pairs to submit with the <CFHTTP> tag must be supplied in <CFHTTPPARAM>
tags. Whenever name/value pairs are supplied, all the <CFHTTPPARAM> tags are nested between the opening and
closing <CFHTTP> tags, and the method specified in the <CFHTTP> tag must be POST :

<cfhttp method=”post” url = “http://myserver/cgi-bin/broker”>
 <cfhttpparam name=”_program” value=”mylib.mypgm.sas”>
 <cfhttpparam name=”anotherparm” value=”anotherval”>
</cfhttp>

Reporting and Information VisualizationSAS Global Forum 2008

3

DISPLAYING RESULTS: THE <CFOUTPUT> TAG
The <CFOUTPUT> tag is used to display results. Variable references are enclosed between # characters. The variable
reference must appear nested between opening and closing <CFOUTPUT> tags. The <CFHTTP> request returns
several variables; the SAS output is stored in the variable called cfhttp.FileContent. Variable references are
surrounded by ‘#’.

<cfoutput>
 #cfhttp.FileContent#
</cfoutput>

SIMPLE EXAMPLES
In Figure 1 we see a Web page, part of a larger ColdFusion application, that we will modify to include a menu of SAS
requests and to display the results of those requests. We wish to place the menu on the right, above “LATEST
NEWS,” and to display the results to the left of our menu in the beige area.

Figure 1 – Web page before modifications

The areas on this page are defined by <DIV> tags. The area on the left is in a div called “project-areas-inner” and the
area to the right is called “latest-news.” Here is the relevant original code in “project-areas-inner.”

<div id="project-areas-inner">
 <img src="images/project_areas_hdr.jpg" width="470" height="44" alt="HSRC Project
 Areas" />
 <p>For over 40 years…roadway crashes.</p>

 Alcohol Impairment
 .
 .
 Young Drivers

</div>

We remove the “HSRC PROJECT AREAS” menu and header image so that the beige area to the left can become the
target area for the SAS results.

<div id="project-areas-inner">
 <p> For over 40 years… roadway crashes.</p>
</div>

We insert a list of SAS requests before the “LATEST NEWS” on the right. For the sake of simplicity, each request will
refer to a separate page. Here is the original “latest-news” section:

<div id="latest-news">
 . . .(more code)
</div>

Reporting and Information VisualizationSAS Global Forum 2008

4

We add our menu at the top of the div section:
<div id="latest-news">
 <p>Choose one of the following to see embedded SAS results</p>

 Print
 Means
 Null Datastep
 htmSQL
 Form Example

 . . .(more code)
</div>

The page with our menu is seen in Figure 2.

Figure 2 – Web page modified to insert menu of SAS requests

Reporting and Information VisualizationSAS Global Forum 2008

5

EXAMPLE: PROC PRINT
The page SASrequestprint.cfm, shown in Figure 3, is loaded when the ‘Print’ link is chosen from the list of SAS
offerings. Figure 3 shows our first example of SAS output placed in a ColdFusion page. We will deal with the fact that
it is not attractive, but first we examine the SAS and ColdFusion code creating the page. Here is the SAS program
named SASrequestprint.sas and located in the program library defined to the Broker as ‘martell’:

ODS HTML FILE=_WEBOUT (NO_TOP_MATTER NO_BOTTOM_MATTER) STYLE=MINIMAL;
TITLE 'Print of Females in Sashelp.Class Table';
PROC PRINT DATA=SASHELP.CLASS; WHERE SEX=’F’; RUN;
ODS HTML CLOSE;

It may seem awkward to the SAS programmer that both the request and the results are in the same page. ColdFusion
both requests the PROC PRINT and displays the output of the PROC PRINT in one page. Two items must be added
to the ColdFusion page. One sends the request to the Broker and the other displays the program results.
Here is the new “project-areas-inner” div section:

<div id="project-areas-inner">
 <cfhttp url="http://mybroker/cgi-bin/broker" method="post">
 <cfhttpparam name="_program" value="martell.SASrequestprint.sas"
 type="formfield">
 </cfhttp>
 <cfoutput>
 #cfhttp.FileContent#
 </cfoutput>
</div>

Figure 3 – PROC PRINT selected from menu before output cleanup

Reporting and Information VisualizationSAS Global Forum 2008

6

EXAMPLE: MODIFYING RESULTS
Figure 3 is nice, but could use some cleanup. We remove the “Obs” column in SAS with the NOOBS parameter in
PROC PRINT. The lines are distracting; tweaking the HTML table style is more easily done from the ColdFusion side.
A ‘View Source’ reveals that SAS defines the table border and cell separators as follows:

<TABLE cellspacing=1 cellpadding=7 rules=all frame=Box border=3>
The horizontal rule and tag line after the procedure output are not appropriate here. The source code looks like this:

<HR>
<ADDRESS>
This request took 0.32 seconds of real time (v8.2 build 1391).
</ADDRESS>

We use ColdFusion functions and variables to change the table tag and to remove the horizontal rule and tag line.
The ColdFusion Replace and Mid functions are like the TRANWRD and SUBSTR functions in SAS. We want a
cellspacing of 0 to remove the lines between cells and we only want to keep the cellpadding value. Although a more
universal fix might be desirable, for these purposes we will simply do a string substitution. Assigning the existing code
to the variable “badstr” and the desired code to the variable “goodstr”, we substitute one for the other with the
Replace function and store the results in a variable called “outlist”. After that modification we use the Find function
to locate the position of the <HR> tag in “outlist”. We subtract one from this value and store the results in the variable
“endit”, which now indicates the position immediately preceding the <HR> tag. This location value is used as the
length in the Mid function to designate the endpoint of the string. The results of this final function are directed to be
displayed in the Web page.

<cfoutput>
 <cfset badstr="cellspacing=1 cellpadding=7 rules=all frame=Box border=3">
 <cfset goodstr="cellspacing=0 cellpadding=7">
 <cfset outlist=#Replace(cfhttp.FileContent,badstr,goodstr)#>
 <cfset endit=find('<HR>',#outlist#)-1>
 #Mid(outlist,1,endit)#
</cfoutput>

Our SAS output modified by ColdFusion appears in Figure 4. The same modifications will be applied to the remainder
of the sample output in this paper, specifically, removing table lines and the ending tagline. The examples for Figure
5 and for Figure 6 also use the ColdFusion code seen above.

Figure 4 – PROC PRINT selected from menu after output cleanup

Reporting and Information VisualizationSAS Global Forum 2008

7

EXAMPLE: PROC MEANS
 Similar results, shown in Figure 5, can be obtained by requesting the following MEANS procedure:

ODS HTML FILE=_WEBOUT (NO_TOP_MATTER NO_BOTTOM_MATTER) STYLE=MINIMAL;
TITLE 'Mean Weight and Height in Sashelp.Class';
PROC MEANS DATA=SASHELP.CLASS MAXDEC=3;
CLASS AGE;
VAR WEIGHT HEIGHT;
RUN;
ODS HTML CLOSE;

Figure 5 – PROC MEANS selected from menu

Reporting and Information VisualizationSAS Global Forum 2008

8

EXAMPLE: DATA _NULL_
The SAS results need not be procedure output. A null DATA step can write to _WEBOUT. This sample program writes
some text, including HTML-formatted text, as well as displaying an image. The results are shown in Figure 6.

DATA _NULL_;
FILE _WEBOUT;
PUT '<center>This shows the results of a null datastep that writes directly to the
Web page.';
PUT '<h2>HTML tags can be included. This line is surrounded by h2 tags.</h2>';
PUT 'Images in the target environment can be included.
Here''s the logo repeated
from the top of the page:';
PUT '
</center>';
RUN;

Figure 6 – NULL DATA step selected from menu

Reporting and Information VisualizationSAS Global Forum 2008

9

EXAMPLE: htmSQL
Results obtained using SAS htmSQL can also be captured and displayed. Calling the following htmSQL page yields
the results seen in Figure 7:

<h3>This example shows that results from htmSQL, another SAS/IntrNet product, can
also be imbedded in a ColdFusion page</h3>
{QUERY SERVER="MYSERVER"}
 {SQL}
 SELECT SUM(SEX='F') AS GIRLS, SUM(SEX='M') AS BOYS,

 MIN(HEIGHT) AS MINHT, MAX(HEIGHT) AS MAXHT,
 MIN(WEIGHT) AS MINWT, MAX(WEIGHT) AS MAXWT,
 MEAN(HEIGHT) AS MHT FORMAT=F6.1, MEAN(WEIGHT) AS MWT FORMAT=F6.1
 FROM SASHELP.CLASS
 {/SQL}
 {EACHROW}
 There were {&GIRLS} girls and {&BOYS} boys in the class dataset.

 They range in height from {&MINHT} to {&MAXHT} inches with a mean of {&MHT}.

 Class weight ranges from {&MINWT} to {&MAXWT} pounds,
 with a mean weight of {&MWT}.
 {/EACHROW}
{/QUERY}

The ColdFusion code to embed an htmSQL page follows. Because there are no name/value pairs, the method is not
required to be “post”.

<cfhttp url="http://statweb.unc.edu/~martell/SASrequesthsql.hsql" method="get">
</cfhttp>
<cfoutput>
 #cfhttp.FileContent#
</cfoutput>

Figure 7 – htmSQL selected from menu

Reporting and Information VisualizationSAS Global Forum 2008

10

EXAMPLE: USING A FORM
In a real world application, a dynamic request would supply a form, allowing you to customize the program to be run.
With SAS/IntrNet, the action parameter of the form would normally be a call to the Broker. Since we do not want the
results streamed to the web page, the Broker must be called via the <CFHTTP> tag in a ColdFusion page. In this
case, we make the action of the form be the current ColdFusion page, causing it to reload.
ColdFusion incorporates conditional logic using <CFIF><CFELSE></CFIF> tags. Another ColdFusion feature,
creating variables and setting default values, helps with the conditional processing. This example conditionally
displays either the form or the results of submitting the form. The form variable “notrun” is created and assigned a
default value of “1.” When the page is loaded, if the value is “1,” only the form is displayed. If the value is “0,” only the
results are displayed. The value is reset to “0” in the form code, so once the form is submitted, the ColdFusion logic
displays the results.

<cfparam name="form.notrun" type="string" default="1">
<cfif #form.notrun#>
 <cfform action="SASform.cfm" method="post" preservedata="yes">
 <input name="notrun" value="0" type="hidden">
 <cfinput type="radio" name="sex" value="1">Both sexes
 <cfinput type="radio" name="sex" value="M">males
 <cfinput type="radio" name="sex" value="F">females
 <input type="submit" value="submit">
 </cfform>
<cfelse>
 <cfhttp url="http://mybroker/cgi-bin/broker" method="post">
 <cfhttpparam name="_program" value="martell.SASform.sas" type="formfield">
 <cfhttpparam name="sex" value="#form.sex#" type="formfield">
 </cfhttp>
 <cfoutput>
 #cfhttp.FileContent#
 </cfoutput>
</cfif>

Figure 8 – Form Example selected from menu

Reporting and Information VisualizationSAS Global Forum 2008

11

The SAS code in SASform.sas follows:
%MACRO MYJOB;
ODS HTML FILE=_WEBOUT (NO_TOP_MATTER NO_BOTTOM_MATTER) STYLE=MINIMAL;
TITLE Print of %IF &SEX=M %THEN Males in; %ELSE %IF &SEX=F %THEN Females in;
Sashelp.Class Table;
PROC PRINT NOOBS DATA=SASHELP.CLASS; %IF &SEX NE 1 %THEN WHERE SEX="&SEX";; RUN;
ODS HTML CLOSE;
%MEND MYJOB;
%MYJOB

Figure 9 – Results from form submission selecting ‘Males’

Following the logic when first loaded, the page appears as in Figure 8. Upon selecting ‘males’ and clicking submit,
the page appears as in Figure 9. To pass the name/value pair “sex” to SAS, the <CFHTTPPARAM> tag for sex is
assigned the value of the form variable “sex”. All of the required code is placed within the <DIV></DIV> section:

Reporting and Information VisualizationSAS Global Forum 2008

12

CONCLUSION
It is a fairly simple matter to blend the work of Web designers and ColdFusion developers with that of the SAS
developer. This paper has presented one way, the use of the <CFHTTP> tag, to incorporate the powerful processing
and analyses that SAS provides into the flexible infrastructure of a ColdFusion application. Using this approach
eliminates the need for the SAS program to incorporate the copious, complicated code behind a sophisticated Web
page.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SUGGESTED READING
SAS/IntrNet software is documented at http://support.sas.com/documentation/onlinedoc/intrnet/.
Syntax for ColdFusion tags are documented at http://www.adobe.com/support/documentation/en/coldfusion.

ACKNOWLEDGMENTS
The Web page used in the examples was copied from the Highway Safety Research Center (HSRC) Web site. This
site was recently redesigned by the Web development team at HSRC.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Carol Martell
Highway Safety Research Center
730 Martin Luther King Jr. Blvd.
Chapel Hill, NC 27599-3430
Work Phone: (919) 962-8713
Email: carol_martell@unc.edu
Web: http://www.hsrc.unc.edu

Reporting and Information VisualizationSAS Global Forum 2008

	2008 Table of Contents

