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ABSTRACT 
 

In regression analysis, non-linearity in fixed and random effects can adversely affect efficiency of regression 
parameter estimates.  Successful non-linear time series modeling would improve regression parameter estimates and 
produce a richer notion of water quality than linear time series models allow.  In addition multiple independent 
variables make each point in space a finite dimensional vector, non-linear in two dimensions jointly.  The SAS/STAT 
procedure, NLMIXED fits non-linearity successfully in any time series using maximum likelihood-based methods. 

In this data mining study spatial and temporal variations of total phosphorus concentration (TP) in Truckee 
River, Nevada, sampled monthly (from January 1997 to December 2004) over six sites were modeled as a function of 
soluble total phosphorus concentration (STP), stream flow (SF), seasonality (Summer), man-made intervention (X1), 
alkalinity, pH, temperature (Temp), dissolved organic carbon (DOC), and dissolved oxygen(DO) using the non-linear 
regression capabilities provided with the NLMIXED procedure in SAS® after successfully identifying non linearity in 
data.  Likelihood ratio tests were conducted for model specification, and for tests of various hypotheses on individual 
cross sections.  Results of parameter estimates, model diagnostics, and residual analyses were compared to that 
obtained from a linear mixed model fitted to the same data using PROC MIXED.  Non linear model fitted data better.  
All independent variables influenced TP significantly (p<0.0001). Tests of cross sectional effects showed significant 
contributions of TP from all sites (p<0.0001) into Truckee River. Non-linearity in data can influence time series 
regression parameter estimates significantly.   
 
KEY WORDS:  PROC MIXED, PROC MI, PROC NLMIXED, Non-linearity, Maximum Likelihood       
 
INTRODUCTION 

 
Increasing urbanization, and population in Nevada in the past few years have created, increased concentrations 

of total phosphorus in the Truckee River.   Water quality management of urban waters covers a broad spectrum of 
issues related to municipal, industrial and amenity irrigation practices.  The natural cycle of phosphorus has been 
modified due to fertilizer use and sewage.  Relationships of total phosphorus concentration to soil use and 
agricultural, domestic and industrial activities are expected to rise in the future.  There is also tremendous uncertainty 
in pollution load estimation due to the associated spatial variability of pollutants in different catchments.  Complexity 
in estimation of diffused pollutant concentration and load is a serious impediment to the design of efficient pollutant 
structures.  Water management practices must be improved in Nevada, to guarantee improved quality of water of 
sustainable water bodies affected by development of urban and suburban areas.  Determination of factors affecting or 
causing variation of phosphorus concentrations can provide a robust solution to quantify total phosphorus pollution in 
urban areas in Nevada.   

Total phosphorus concentration (TP) is a random variable which must be handled probabilistically in space and 
time.  The TP in a river is a function of several factors such as STP, SF, Summer, X1, DOC,DO, pH and water 
temperature.  The degree of influence of the different factors on TP, need to be predicted to reflect different sources 
of the phosphorus loading into the river.  The major focus of this research is predicting and modeling the non-linearity 
in the distribution of TP at the different sampling sites which enable designers to target TP concentration in the 
Truckee River accurately as close as possible to their source of origination.  Non-linear time series modeling is an 
appropriate approach to analyze such data.   
 The classical Box and Jenkins models of  time series analysis uses the Wold Representation (any 
covariance stationary time series can be expressed as moving average function of present and past innovations).  
This infinite moving average can nearly always be well approximated by low order autoregressive processes perhaps 
with some moving average components.  Further, the dynamics of the time series can be directly ‘read off’ from the 
Wold Representation.  Statistical models in which both fixed and random effects enter nonlinearly are becoming 
increasingly popular.  Perhaps the greatest theoretical progress in time series analysis in the last ten years has been 
in the understanding of testing and modeling for nonlinearity.  Nonlinear time series analysis raises the possibility of 
improving the power of parameter estimation and forecasting techniques.  For any time series Yt that is normal (and 
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therefore linear) ρk(Yt
2)= {ρk(Yt)}2 (where ρk(.) denotes the lag k autocorrelation).  Any departure from this result 

indicates a degree of non-linearity.   
 In this data mining study, the influence of soluble total phosphorus (STP) concentration, alkalinity, stream 

flow (SF), seasonality, man-made intervention (X1), pH, temperature (Temp), dissolved organic carbon (DOC), and 
dissolved oxygen (DO) at the time of monitoring on the total phosphorus concentration (TP) at six sites (McCarran 
Bride (MC), Wordsworth Bridge (WB), Derby Dam (DD), Steamboat Creek (SC), Lockwood(LW), and North Truckee 
Drain (NTD))  in the Truckee River, Nevada was modeled through linear and non-linear mixed models using MIXED, 
and NLMIXED procedures in SAS® respectively.  Data were corrected for missing values, and tested for non-
stationarity using the MI procedure and the Augmented Dicky and Fuller test with the ARIMA procedure respectively 
in SAS® before fitting the linear and non-linear mixed models.  Results from linear and non-linear mixed models were 
compared.  Data were tested for normality through the standard tests provided with PROC UNIVARIATE.  The 
developed model can provide a guide to probable range and type of TP load generated and deposited into the 
Truckee River.    
 
STUDY SITE 
 

The Truckee River can be best described as a river in northern California and northern Nevada, that is140 mi 
(225 km) long, originates from the mountains, south of Lake Tahoe, flows into the Lake Tahoe at its south end, drains 
part of the high Sierra Nevada, and empties into Pyramid Lake in the Great Basin (USEPA, 1991).  The river passes 
through the Reno-Sparks metropolitan area, located in Nevada's Truckee Meadows.  It flows generally northwest 
through the mountains to Truckee, California, and then turns sharply to the east and flows into Nevada, past Reno 
and Sparks and along the northern end of the Carson Range.  East of the Truckee Meadows, fourteen ditches 
remove water for irrigation. The most significant diversion is Derby Dam, where at least 32% of the river's water is 
diverted annually (Peternel and Laurel, 2005). 

Truckee River’s waters are an important source of drinking and irrigation along its valley and adjacent valleys.  
Increased urbanization and the prevalence of water diversions have caused a decline in water quality, and the 
resulting detrimental effects on habitat have brought about the need to restore the river to a more natural condition to 
improve habitat and the river's overall health.The water is quite clear near Lake Tahoe, but as it descends, the water 
turns muddy and concentrated in nutrients and other toxic elements by the time it passes Reno, Nevada. The 
California State Water Resources Control Board (State board) has classified under Section 330(d) of the Clean Water 
Act the middle reach of the Truckee River as “impaired” (Dana and others, 2006).  Because of the endangered 
species present and due to the fact that Lake Tahoe Basin comprises the headwaters of the Truckee River, the river 
has been the focus of several water quality investigations, the most detailed starting in the mid-1980s. Under the 
direction of the U.S. Environmental Protection Agency, comprehensive dynamic studies have been undertaken to 
study the impacts of a variety of land use and wastewater management decisions throughout the 3120 square mile 
Truckee River Basin and also to provide guidance to other U.S. river basins (USEPA, 1991).  Analytes mostly 
addressed include nitrogen, phosphate, dissolved oxygen, and total dissolved solids.  Impacts upon, the receiving 
waters of Pyramid Lake has also been analyzed (Source: Truckee River Geographic Response Plan, 2005). 

TMWRF currently maintains 11 continuous monitoring stations within the Truckee water system. These stations 
are located at: Mogul, Steamboat Creek, McCarran Bridge, North Truckee Drain, Lockwood, Patrick, Waltham, Tracy, 
Painted Rock, Wadsworth and Marble Bluff Dam.  Lockwood monitoring site is located in the lower Truckee River 
basin 65.6 river miles from Lake Tahoe, located down stream of McCarran Bridge, North Truckee Drain, and 
Steamboat Creek monitoring sites and Vista (www.tmwrf.com).   

     
WATER QUALITY IN TRUCKEE RIVER 
 

From the results for Truckee River, the total phosphorus concentration (TP), as classified by the Environmental 
Protection Agency (NDEP, 1994) is a -conservative pollutant.  Conservative pollutants are those which persist in the 
water segment of the aquatic environment over time remaining essentially constant in concentrations.  These 
pollutants are not perturbed by seasonal variations or other short term cyclical and non-cyclical variations in the 
system.  Hence simple techniques are often adequate to set water quality standards for the conservative pollutants 
(i.e: Total Maximum Daily Loads (TMDL)) in a body of water.  For example the concentration based upon an 
applicable water quality standard can serve as TMDL for a conservative pollutant.  In addition the concentration of the 
conservative pollutant varies directly with the volumes of flows of dischargers of the receiving water body.  The TMDL 
compliance level for total phosphorus concentration for Truckee River is currently at 0.05 mg/L (214 lb/day) at 
Lockwood monitoring site. Existing data indicate that approximately 80 lb/day are attributable to non-point sources 
and background. The remaining 134 lb/day were set as the total phosphorus waste-load from the Truckee Meadows 
Waste Water Reclamation Facility (TMWRF).  
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LINEAR MIXED EFFECTS MODELS  

Mixed linear models provide the flexibility of modeling variances and covariance of variables in addition to 
means specified in a cross sectional regression model hence can be used to model data that show correlation and 
non-constant variability.  Random effects parameters with non constant variability such as that shown with 
unbalanced time series cross sectional data (i.e., spatial repeated measures time series data, nested or clustered 
time series data) can be modeled easily and accurately with PROC MIXED in SAS® which also provides a variety of 
covariance structures to model random-effects parameters with non constant variability.  The most common of these 
structures arises from the use of random-effects parameters, which are additional unknown random variables 
assumed to impact the variability of the cross sectional data. The variances of the random-effects parameters, 
commonly known as variance components, become the covariance parameters for the particular structure. 
Traditionally mixed linear models were used to model a combination of fixed and random effects that led to the name 
mixed model.  With PROC MIXED in addition to the traditional variance components, numerous other covariance 
structures are available.  PROC MIXED also assumes that the data is: a) normally distributed, contain linear means, 
and follows specified variance and covariance structure from either a fixed or a random effect.  The RANDOM 
statement with PROC MIXED incorporates random effects constituting the vector type specified in the mixed time 
series cross sectional model and computes restricted maximum likelihood (REML) and the maximum likelihood (ML) 
estimates of the variance parameters (Searle 1988; Harville 1988; Searle, Casella, and McCulloch 1992).  These 
estimates can be used to draw statistical inferences about the covariance structure.  The REPEATED statement is 
useful with PROC MIXED to specify covariance structures for cross sectional data where the repeated measures are 
cross sectional in nature. Mixed models also allow interaction effects of the independent variables in addition to the 
main effects.   

NON-LINEAR MIXED EFFECTS MODELS 

 Non linear mixed model in addition to the above mentioned features of the mixed models, allow non linear 
terms in the model and allow conditional distributions of the fixed and the random effects specified.  Unlike mixed 
linear models that require the data be normal non-linear mixed models allow data with a variety of distributions.  The 
NLMIXED procedure in SAS® fits non-linear mixed models by maximizing an approximation to the likelihood 
integrated over the random effects.  The default dual quasi-Newton algorithm was used to fit the non-linear model in 
this study.  Successful convergence of the optimization problem resulted in parameter estimates along with their 
approximate standard errors based on the second derivative matrix of the likelihood function.  The MODEL statement 
with NLMIXED procedure was used to specify the model terms with the conditional distribution (normal in this case) 
of the data with the random effects specified.  MODEL requires a single dependent variable from the input data set, 
and a distribution along with its parameters.  The BY statement with NLMIXED can be used to perform separate 
analyses by cross sections identified when the variable site (cross sectional variable) is specified with the BY 
statement.  The CONTRAST statement was used to conduct statistical tests of hypotheses on individual cross 
sections, with several expressions simultaneously equal zero. The ESTIMATE statement enables to compute an 
additional estimate that is a function of the parameter values.  PROC NLMIXED also computes approximate standard 
errors for the estimates using the delta method (Billingsley 1986), and the corresponding t statistics, p-values, and 
confidence limits. The PREDICT statement was used with PROC NLMIXED to construct predictions of expressions 
across all of the observations in the input data set.  Predicted values are computed using the parameter estimates 
and empirical Bayes estimates of the random effects. Standard errors of prediction are computed using the delta 
method (Billingsley 1986; Cox 1998).  RANDOM statement was used to define the random effects and their 
distribution.  Random effects typically influence the mean value of the distribution specified in the MODEL statement. 
RANDOM statement is a list of the random effects, a distribution for the random effects, and a SUBJECT= variable.  
PROC NLMIXED assumes that a new realization occurs whenever the SUBJECT= variable changes from the 
previous observation, which requires the input data set be clustered according to this variable.  If the input data set is 
not clustered according to the SUBJECT= variable, data must be sorted using PROC SORT by the SUBJECT= 
variable prior to calling PROC NLMIXED.  Since only one RANDOM statement is permitted with PROC NLMIXED 
multilevel nonlinear mixed models are not allowed.  In addition there is only one distribution (normal(m,v) [m=mean 
and v=variance]) currently allowed for the random effects with the RANDOM statement.  However, multiple effects 
can be specified as bracketed vectors for means and variances.  
 
NON-LINEAR OPTIMIZATION 
 
A  commonly encountered problem with NLMIXED is that the estimated covariance matrix of the parameter estimates 
is computed as an inverse Hessian matrix, which needs to be positive definite for unconstrained problems.  SAS® 
allows three singularity criteria (ASINGULAR=, MSINGULAR=, and VSINGULAR= options) to fine tune the inversion 
of the Hessian matrix.  The rows and columns of the Hessian matrix can also be scaled while using the optimization 
techniques, with the HESCAL= option.  There are several optimization techniques (Newton- Raphson, Quasi-
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Newton, double dog-leg, conjugate gradient, Nelder-Mead Simplex) available with PROC NLMIXED.  A particular 
optimization method can be selected with the TECH= option in the PROC NLMIXED statement. The default Quasi 
Newton (QUANEW) was used in the present study with the DBFGS (dual Broyden, Fletcher, Goldfarb, and Shanno 
(BFGS) update of the Cholesky factor of the Hessian matrix) update method.  QUANEW provides an appropriate 
balance between the speed and stability required for most nonlinear mixed model applications.  Nonlinear 
optimization can be computationally expensive in terms of time and memory, so the appropriate optimization 
algorithm must be carefully matched to the problem.  NRRIDG algorithm is the fastest among the second derivative 
methods (TRUREG, NEWRAP, NRRIDG) and also requires only one matrix with n(n+1)/2 double words (requires 
less memory) hence the best for small problems.  For small problems the Hessian matrix is not expensive to 
compute. The first-derivative methods QUANEW and DBLDOG are best for medium-sized problems where the 
objective function and the gradient are much faster to evaluate than the Hessian. The QUANEW and DBLDOG 
algorithms, in general, require more iterations than TRUREG, NRRIDG, and NEWRAP, but each iteration can be 
much faster. The QUANEW and DBLDOG algorithms require only the gradient to update an approximate Hessian, 
and they require slightly less memory than TRUREG or NEWRAP (essentially one matrix with n(n+1)/2 double 
words). The default optimization method is QUANEW.  The first-derivative method CONGRA is best for large 
problems where the objective function and the gradient can be computed much faster than the Hessian and where 
too much memory is required to store the (approximate) Hessian.  The CONGRA algorithm, in general, requires more 
iterations than QUANEW or DBLDOG, but each, iteration can be much faster, and requires only a factor of n double-
word memory.  Hence many large applications using PROC NLMIXED can be solved only by CONGRA.       
 
OBJECTIVES 

1) To identify and model non-linearity in the total phosphorus concentration time series collected over six 
selected monitoring sites at the Truckee River in Nevada, using non-linear time series analysis. 

2) To predict the influence of soluble total phosphorus, alkalinity, dissolved organic carbon, dissolved 
oxygen, pH, temperature, seasonality, intervention, and stream flow, on the total phosphorus 
concentration in Truckee River, Nevada. 

EXPLORATORY DATA ANALYSIS 

ORIGINAL DATA  

Monthly values of TP, STP, DOC, and DO in milligrams per liter (mg/L), and Alkalinity, pH, and Temp, and SF in 
cubic feet per second (cfs) for the period from January 1997 through December 2004 were obtained from the Truckee 
River Water Reclamation Facility for the Truckee River at six selected sampling sites namely:  i) McCarran bridge 
(MC), ii) North Truckee Drain (NTD), iii) Wordsworth bridge (WB), iv) Lockwood (LW), v) Derby Dam (DD), and vi) 
Steamboat Creek (SC) as EXCEL spread sheets (www.tmwrf.com) and converted to SAS® data sets.   

  ORIGINAL SERIES PLOTS 
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Figure 1: Original TP in between January 

1997 and December 2004 by site
Figure 2: Histogram of original TP at all sites 

 
 There are significant fluctuations in TP among the sites (Figure 1).   Distribution of original TP is not normal 
curvilinear (Figure 2).  Box plot of the distribution of original observed TP in Truckee River by site is shown in Figure 
3.   The one observation (observation 205) that had a TP concentration (0.799) above 0.75 was considered an outlier 
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and was removed from the dataset.  Box plot of the distribution of original TP by site after removing the outlier is 
shown in Figure 4.  Mean and maximum TP at site SC remains much above the overall mean (0.117 mg/L; Table 1) 
and overall maximum (0.512 mg/L; Table 1).  Maximum TP values at sites DD, LW, MB, NTD and WB except at site 
SC are below 0.5 mg/L.  TP values above 0.3 mg/L were considered extreme and an intervention analysis was 
considered.  Site SC shows the largest TP during most part of the time period studied, followed by NTD.  Past studies 
have indicated that high phosphorus loads, associated largely with TMWRF and irrigation return flows, to significantly 
impact the Truckee River.  Figures 5 and 6 present monthly average TP and DO concentrations at LW and SC 
monitoring sites respectively.  These elevated phosphors loads along with elevated nitrogen loads can encourage 
proliferation of aquatic plants and benthic algae.  Respiration by these plants and the decay of their associated 
detritus can decrease DO in the water column, resulting in violations of the DO standard (5mg/L).  The mean, 
maximum and minimum values of TP at LW monitoring site are 0.078,, 0.212, 0.022 mg/L respectively and that at SC 
monitoring site are 0.257, 0.799, 0.157 mg/L respectively.  The mean, maximum, and minimum values of DO at SC 
monitoring site are 8.83, 13.2, and 4.5 mg/L respectively and that at LW monitoring site are 10.59, 13.6 and, 7.8 mg/L 
respectively.   
  

              
 
 
 
 The TP concentrations have remained above the compliance level at SC throughout the study period.  Mean 
DO concentrations are also above 5 mg/L at both monitoring sites.  DO levels are above 5 mg/L at LW throughout the 
study period.  This effect may be due to low total nitrogen concentrations in the River during the study period.  

Figure 3: Box plot of distribution of 
observed TP by site    

Figure 4: Box plot of distribution of outlier 
removed TP by site    

Low DO has caused several fish kills, impacting populations of Lahontan cutthroat trout and cui-ui (kwee-wee) in the 
past (Adele Basham, NDEP, personal communication, 1994). The cui-ui, a fish that has historically been a staple in 
the diet of the local Pyramid Lake Paiute Tribe, is on the national endangered species list. The Lahontan cutthroat 
trout, which supports a small recreational fishery, is classified as a threatened species.   
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SERIAL CORRELATION AND UNIT ROOT 

Figure 5: Original TP between January 
1997 and December 2004 at SC and LW 

Figure 6: Original DO between January 
1997 and December 2004 at SC and LW 
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 Presence of unit roots (or non-stationarity) has critical consequences in time series data analysis.  
Estimating a model with either a lagged dependent variable or serially correlated errors in the presence of a unit root 
can lead to dramatically misleading results (spurious regressions).  Checking if the residuals appear stationary (that 
is, whether an autoregression of the residuals on their lags shows a coefficient on the lagged residual term near one), 
as well as examine whether the coefficients on any lagged dependent variable terms are near one is essential in any 
time series data analysis.  The augmented Dicky and Fuller test was performed to test the data for the presence of 
unit root non-stationarity  

According to (Augmented) Dicky and Fuller test a pure random process Xt  = ρXt-1 + µt, is non-stationary 
whenever ρ = 1 which is called the existence of unit root.  In other words the process can be described as:  Xt – Xt-1 = 
(ρ-1) Xt-1 + µt, and also  Δ Xt = δXt-1 + µt,.   Whenever δ=0, unit root exists and the process is non-stationary. ‘ t’ value of 
the coefficient of Xt-1 follows a ‘tau’ statistic.  There are three methods available to correct the data for non-
stationarity, a) differencing the data, b) data transformation, and c) using sinusoidal components.  Differencing the 
data is the most common method, which was used to achieve stationarity in this study.  By differencing a time series 
we 'derive' the function by which the original series was generated, which removes any trend in the mean level and 
any seasonal and non-seasonal cycles and periodicities found in the original series.  First differencing converts the 
above pure random process to Xt - Xt-1 = µt, hence to a stationary process whenever, ρ=1.  The augmented Dicky and 
Fuller non-stationarity test (SAS CODE 1) indicated the presence of non-stationary in the TP series at 5% level 
(p<0.0001).  First differencing was found adequate to correct data for non-stationarity (SAS CODE 2).   First 
differencing corrected the data for non-normality and non-stationarity.  The normal histogram plot of the overall TP 
series after first differencing shows normality (hence linear) in first differenced series (Figure 7).  Significant non-
linear autocorrelations existed in the TP series (p<0.0001) (Figure 8), that were removed by first differencing the 
series (Figure 9).  Box plot of distribution of TP by site after first differencing is shown in Figure 10.   

 
 

SAS® CODE 1
PROC ARIMA DATA=comp; 
      IDENTIFY VAR=TP(1)  
      STATIONARITY=(ADF=(1,2,4,6,12))  
      CROSSCORR=(Summer X1 STP Alkalinity   
       DOC DO SF Temp pH); 
      ESTIMATE P=(1)  Q=(1) NOINT  
      OUTLIER MAXNUM=5 ALPHA=0.01; 

 
SAS® CODE 2 

 
DATA comp; SET comp; 
   TP=DIF(TP); 
 RUN; 

 
 
 
 
 
 
 
 
 
 
MISSING VALUES 

 
Missing values are an issue in time series analyses.  Most time series models (both linear and nonlinear) 

require non missing data.  Performing analyses with incomplete cases also ignore possible systematic differences 
between the complete cases and the incomplete cases, and the resulting inference may not be applicable to the 
population of all cases, especially with a small number of complete cases.   PROC MI in SAS® was used to correct 
the data for missing values using the Markov Chain Monte Carlo (MCMC) method (Schafer 1997) that assumes 
multivariate normality (SAS CODE 3).  MCMC method requires the assumption of an arbitrary missing pattern to 
impute all missing values.   
 

          

SAS® CODE 3 
 
PROC MI DATA=comp SEED=21355417 
NOINT NIMPUTE=6 MU0=50 10 180    
   OUT=outmi;   
MCMC CHAIN=multiple DISPLAYINIT  
   INITIAL=em(ITPRINT);    
 VAR TP Alkalinity DO2 DOC STP  
     SF pH Temp; 
 RUN; 

 
Figure 7: Histogram of the first differenced 

TP at all sites 
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Figure 8: Autocorrelation function plot of non-
differenced outlier removed TP series  

Figure 9: Autocorrelation function plot of first 
differenced outlier removed TP series  

 
 
 
 

                    
 

Figure 10: Box plot of distribution of first 
differenced outlier removed TP 

 
 
 
 
 PROC MI performs multiple imputation of missing data.  Which means instead of filling in a single value for 
all missing points each missing value is replaced with a set of plausible values that represent the uncertainty about 
the right value to impute.   
      
 
 
 
 
 
 
 
 
 
 

 
 

SAS® CODE 4 
 
PROC UNIVARIATE DATA=outmi    
             NORNALTEST;    
     VAR TP;  
     HISTOGRAM TP /   
     NORMAL(COLOR=  
       yellow w=3) 
     CFILL= blue  CFRAME=ligr  
     NAME='First differenced  
       TP at Truckee River'; 
     OUTPUT OUT=outuni MEAN=  
    MTP STDERR= STDTP; 
 RUN;    
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Figure 11: Autocorrelation function plot of the 
square transformed outlier removed first-

differenced TP 

Figure 12: Autocorrelation function plot of 
exponentially transformed outlier removed 

first-differenced TP 

          
 

 

SAS® CODE 5 
 
PROC MIXED DATA=MONTHLY METHOD= 
   ML COVTEST; 
CLASS SITE DATE; 
MODEL TP= DOC DO SF pH STP    
    SUMMER X1 TEMP Alkalinity  
    DO*SF DOC*SF pH*DOC  
    X1*SF Temp*SF pH*SF 
    Alkalinity*DO Alkalinity*SF  
    Alkalinity*DOC Alkalinity*STP 
   /INFLUENCE EFFECT=SITE) S; 
REPEATED /TYPE=CS SUBJECT=SITE R; 
RUN; 

 
 
 
 

Figure 13: Autocorrelation function plot of log 
transformed outlier removed first-differenced 

TP 

Multiply imputed data sets can be analyzed by using any standard procedures for complete data combining 
the results from the analyses.  Multiple imputation, also does not attempt to estimate each missing value through 
simulated values.  Instead, a random sample of missing values, are drawn from its distribution. This process results in 
valid statistical inferences that properly reflect the uncertainty due to missing values; for example, confidence 
intervals with the correct probability coverage.   In addition multiple imputation inference assumes that the model 
(variables) used to analyze the multiply imputed data is the same as the model used to impute missing values (the 
imputer's model) which may not be the case actually.   Multiple imputation variance information and imputation 
parameter estimates were obtained for all variables from MI procedure.  Results indicated high efficiency of the 
MCMC method (relative efficiency varied between 0.86 and 0.99935).  Relative increase in variance was zero for all 
variables.  Imputation estimates were highly significant at the 5% level (P<0.0001).for all variables.   
 
UNIVARIATE ANALYSIS FOR NORMALITY  
 

A univariate normal analysis was performed using PROC UNIVARIATE with the NORMALTEST) (SAS 
CODE 4) option in SAS® on the combined (over six sites) outlier removed first differenced TP series (hereafter 
referred as TP) to obtain the overall basic statistical measures (mean, standard deviation etc.) of the data (Table 1) 
and to test the variable for normality using standard normality tests (Anderson-Darling, Kolmogorov-Smirnov etc.) 
provided in SAS® (Table 2).  The probability of all test statistics are smaller than 0.05 (Table 2) and the hypothesis of 
normality of the data was accepted.  A histogram of the variable (TP) was also requested using the HISTOGRAM and 
NORMAL options with a normal curve superimposed on the histogram (Figure 7).   
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NON LINEARITY  

 A simple yet powerful way to identify non-linearity in time series data is to plot the auto correlation function (ACF) of 
the non-linearly transformed (square, exponential, log) normal (hence linear) series.  Significant spikes in the ACF 
plot at specific lags in the non-linearly transformed linear series indicate the presence of non-linearity.  ACF plots of 
the linear first differenced TP series were obtained after non-linearly transforming (squared, exponential, log) the 
series.  ACF plots indicate the presence of non-linearity in the TP series (Figures 11, 12, and, 13),    Relationship of 
one or more of the independent variables to the dependent variable is non-linear.  Appropriate non-linear model has 
to be identified through trial and error.         

SEASONALITY AND MAN-MADE INTERVENTION MODELING 

Influence of summer (summer) and winter (winter) seasonality and man-made intervention (X1) on TP 
concentration were considered for inclusion in the linear and non-linear mixed effects models as explanatory 
variables along with other independent variables.  TP values above six times the compliance level (0.3) were 
considered extreme and a man-made intervention on these observations was calculated.  X1, summer and winter 
variables were computed as shown below for the mixed effects models as explanatory variables.  Only the summer 
seasonality variable was used in the final model since the influence of the winter on TP was the negative of the 
influence of summer on TP.      
  

 X1 =  ‘man made intervention’ ;   summer = ‘summer months’;  winter = ‘winter months’ 
X1 = TP >0.3; summer = ( 5 < mm < 11 ) * ( year > 1995 ); winter = ( year > 1995 ) - summer;

 
 
 
LINEAR MIXED MODEL APPLICATION 
 

A linear mixed model was fitted to the combined time series data to analyze the overall and cross sectional 
influence of the independent variables on TP in Truckee River.  SAS® procedure MIXED was used with the 
REPEATED option to analyze the effect of all independent variables.  The REPEATED statement assumes that the 
observations are ordered similarly for each site.  The TYPE=CS option specifies a compound symmetry (CS) 
covariance structure for each SUBJECT=Site (SAS CODE 5).  The CS covariance structure was tested (likelihood 
ratio tests) against and found superior to Unstructured (UN), first order Autoregressive (AR(1)), and Exponential error 
structures.  The CS structure has two covariance parameters and a common variance with a diagonal enhancement 
that results from 50*50 compound symmetric structured blocks.  The overall mixed model contains 6 cross sectional 
sites and 96 time series data values within sites.  The R matrix (variance/covariance matrix) is, therefore, block 
diagonal with 6 blocks, each block consisting of identical 50×50 cross sectional matrices and the data are balanced.  
The R option with REPEATED requests that the first block of R be displayed (SAS CODE 5).   

Model convergence was achieved in 4 iterations.  Overall model was significant.  Individual cross sectional 
effects of the six sites are shown in Table 3.  All sites contribute significantly at 5% level to overall TP concentration in 
Truckee River.  Model fit statistics show adequate statistical fit of the model (Table 4).  Overall influence of DOC, DO, 
SF, STP, X1, and Temp on TP concentration are highly significant at the 5% level (p<0.05, Table 5).  The two way 
interaction effects among all the independent variables studied were highly significant at the 5% level (p<0.05). 
Seasonality (summer), pH and DO are negatively correlated to TP (Table 4).  All other independent variables are 
positively correlated to TP.  DO is negatively correlated to TP concentration as expected.  The relationship between 
pH and TP, alkalinity and TP and seasonality and TP could not be predicted by the linear mixed effects model.  
These relationships may be non-linear.  Scatter plots of TP versus pH and TP versus alkalinity of observed outlier 
removed data were obtained for further analysis for non-linear model fitting (Figures 14 and 15).  TP does not change 
with pH.  Larger TP values are associated with larger alkalinity values.  The positive linear relationship prevalent 
between TP and alkalinity cannot be predicted by the linear mixed effects model.  The effect of seasonality also could 
not be predicted by the linear mixed model.   
 
NON-LINEAR MIXED MODEL APPLICATION 
 

Non-linear mixed effects model was fitted to the data using PROC NLMIXED.  According to the non-linear 
mixed model (SAS® CODE 6) larger number of independent variables significantly (at 1% level) influence TP in 
Truckee River (Table 6) than predicted by the linear mixed model (Table 5).  Larger percent of the variation in the 
data was explained by the non-linear fixed effects compared to the linear fixed effects at 1% significance level 
(p<0.0001).  According to the non-linear mixed model pH (p<0.0001) and alkalinity (ALK.) (p<0.0001) significantly 
influence TP in Truckee River at 5% level.  Results indicate that non-linear effects could be important in time series 
regression and modeling.  Parameter estimates of all the studied independent variables are highly significant at 1% 
level (Table 6).  Much smaller gradients that are significant at the 1% level were detected (Table 6).  Model diagnostic 
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statistics are much smaller compared to that calculated for the linear mixed effects model (Table 7).   Model 
convergence was achieved in 73 iteration steps with the selected optimization technique.   
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Figure 15: Scatter plot of TP versus 
alkalinity of outlier removed first-

differenced TP 

Figure 14: Scatter plot of TP versus pH 
of outlier removed first-differenced TP 

Model predicts observed TP fairly accurately (Figure 16).  The Contribution from individual cross sectional 
sites to overall TP in Truckee River is highly significant (p<0.0001) at 1% level of significance (Table 8).  All six sites 
contribute positively to overall TP concentration in Truckee River.  DO at SC and LW are negatively significantly 
(p<0.0001) correlated to TP in Truckee River at 1% level (Table 8).  SF from NTD positively significantly (p<0.0001) 
influences TP in Truckee River.    

 
FITTED NON-LINEAR MIXED MODEL  
 
 The following non-linear model was found adequate and superior to linear mixed models to predict TP in 
Truckee River.    
          SF=log(abs(SF));   
            Summer=exp(Summer-12); 
   X1=exp(X1-12); 
  Alkalinity=(1-Alkalinity); 
   Temp=(1/(1-Temp)); 
  DOC=log(abs(1/DOC)); 
          DO=exp(DO); 

 
             TP =       beta1+ beta2*DOC + beta3*DO + beta4*SF +  beta5*pH + beta6* STP + beta7*Summer +  
                            beta8*X1+beta9*Temp + beta10*Alkalinity + beta11*DO*SF+ beta12*DOC + beta13*doc*ph +  
                            beta14*pH*SF + beta15*X1*SF + beta16*Temp*SF + beta17*DO*STP + beta18*STP*SF +  
                            beta19*Alkalinity*DO2 +beta20*Alkalinity*SF + beta21*Alkalinity*DOC +    
  beta22*Alkalinity*STP            [1] 
  
The description of the coefficients (betas) in the above model (Eq. 1) and their estimates are given in Tables 6.     

 

 10

Data Mining and Predictive ModelingSAS Global Forum 2008

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 

 
 
 
 
 
     
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 11

Data Mining and Predictive ModelingSAS Global Forum 2008

 



 
 
 
 
 
     
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
      

 
 
 
 
  

SAS® CODE 6
 
PROC NLMIXED DATA=MONTHLY QPOINTS=10 ALPHA=0.05 TECH=QUANEW; 
 BY SITE; 
   PARMS  
      beta1= 0.000246 beta2= 0.006199 3 = -0.000000548    beta
      beta4= 0.0000000 beta5=-0.0000002455 beta6= -0.7867 
      beta7= 0.1 beta8= 0.03665 beta9= -0.00066 +  
 beta10=-0.002 beta11=0.000003854 beta12=0.0000000898 
 beta13=-0.00337 beta14=-0.00000857 beta15=0.00002  
      beta16= 0.000003042 beta17=0.01493 beta18=0.000105  
      beta19= 0.00004 0.000000004743 0.000015   beta20=  beta21=
      beta22= 0.000965 g11=-0.001428 to 0.02 by 0.001 
      g12=-0.001 to 0.01 by 0.001; 
  
        SF=log(abs(SF));   
        Summer=exp(Summer-12); 
   X1=exp(X1-12 ; )
   Alkalinity=(1-Alkalinity); 
   Temp=(1/(1-Temp)); 
   DOC=log(abs(1/DOC)); 
        DO=exp(DO); 
  
  eta=  beta1+ beta2*DOC + beta3*DO + beta4*(SF) +    
         beta5*pH + beta6* STP + beta7*(Summer) + beta8*X1 +  
         beta9*Temp + beta10* Alkalinity + beta11*DO*SF + 
         beta12*DOC + beta13*DOC*pH + beta14*pH*SF +  
         beta15*DO*SF + beta16*Temp*SF + beta17*DO*STP +  
         beta18*STP*SF + beta19*Alkalinity*DO +  
         beta20*Alkalinity*SF + beta21*Alkalinity*DOC +  
         beta22*Alkalinity*STP; /* +b1; */ 
  num= eta; 
  mu=  num;   
 
    MODEL TP ~ NORMAL(mu,g12); 
  /* RANDOM b1 ~ NORMAL(0,g11) SUBJECT=SITE;*/ 
    PREDICT mu OUT= predmean; 
    CONTRAST 'LW vs MB' beta26-beta23; 
 ODS SELECT CorrMaTParmEst CovMaTParmEst;*/ /*
RUN; 

 Results of mean variable contrasts indicate that mean TP at LW site is significantly larger (p<0.05) than 
mean TP at MB and WB, and significantly smaller (p<0.05) than the mean TP at SC, and NTD at 5% level of 
significance (Table 9).  Mean TP at LW, SC, NTD, and DD are also significantly different from the overall mean TP in 
Truckee River.  Observed and model predicted mean TP values at each site are shown in Table 10 for comparison.  
Predicted mean TP at SC and NTD are significantly larger (p<0.0001) than overall mean TP and significantly smaller 
(p<0.0001) than overall mean TP.  
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Figure 16: Observed versus model 
predicted TP in Truckee River (non-

linear mixed model) 

 
 
 
 
CONCLUSIONS 

 
Non-linearity in fixed and random effects in continuous time series data can affect the conclusions drawn 

from the results of time series regression. Cross sectional variation in water quality is a key factor in non-point source 
pollution control studies. Time series data need be tested and corrected for non-linear autocorrelations before 
performing a regression analysis. An alternative approach is to fit a non-linear model to the observed time series 
which was the approach used in this study. PROC NLMIXED was used to include non-linear terms in mixed effects 
models. Results from the non-linear mixed model were compared to that obtained from the linear mixed effects 
model. According to the results the non-linear modeling approach is much superior to the linear mixed effects 
modeling approach. Much larger portion of the total variation was explained by the non-linear mixed effects model. 
NLMIXED procedure is a powerful technique for fitting non-linear mixed models to continuous time series with 
multiple independent variables.     
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