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ABSTRACT 

Coefficient alpha is a commonly used index of measurement reliability in the social and behavioral sciences. 
Although point estimates of coefficient alpha are readily computed (and are provided by the PROC CORR 
procedure in SAS), a variety of methods for constructing interval estimates have been suggested in the literature. 
This paper presents a SAS macro that calculates eight interval estimates of coefficient alpha. The macro 
computes coefficient alpha from a matrix of item scores provided as input, and outputs the point estimate and 
interval estimates in a simple table. The paper provides a demonstration of the SAS/IML code, sample output, 
and examples of applications in simulation studies. 
 
 
INTRODUCTION 
An important index of measurement quality is the degree to which a test score is consistent. In classical test 
theory, the reliability coefficient, xxρ , is defined as the correlation between scores on parallel tests (Crocker & 
Algina, 1986). According to classical test theory, an examinee’s observed score, X, can be expressed as the sum 
of his/her true score and random error:  X = T + E. 
 
The reliability coefficient is the proportion of the observed variance in scores that represents true score variance 
rather than random error: 
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The most common approaches for estimating the reliability of scores include administering the same test twice to 
the same examinees (test-retest reliability) or administering the test once and estimating score reliability from the 
intercorrelation of test items (internal consistency reliability) (Crocker & Algina, 1986).  Several indices can be 
used to measure internal consistency, the most common being coefficient alpha, sometimes referred to as 
Cronbach’s alpha (Cronbach, 1951; Hogan, Benjamin & Brezinski, 2000; Peterson, 1994): 
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Where k is the number items on the test, 2
iσ is the variance of the ith item, and 2

xσ is the variance of the total 
(summed across items) scores (Crocker & Algina, 1986). 

. 
 
ALTERNATIVE METHODS FOR COEFFICIENT ALPHA CONFIDENCE INTERVALS 

The sampling distribution of coefficient alpha has been discussed in the literature for many years (Feldt & 
Brennan, 1989; Felt 1995; Kristoff, 1963; Lord, 1974) and several approaches for confidence interval estimation 
have been recommended (see, for example, Bonett, 2002; Feldt 1965; Hakstian & Whalen, 1976; Iacobucci & 
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Duchachek, 2003; Koning & Franses, 2003). 
 

Procedures Based on Transformations of Alpha. Several confidence interval procedures are derived by using a 
normalizing transformation of the sample alpha. The logic of these methods is that a suitably transformed statistic 
will be approximately normally distributed, allowing the use of normal theory for the construction of confidence 
intervals. The endpoints of the resulting confidence interval are subsequently back-transformed to the scale of 
coefficient alpha. For example, Bonett (2002) suggested the transformation ( )ˆln 1z α= − . The resulting statistic is 
reported to be approximately normally distributed with a variance of 2k/{(k-1)(n-2)}, where k = the number of items 
on the instrument. In contrast, Hakstain and Whalen (1976) recommended the transformation ( )

1
3ˆln 1z α= − . This 

transformed value is approximately normally distributed with a variance of ( ) ( )
2 23ˆ18 ( -1)(1- ) 1 9 11k n k nα⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

. 

Other researchers have used the Fisher z transformation that is often used to normalize distributions of 
correlation coefficients:     
 

ˆ1 1 | |ln
ˆ2 1 | |
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α

⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

  or  1 ˆtanhz α−=  

This transformed statistic is approximately normally distributed with a variance of 1/ (n-3). 

Procedures that Avoid Transformations of Alpha. Additional confidence interval procedures have been derived 
that avoid normalizing transformation of the sample alpha. For example, Feldt (1965) uses an interval inversion 
approach based upon the F distribution. A similar (but not identical) result was independently derived by Koning 
and Franses (2003). The latter authors also suggested an asymptotic confidence interval for coefficient alpha, the 
endpoints of which are given by: 
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Additionally, Iacobucci and Duchachek (2003) derived confidence intervals based upon the item covariance 
matrix: 
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Finally, Maydeu-Olivares, Coffman, and Hartmann (2007) derived an asymptotically distribution free (ADF) 
interval estimate for coefficient alpha. Results of their simulations suggest this interval provides superior 
confidence interval coverage probabilities when item distributions are not normal. 
 
 

MACRO ALPHA_CI 

A SAS/IML macro was designed to compute the sample value of coefficient alpha and confidence intervals for 
alpha using each of the methods for interval estimation described above. The macro was developed to provide 
researchers with an easily accessible tool for calculating interval estimates for alpha. Inputs to the macro include 
the name of the SAS dataset containing the sample of observed item responses and the number of items to be 
included. As written, the names of the item variables in the SAS dataset must be X1, X2, X3, etc. 
 
%macro ALPHA_CI (dsn = _last_,n_items = 100,confidence = .95); 
proc iml symsize = 500; 
 
start Bonett(N1,items,rxx,confidence,lowerCI,upperCI); 
   * +--------------------------------------------------------------------------------------+ 
     Bonett 2002 method of CI computation 
       Inputs to subroutine are number of examinees (N1), number of items (items), 
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sample value of coefficient alpha (rxx), and desired level of confidence 
(Confidence). 

 
  Outputs are the upper and lower limits of the confidence interval (upperCI, lowerCI) 
    +--------------------------------------------------------------------------------------+; 
     critZ = -1#probit((1-Confidence)/2); 
     transBon_z = log(1-abs(rxx)); 
     if rxx <0 then transBon_z = transBon_z * -1;  
     var_Z = (2#items)/((items - 1) # (n1 - 2)); 
     SE_Bon_Z = sqrt(var_z); 
     lowerCI = 1 - exp(transBon_z + critz#SE_Bon_z); 
     upperCI = 1 - exp(transBon_z - critz#SE_Bon_z); 
 finish; 
 
Start Feldt(n1,items,rxx,Confidence,lowerCI,upperCI); 
 * +----------------------------------------------------------------------------------------+ 
     Feldt (1965) method of CI computation 
 
  Inputs to subroutine are number of examinees (N), number of items (items), 

sample value of coefficient alpha (alpha), and desired level of confidence 
(Confidence). 

 
  Outputs are the upper and lower limits of the confidence interval (upperCI, lowerCI) 
   +---------------------------------------------------------------------------------------+; 
 lowerF = (1-Confidence)/2; 
 upperF = Confidence + lowerF; 
  Fb = FINV(upperF,N1-1,(N1-1)#(items-1),0); 
 Fa = FINV(lowerF,N1-1,(N1-1)#(items-1),0); 
 lowerCI = 1 - (Fb)#(1-rxx); 
 upperCI = 1 - (Fa)#(1-rxx); 
finish; 
 
start Fisher(N1,items,rxx,confidence,lowerCI,upperCI); 
     * +------------------------------------------------------------------------------------+ 
        Fisher z transformation method of CI computation 
        Inputs to subroutine are number of examinees (N), number of items (items), 

sample value of coefficient alpha (alpha), and desired level of confidence 
(Confidence). 

 
       Outputs are the upper and lower limits of the confidence interval (upperCI, lowerCI) 
     +-------------------------------------------------------------------------------------+; 
       critZ = -1#probit((1-Confidence)/2);    
       transfish_z = 0.5#log((1+abs(rxx))/(1-abs(rxx))); 
       if rxx <0 then transfish_z = transfish_z * -1;  
 SE_fish_z = sqrt((n1-3)##-1); 
 upperCI = (exp(2#(transfish_z  + critZ#SE_fish_z)) - 1) /  

(exp(2#(transfish_z  + critZ#SE_fish_z)) + 1); 
 lowerCI = (exp(2#(transfish_z  - critZ#SE_fish_z)) - 1) / 

(exp(2#(transfish_z  - critZ#SE_fish_z)) + 1); 
  finish; 
 
start HW(n1,items,rxx,Confidence,lowerCI,upperCI); 
 * +----------------------------------------------------------------------------------------+ 
     Hakstain & Whalen (1976) method of CI computation 
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  Inputs to subroutine are number of examinees (n1), number of items (items), 

sample value of coefficient alpha (alpha), and desired level of confidence 
(Confidence). 

 
  Outputs are the upper and lower limits of the confidence interval (upperCI, lowerCI) 
   +---------------------------------------------------------------------------------------+; 
 critZ = -1#probit((1-Confidence)/2); 
 transHaWh_z = (1-rxx)**(1/3); 
 var_z = ((18#items)#(n1 - 1)#((1 - rxx)##(2/3)))/((items - 1)#((9#n1 - 11)##(2))); 
 SE_HaWh_z = sqrt(var_z); 
 c_star = ((9#n1 - 11)#(items - 1))/(9#(n1 - 1)#(items - 1) - 2); 
 lowerCI = 1 - c_star##3#(((1-rxx)##(1/3) + CritZ#SE_HaWh_z)##3); 
 upperCI = 1 - c_star##3#(((1-rxx)##(1/3) - CritZ#SE_HaWh_z)##3); 
finish; 
 
start ID(N1,items,rxx,out3pl,confidence,lowerCI,upperCI); 
* +-----------------------------------------------------------------------------------------+ 
     Iacobucci and Duchachek (2003) transformation method of CI computation 
     Inputs are the nunnber of examinees(N1), the number of items (items) the  
     outputs are the upper and lower limits of the confidence interval (upperCI, lowerCI) 
+------------------------------------------------------------------------------------------+; 
     
       CritZ = -1#probit((1-Confidence)/2); 
   bigone = j(N1, 1); 
       means = ((bigone`)*out3pl)/N1; 
 SCORE3PLd = out3pl-(bigone*means); 
       itemcov = (1/(N1-1))*((SCORE3PLd`)*SCORE3PLd); 
 one = j(items,1); 
 jtphij = (one`)*itemcov*one; 
 trphisq = trace(itemcov*itemcov); 
 trsqphi = (trace(itemcov))**2; 
 jtphisqj = (one`)*(itemcov*itemcov)*one;  
 omega = jtphij*(trphisq+trsqphi); 
 omega = omega-(2*(trace(itemcov))*jtphisqj); 
 omega = (2/(jtphij**3))*omega; 
 s2 = (items**2)/((items-1)**2); 
 s2 = s2*omega; 
 se = sqrt(s2/N1); 
 LowerCI = rxx-(CritZ*se); 
 UpperCI = rxx+(CritZ*se); 
 finish; 
 
start KF1(n1,items,rxx,Confidence,lowerCI,upperCI); 
 * +----------------------------------------------------------------------------------------+ 
     Koning and Frances (2003) 'Exact' method of CI computation 
 
  Inputs to subroutine are number of examinees (n1), number of items (items), 

sample value of coefficient alpha (rxx), and desired level of confidence 
(Confidence). 

 
  Outputs are the upper and lower limits of the confidence interval (upperCI, lowerCI) 
   +---------------------------------------------------------------------------------------+; 
 lowerF = (1-Confidence)/2; 
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 upperF = Confidence + lowerF; 
  Fb = FINV(upperF,n1#(items-1),n1,0); 
 Fa = FINV(lowerF,n1#(items-1),n1,0); 
 upperCI = 1 - (1-rxx)/Fb; 
 lowerCI = 1 - (1-rxx)/Fa; 
finish; 
 
start KF2(n1,items,rxx,Confidence,lowerCI,upperCI); 
 * +----------------------------------------------------------------------------------------+ 
     Koning and Frances (2003) 'Asymptotic' method of CI computation 
 
  Inputs to subroutine are number of examinees (n1), number of items (items), 

sample value of coefficient alpha (rxx), and desired level of confidence 
(Confidence). 

 
  Outputs are the upper and lower limits of the confidence interval (upperCI, lowerCI) 
   +---------------------------------------------------------------------------------------+; 
 CritZ = -1#probit((1-Confidence)/2); 
 upperCI = 1 - (1-rxx)#exp(-1#CritZ#SQRT((2#items)/(n1#(items - 1)))); 
 lowerCI = 1 - (1-rxx)#exp(1#CritZ#SQRT((2#items)/(n1#(items - 1)))); 
finish; 
 
* +----------------------------------------------------------------------------------------+ 
    Maydeu-Olivares, Coffman, and Hartmann (2007) Asymptotically distribution free method 
    Note: SAS code for this subroutine was provided by Maydeu-Olivares, Coffman, & Hartmann 
 

Inputs to subroutine are the item score matrix (data) and desired level of 
confidence (prob). 

 
Outputs are the upper and lower limits of the confidence interval (Parm[6], 
Parm[7]) 

   +---------------------------------------------------------------------------------------+; 
start scalpha(data,prob); 
   parm = J(1,7,.);  /* create return vector: row */ 
   nsub = NROW(data); /* number of subjects */ 
   nvar = NCOL(data); /* number of variables */ 
   nv2  = nvar*(nvar+1)/2; 
   rsub = 1. / nsub; rs1 = 1. / (nsub - 1.); 
   vrat = nvar / (nvar-1.); 
   mean = data[+,] / nsub;  /* row vector */ 
   quant = -1#probit((1-prob)/2); 
   cov = rs1 * (data` * data - nsub * mean` * mean); 
   vvar = vecdiag(cov);  /* variances in diag of cov */ 
   summat = cov[+,+]; /* sum entire cov matrix */ 
   sumvars = vvar[+]; /* sum diagonal of cov matrix */ 
   sumcovs = .5*(summat - sumvars); /* sum off diag of cov matrix */ 
   wcv = cov * cov; 
   wvv = vecdiag(wcv); 
   sumvar2 = wvv[+]; 
   summat2 = wcv[+,+]; 
   alpha = vrat * (1. - sumvars/summat); 
   parm[1] = alpha;              /* alpha */ 
   tmp = 2. * vrat*vrat / (summat*summat*summat); 
   t1 = summat * sumvar2; 
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   t2 = summat * sumvars*sumvars; 
   t3 = 2.*sumvars * summat2; 
   nase = tmp*(t1 + t2 - t3);  
   nase = sqrt(rsub*nase); 
   parm[2] = nase; /* NT standard error */ 
   parm[3] = alpha - quant * nase; /* NT CI lower */ 
   parm[4] = alpha + quant * nase; /* NT CI upper */ 
   dwrtvar = -2. * vrat * sumcovs / (summat*summat); 
   dwrtcov = vrat * sumvars / (summat*summat); 
   jac = J(nvar,nvar,dwrtcov); 
   do j= 1 to nvar; 
     jac[j,j] = dwrtvar;  
   end; 
   trac = 0.; 
   do isub=1 to nsub; 
     v = data[isub,] - mean; /* row vector */ 
     wcv = jac # (v` * v - cov); 
     tmp = wcv[+,+]; 
     trac = trac + tmp * tmp; 
   end; 
   nnase = sqrt(rsub*rs1*trac); 
   parm[5] = nnase; /* ADF standard error */ 
   parm[6] = alpha - quant * nnase; /* ADF CI lower */ 
   parm[7] = alpha + quant * nnase; /* ADF CI upper */ 
   return(parm); 
finish scalpha; 
 
* +----------------------------------------------------------------------------------------+ 

Main program 
  +----------------------------------------------------------------------------------------+; 
 
* +---------------------------------+ 
       Read item scores into IML  
  +---------------------------------+; 
 use &dsn; 
  %do i = 1 %to &n_items; 
     read all var{x&i} into temp_x; 
     if &i = 1 then do; 
      Item_Scores = temp_x; 
     End; 
     If &i > 1 then do; 
      Item_Scores = Item_Scores || temp_x; 
     End; 
   %end; 
 confidence = &confidence; 
* +---------------------------------+ 
     Computation of Cronbach Alpha  
  +---------------------------------+; 
 N_items = ncol(Item_Scores); 
 N_obs = nrow(Item_Scores); 
 mu1 = J(N_items,1,0);* ; 
 var = J(1,N_items,0);* ; 
 
 do k = 1 to N_items; 
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  do i=1 to N_obs;  
      mu1[k,1] = mu1[k,1] + Item_Scores[i,k];* ; 
    end;  
    var[1,k]=(mu1[k,1]/N_obs)*(1 - mu1[k,1]/N_obs);  
 end;  
 sumvar=0;    
 do k = 1 to N_items;                
    sumvar = sumvar + var[1,k];* ; 
 end;  
 rowsum = J(N_obs,1,0); 
 do p = 1 to N_obs; 
   do k = 1 to N_items; 
      rowsum[p,1]=rowsum[p,1] + Item_Scores[p,k];   
   end;  
 end;  
 sumscore = 0; 
 sumscore2 = 0; 
 do p = 1 to N_obs; 
  sumscore = sumscore + rowsum[p,1]; 
  sumscore2= sumscore2 + rowsum[p,1]##2; 
 end;  
 vartotal= (sumscore2-(sumscore##2/N_obs))/(N_obs);  
 * +------------------------------------------------------------+ 
    Be sure we have some score variance before going any further 
 * +------------------------------------------------------------+; 
 if vartotal <=0 then do; 
  print 'Total Score Variance =' vartotal; 
  print 'Check the Data!'; 
 end; 
 if vartotal > 0 then do; 
  rxx = (N_items/(N_items -1))*((vartotal- sumvar)/vartotal);  
  if rxx < 0.00001 then rxx = .00001;  
  if rxx > .99 then rxx = .99; 
 
* +-------------------------------------------+ 
    Call subroutines for confidence intervals  
  +------------------------------------------+; 
  run Bonett(N_obs,N_items,rxx,Confidence,lowerBonett,upperBonett); 
  run Feldt(N_obs,N_items,rxx,Confidence,lowerFeldt,upperFeldt); 
  run Fisher(N_obs,N_items,rxx,Confidence,lowerFisher,upperFisher); 
  run HW(N_obs,N_items,rxx,Confidence,lowerHw,upperHW); 
  run ID(N_obs,N_items,rxx,Item_Scores,confidence,lowerID,upperID); 
   run KF1(N_obs,N_items,rxx,Confidence,lowerKF1,upperKF1); 
   run KF2(N_obs,N_items,rxx,Confidence,lowerKF2,upperKF2); 
   parm = scalpha(Item_Scores,confidence); 

lowerADF = parm[1,6];  
upperADF = parm[1,7]; 

   end; * end the 'if vartotal > 0' conditional; 
 rxx = round(rxx,.001); 
 
* +---------------------------------+ 
        Printed macro output  
  +---------------------------------+; 
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 file print; 
  put @1 'Confidence Intervals for Coefficient Alpha' / 
   @1 '-------------------------------------------------------' /  
   @1 'Level of Confidence:' @30 Confidence / 
   @1 'Number of Observations:' @30 N_obs / 
   @1 'Number of Items:' @30 N_items / 
   @1 'Sample Value of Alpha:' @30 rxx // 
   @1 'Method' @40 'Lower' @50 'Upper' / 
   @1 '------------------------------' @40 '-----' @50 '-----' / 
   @1 'Bonett' @40 lowerBonett 5.3 @50 upperBonett 5.3 / 
   @1 'Feldt' @40 lowerFeldt 5.3 @50 upperFeldt 5.3 / 
   @1 'Fisher' @40 lowerFisher 5.3 @50 upperFisher 5.3 / 
   @1 'Hakstain & Whalen' @40 lowerHW 5.3 @50 upperHW 5.3 / 
   @1 'Iacobucci & Duchachek' @40 lowerID 5.3 @50 upperID 5.3 / 
   @1 'Koning & Frances Exact' @40 lowerKF1 5.3 @50 upperKF1 5.3 / 
   @1 'Koning & Frances Asymptotic' @40 lowerKF2 5.3 @50 upperKF2 5.3 / 
   @1 'Asymptotic Distribution Free' @40 lowerADF 5.3 @50 upperADF 5.3 / 
   @1 '-------------------------------------------------------'; 
quit; 
%mend; 
 
 
INVOKING THE MACRO 

The easiest way in which the macro ALPHA_CI may be used is to simply create a SAS dataset that inputs the 
sample item responses. The macro is then called, using as arguments the name of the dataset and the number of 
items. For example, the following code reads responses to five dichotomous items. The data are read into a SAS 
dataset called ONE and are referenced by the variable names X1 – X5. Note that the names of the item variables 
are sequentially numbered with the root of X (the naming convention required in the macro). The call to the macro 
ALPHA_CI requests the computation of coefficient alpha and the confidence intervals. 
 
data one; 
 input @1 (X1 - X5)(1.); 
cards; 
10000 
11000 
11100 
11110 
11111 
00000 
10000 
11000 
11100 
11110 
11111 
00000 
; 
 
%ALPHA_CI (dsn = one,n_items = 5) 
 
run; 
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Note that the specification of a confidence level is not needed if the default level (95% confidence interval) is 
desired. To request a different level of confidence, the CONFIDENCE = argument is included in the call to the 
macro. For example, to request 99% and 90% confidence intervals, the following two calls to the macro are used.  

 
%ALPHA_CI (dsn = one,n_items = 5,confidence = .99) 
 
%ALPHA_CI (dsn = one,n_items = 5,confidence = .90) 
 
The macro ALPHA_CI does not include methods for handling missing item responses. Therefore, missing data 
treatments should be applied before invoking the macro (e.g., the deletion of incomplete cases or items, or the 
use of imputation such as that provided by PROC MI). For comprehensive overviews of missing data treatments, 
please see Schafer and Graham (2002) and Sinharay, Stern, and Russell (2001).  
 
 

OUTPUT FROM MACRO ALPHA_CI 

The output from the macro is a simple table that presents descriptive statistics about the sample and the 
endpoints of the confidence intervals computed using the eight methods. Table 1 presents the macro output from 
the sample data presented above. In addition to the level of confidence for the intervals (0.95), the size of the data 
matrix (number of observations and number of items) and the sample value of coefficient alpha are provided. For 
these data, the value of coefficient alpha in the sample was 0.833 based upon five items and 12 observations. 
The endpoints of the 95% confidence intervals present a variety of interval widths from that of the Fisher interval 
[0.497, 0.952] to that of the Asymptotic Distribution Free interval [0.737, 0.930]. 
 
 
Table 1 
Sample Output from Macro Alpha_CI. 
 
Confidence Intervals for Coefficient Alpha 
------------------------------------------------------- 
Level of Confidence:              0.95 
Number of Observations:             12 
Number of Items:                     5 
Sample Value of Alpha:           0.833 
 
Method                                 Lower     Upper 
------------------------------         -----     ----- 
Bonett                                 0.556     0.937 
Feldt                                  0.616     0.945 
Fisher                                 0.497     0.952 
Hakstain & Whalen                      0.636     0.949 
Iacobucci & Duchachek                  0.691     0.976 
Koning & Frances Exact                 0.629     0.942 
Koning & Frances Asymptotic            0.592     0.932 
Asymptotic Distribution Free           0.737     0.930 
------------------------------------------------------- 

 

COMPARISON OF CONFIDENCE INTERVAL ACCURACY AND PRECISION 

The accuracy and precision of the confidence intervals produced by these methods were investigated in a Monte 
Carlo study.  The study simulated samples of responses to individual dichotomous items under known and 
controlled population conditions, calculated coefficient alpha in each sample and estimated each of the 
confidence intervals. The factors controlled in the simulation study included the population value of alpha, the 
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number of respondents in the sample, and the number of items in the composite. Ten thousand samples were 
simulated for each condition examined in the Monte Carlo study. Complete details are provided by Romano, 
Kromrey, and Hibbard (2008), but partial results are presented here. 

Table 2 presents the estimated mean statistical bias in the sample value of coefficient alpha by sample size and 
population reliability. Some negative bias in alpha was evident in small samples (n = 10) and the bias was most 
severe at the lowest level of population reliability. As sample size increased, however, the bias became negligible 
regardless of the population value of coefficient alpha. 

 

Table 2 
Mean Statistical Bias in Coefficient Alpha by Sample Size and Population Reliability. 
 
 Population Reliability 

Sample Size 0.50 0.70 0.90 Mean 

10 -0.08 -0.07 -0.02 -0.06 

50 -0.02 -0.01 0.00 -0.01 

100 -0.01 -0.01 0.00 0.00 

1000 0.00 0.00 0.00 0.00 

Mean -0.03 -0.02 -0.01 -0.02 

 

The differences in confidence interval widths among the eight methods were negligible across the conditions 
examined. However, the interval widths were dependent on both the number of observations in the sample and 
the population value of coefficient alpha (Table 3). As expected, the confidence intervals became narrower when 
they were estimated from larger samples (ranging from an average width of 0.77 for samples of size 10 to an 
average width of 0.06 for samples of size 1000). Narrower confidence intervals were also obtained with larger 
values of the population reliability. With low levels of reliability (population value of 0.50), the average confidence 
interval width was 0.52. When the population reliability was 0.90, the average interval width was only 0.12. 

 

Table 3 
Mean 95% Confidence Interval Width by Sample Size and Population Reliability. 
 
 Population Reliability 

Sample Size 0.50 0.70 0.90 Mean 

10 1.21 0.80 0.28 0.77 
50 0.45 0.29 0.10 0.28 
100 0.31 0.20 0.07 0.19 
1000 0.10 0.06 0.02 0.06 
Mean 0.52 0.34 0.12 0.32 

 

Some differences were evident among the eight methods in the 95% confidence interval coverage probabilities 
(Table 4). With small samples (n = 10), the Asymptotic Distribution Free method showed substantially liberal 
coverage with only 86% of the sample confidence bands containing the population value of coefficient alpha. 
Note, however, that the coverage probability converged on the nominal 95% level as the sample size increased. 
In contrast, the Fisher method of confidence interval estimation was slightly conservative, with average coverage 
probabilities of .97 - .98 across the sample sizes examined. The Bonett, Feldt, and Hakstain and Whalen methods 
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of interval estimation showed slightly liberal confidence interval coverage at the smallest sample size examined, 
but all three methods reached 95% coverage when sample size was at least 50. The Iacobucci and Duchachek 
method was slightly liberal (93%) with samples of size 10, but coverage reached 95% with larger samples. Finally, 
the two methods proposed by Koning and Frances (the asumptotic method and the exact method) provided mean 
confidence interval coverage of 95% across all of the sample sizes examined. 
 
Table 4 
Mean 95% Confidence Interval Coverage by Estimation Method and Sample Size. 
 
 Sample Size 

Estimation Method 10 50 100 1000 Mean 

Asymptotic Distribution Free 0.86 0.93 0.94 0.95 0.92 

Bonett 0.97 0.95 0.95 0.95 0.96 

Feldt 0.96 0.95 0.95 0.95 0.95 

Fisher 0.98 0.97 0.97 0.97 0.97 

Hakstain & Whalen 0.96 0.95 0.95 0.95 0.95 

Iacobucci & Duchachek 0.93 0.95 0.95 0.95 0.94 

Koning & Frances Asymptotic 0.95 0.95 0.95 0.95 0.95 

Koning & Frances Exact 0.95 0.95 0.95 0.95 0.95 

Mean 0.94 0.95 0.95 0.95 0.95 

 

CONCLUSIONS 

The macro ALPHA_CI is provided to facilitate the use of confidence intervals for coefficient alpha. Specifically, 
this macro computes confidence intervals using eight methods that have been suggested in the psychometric 
literature. These intervals are useful for the interpretation of sample estimates of reliability by providing indices of 
the amount of sampling error expected in the obtained value of alpha. The results of a simulation study that 
investigated these intervals suggest that some methods provide more accurate confidence intervals, especially 
with small samples. However, the precision of the confidence intervals (the width of the intervals) was quite 
consistent across the eight methods. The use of ALPHA_CI is very easy: simply read the item responses or item 
scores using a regular SAS data step, then call the macro by specifying the data set name, the number of items, 
and the desired level of confidence for the intervals. 
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