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Abstract 
Regulations governing the pharmaceutical industry require extensive metadata to support datasets and displays 
when submitting a New Drug Application (NDA) to the US Food and Drug Administration (FDA).  In two previous pa-
pers we outlined the metadata architecture needed to support a large and complex project as well as how the meta-
data is used throughout the life cycle of a project.  We also demonstrated how well-designed and easily-accessible 
metadata improves work flow, efficiency, and project management throughout the life cycle of a project. 

This paper builds on the previous two papers and discusses lessons we have learned as the scope, user base, and 
complexity of our metadata systems have increased.  Topics include: metadata design; user interface; developing 
tools to access the metadata; repurposing metadata throughout the life cycle of a project; and software development 
and maintenance issues.  These topics should be of interest to those who are just starting to develop metadata-
based systems as well as those who have implemented such systems and are being challenged and perhaps a bit 
beleaguered by their maintenance. 

Organization 
A simple approach to preaching the gospel of metadata would be to present a list of do's and don'ts based on our 
experience.  This is easy to write, readily rendered in PowerPoint, and reasonably valuable to programmers and 
analysts interested in metadata-driven applications.  This method of presentation is inadequate, in our view, because 
it doesn't adequately describe how we arrived at the lists.  The story of why our current, effective toolset looks the 
way it does is replete with success stories and a "not small" number of miscues.  A discussion of the rationale for our 
decisions during the system's evolution is far more valuable than a simple set of guidelines. 

Thus we structure the discussion as follows.  We divide the evolution of the system into five stages.  For each stage, 
we describe the internal and external challenges that needed to be addressed.  We also identify the metadata that 
was developed or enhanced, tools that we developed to access the metadata, solutions that worked, solutions that 
failed, and other aspects of development that had both expected and unanticipated repercussions (we never would 
have imagined in 2001, for example, that XSL and VBA would be cornerstone technologies for some of the subsys-
tems). 

We place emphasis on key lessons learned at each stage, and deliberately avoid detailed discussions of how the 
solutions were coded.  Even though the programming was challenging and our solutions often had a significant "gee 
whiz" factor, we want to focus here on how issues emerged and were resolved during each phase, and what we did 
to address them.  This, ultimately, is more valuable at an organizational level than discussing the in's and out's of, 
say, creating XSL and Javascript to sort a table in an HTML file, cool though that may be. 

Background 
In its early years, Rho was a contract research organization (CRO) working on relatively small pharmaceutical data 
management and statistics projects.  A project usually consisted of: data management activities; creating an analysis 
plan; creating analysis datasets; and producing dataset listings, and statistical tables and figures.  We usually had no 
more than 25 simultaneous projects. 

During this time, each project was configured on an individual basis.  The set up was influenced by the preferences of 
the project's statisticians and programming team.  Specifications for the creation of analysis datasets (source or deri-
vation of variables, variable attributes, etc.) were stored in Microsoft Word™ documents.  This meant that the "data 
about the data," the project metadata, was not stored in a programmatically accessible format.  That, in turn, meant 
that it could not be re-purposed (used by different programs for different purposes throughout the project life cycle).  
Descriptions of the content and layout of graphic and text-based displays were also entered in Word.  Here again, the 
Word documents were comfortable and familiar tools for the biostatisticians writing the specifications, but the 
document format proved to be a limiting environment, for reasons we will describe later. 

The Word-based work flow meant that variable names, labels, and other attributes were either manually copied from 
the specification document into a program or entered manually.  Changes made to the specifications had to be identi-
fied and made in all of the associated programs.  If, for example, a footnote change affected ten programs, the 
change had to be manually made to all ten programs.  Obviously this was not a very efficient process and not what 
we wanted programmers and statisticians spending time on (and it was certainly not what programmers and 
statisticians enjoyed spending time on, either).  While this was not the most time or cost-effective process, it worked 
for managing a relatively small number of single study projects. 
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CRO versus Pharma.  It is worth noting here the distinction between Rho's status as a CRO versus a pharmaceuti-
cal company.  A pharmaceutical company is relatively self-contained and can implement fairly small range of meth-
ods for handling work flow.  The CRO, by contrast, provides services to many clients.  This means that it must be 
prepared to enter data in-house, accept data from the pharma company or vendors, sometimes in multiple formats.  
Throughout the project life cycle, the CRO must be responsive to different pharma companies' ways of handling data 
validation, dataset and display specifications, and even what is sent as part of the submission package to the FDA.  
The greater the number of clients, the greater the range of dealing with even the most basic tasks.  Even though our 
goal is always the same – timely delivery of a quality product – there are often pronounced differences in how we 
arrive there.  Metadata-based systems are a critical technology that allows Rho to have the requisite flexibility to 
compete in the CRO marketplace. 

Moving Out of "Stage 0".  About six years ago, we began an NDA submission project involving almost thirty studies. 
For each study, we were required to produce a database consisting of the raw (collected) data, a database containing 
derived or analysis datasets based on the raw data, documentation ("define" files in FDA parlance) describing the 
distinct databases, data displays and associated documentation, and a clinical study report.  We also had to produce 
an integrated database of data from all thirty studies and data displays summarizing the integrated data.  In total, this 
project required us to produce about thirty study-level databases, an integrated database, over one thousand dis-
plays, and documentation in the FDA-prescribed format.   

Given the complexity and sheer volume of this project, we realized that our current processes and tools were likely 
not going to work.  We needed standardization across projects, the ability to handle constantly changing specifica-
tions, the ability to easily modify variable attributes to conform to FDA regulations, a mechanism to easily drop or re-
format variables, and the ability to repurpose metadata throughout the life cycle of the project.  In other words, we 
sensed the need for technology that would allow us to handle the demands of a high volume of new and differently-
formatted deliverables. 

Stage 1 
Our initial metadata system was born out of the need described above.  Since this was a tool to be used primarily by 
SAS™ programmers and statisticians and to be utilized by SAS programs to create SAS datasets and data displays, 
our initial metadata was stored as a collection of SAS datasets.  Metadata was entered and viewed using the native 
SAS Viewtable window. The SAS/Share server allowed multiple users to edit simultaneously.  The metadata con-
sisted of four datasets: STUDIES, DATASETS, VARIABLES, and TABLES. 

The STUDIES dataset had a structure of one record per study and contained data about each study that: 
• described the design of each study 
• described the phase of each study 
• identified the network location of each study 
• provided the location of the components of each study (i.e. analysis datasets) 

DATASETS held dataset-level metadata, one record per dataset in the study.  It contained fields that: 
• describe the contents and structure of the dataset 
• discuss how the dataset was created (essentially background material useful for programmers) 
• list variables that uniquely identify an observation in the dataset 
• filter a dataset, identifying whether it should be included in particular types of output; a dataset may be part of an 

Integrated Safety Summary (ISS) database but not an Integrated Safety and Efficacy (ISE) database, for 
example 

• text fields to enter comments about the dataset and any known quirks in the input dataset 

The VARIABLES metadata is the companion to DATASETS.  For every dataset in the DATASETS metadata, 
VARIABLES contained: 
• descriptors such as type, length, format, and label 
• if “raw” data, the source page number in the Case Report Form (the principal, paper-based data collection in-

strument) 
• if derived data, a narrative of how the variable is created 
• controlled terms or codes 
• the desired variable order when writing datasets for FDA submission 
• filter variables that facilitate selection of variables for different types of output 

The TABLES metadata group describes key features of each display.  The TABLES dataset contained: 
• display type (Table, Figure, Listing) 
• display number 
• titles 
• datasets used by the table 
• location of the display and display program 

These four metadata datasets were a good start to creating a metadata system and gave us some much needed new 
capabilities. At the study level we were able to programmatically: 
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• allocate dataset libraries 
• find specific study directories 
• select the studies needed for a particular analysis (i.e. all Phase I studies) 
• determine what stage a study was at (i.e. ongoing or final data received) 

At the dataset set level we gained the capability to: 
• Provide information to both programmers and the FDA from a single source (such as a description of the dataset, 

the structure of a dataset, and the key fields for a dataset) 
• Programmatically select the datasets required for a specific database 

The VARIABLES metadata had the potential to provide the most functionality: 
• Provide information about each variable to both programmers and the FDA from a single source. This dataset 

was used to provide specifications to SAS programmers and to generate the all-important “define file” required 
by the FDA. 

• Programmatically select the variables required for a specific dataset 
• Programmatically derive variable attributes from the dataset specifications. This not only saved a tremendous 

amount of valuable manual labor, but also allowed us to easily deal with constantly changing specification 
• Programmatically allow us to rename, re-label, recode, and remove user-defined formats from variables to meet 

NDA requirements 

At this stage, the metadata system was primarily used for datasets and variables and was only used for the single 
NDA submission project.  Program-driven use of the metadata was limited: we generated code fragments to rename, 
relabel, and reformat variables to meet regulatory standards.  Once datasets were finalized, the metadata was used 
to generate the transport datasets and “define files” required for the submission.  Specifications for creating analysis 
and raw datasets in other, single-study projects were still being manually copied from Word to SAS datasets. 

 

Stage 2 
After the completion of the NDA project, the metadata system lay dormant for about a year and was not used for 
other, smaller projects.  When we were awarded the contract for a second NDA project we decided to evaluate the 
metadata, tools, and work processes used during the our first project.  In addition to revising NDA-specific and 
generalized tools in our library, we conducted focus groups with programmers and statisticians.  These meetings 
helped us determine how we could improve the system and understand why it was not being considered for use in 
the more typical single-study projects.  This led to the improved Stage 2 system.  We addressed problems with the 
existing system, specifically: the metadata entry user interface; the lack of metadata tools; and improving the content 
of some of the metadata datasets. 

The Importance of the Interface.  The most significant lesson from the focus groups was to pay close attention to 
the metadata entry interface.  Statisticians, who were used to entering specifications in Word, disliked the SAS 
interface.  It was clunky and had none of the editing capabilities of Word.  Our first Stage 2 task was to experiment 
with alternative interfaces.  Microsoft Excel™ seemed quite popular among other companies in the pharmaceutical 
industry, and so warranted investigation. 

Excel provided users with many of the editing tools that they had become accustomed to using Word.  Users pre-
ferred the Excel interface to SAS, since data entry was faster and easier and the Microsoft Office paradigm was fa-
miliar.  Additionally, SAS provided tools for easily reading Excel tables, thus keeping the specification document in a 
programmatically accessible format.  While there were several significant advantages of using Excel, there were also 
some noteworthy shortcomings, most notably an inability to allow multiple users to edit a spreadsheet.  We also 
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found that in some instances, SAS produced errors while reading Excel tables.  Finally, Excel did not contain any of 
the security features of a true database. 

Next we decided to test Microsoft Access™.  It had many of the features that we liked about Excel plus many 
additional capabilities.  Like Excel, Access provided a user-friendly interface, many of the familiar editing tools of 
Word and Excel, and transparent access of tables and queries by SAS.  Access also offered: 
• a multi-user interface 
• a true relational database 
• customized forms for data entry 
• the ability to create a Web front end interface 
• remote access capability 
• the ability to use Visual Basic for Applications (VBA) to perform rudimentary error checking 
• the ability to auto-populate fields 
• improved data integrity 
• an audit trail which could log changes to the metadata 

At this stage we only utilized the basic features of Access.  We created a simple form for each metadata table with a 
handful of fields containing drop down boxes and checkboxes. 

The Need for Tools.  The second lesson we learned from our focus group sessions was the importance of metadata 
tools.  Our users pointed out that for small and medium sized projects you would not gain efficiency – indeed, you 
would likely become less productive – if there were no applications to make access to the metadata more or less 
transparent. 

To underscore the need for access tools, consider the programming requirements needed for accessing metadata 
that describes a display such as a statistical table.  The table number must be located in the DISPLAY metadata.  We 
must also gather and correctly sequence the footnotes from the FOOTNOTES table.  Finally, we retrieve standard 
headers and footers from the GLOBAL table.  Once all the pieces are identified, they need to be presented to the 
table-writing program in an agreed-upon format (macro variables, datasets, etc.).  To be thorough, we should add 
checks to ensure data quality – are all the footnotes in the DISPLAY table actually present in the FOOTNOTES ta-
ble?  Do we have complete title text?  And so on. 

We could, of course, write code in each table program to perform these actions.  More likely, we would want a tool 
that would do the work for us, reading the required tables, and creating a set of macro variables that would make the 
metadata readily accessible.  The process to create macro variable for Table 10.1 should be as simple as: 

%getSpecs(type=table, id=10.1) 

The macro would perform all the activities described above, and would produce diagnostics that would quickly give 
the table programmer an indication of success or failure.  The SAS Log would contain messages showing what, ex-
actly, was successfully retrieved by %getSpecs and what was cautionary or problematic. 

Clearly, a library of tools for display generation, LIBNAME assignments, option setting, and the like were needed.  So, 
in this stage we began to develop general purpose utilities to interact with the metadata.  This included tools to: 
• obtain a list of all datasets for a project 
• obtain a list of variables to include in a given database 
• rename and re-label variables based on the metadata 
• drop variables to be excluded from a given database 
• produce dataset specifications in a user-friendly format 
• check the metadata and compare the metadata to the data 
• access the metadata needed for a given display 

Richer Metadata.  The third lesson related to the metadata tables.  Users asked for additional fields and the refine-
ment of existing fields.  So, new fields were added to each of our metadata sets and the interface was improved for 
several existing fields.  During this stage, the TABLES metadata dataset underwent the largest overhaul.  Fields were 
added to this dataset to automate the programming of data displays.  These new fields combined with newly devel-
oped metadata tools allowed programmers to easily use titles, footnotes, population variables, subsetting statements, 
and stratification variables from the metadata.  This meant that changes to display specifications could be made by 
research assistants (or non-programmers) in a single location, instead of programmers having to identify changes in 
the specifications, find all programs that were affected, and make modifications to each of these programs. 

The changes we made during Stage 2 led to wider usage of the metadata system.  While use of our metadata system 
was not required, over time more small to medium-sized projects began to use metadata and realize the efficiencies 
gained by its use. 
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Stage 3 
The efficiencies gained by the earlier metadata systems led to usage on a company-wide level several years ago.  
Use of the metadata entry system become mandatory.  Also, study setup routines were made more generalized (for 
single as well as multiple-study projects) and the directory structure that they created conformed to our newly-
adopted corporate standards.  Thus Stage 3 is characterized by standardization. 

Implications of Standardization.  Standardization begets uniformity, making it easier for programmers and statisti-
cians to move from project to project, a not-trivial consideration in the "fluid" CRO environment.  LIBNAMEs have 
identical meanings, directory structures are similar, and the familiar metadata user interface all send a message that 
while the project may be new to the statistician or programmer, the look and feel is not. 

Standardization also meant a larger user constituency and a wider range of user requests that had to be satisfied.  
One of the key features that had to be implemented was the creation of user-friendly Access forms to make metadata 
entry easier.  Based on statistician feedback, we improved the user interface's screen navigation, added more 
sophisticated error trapping, and provided fields useful on both project-specific and corporate levels. 

As we learned in Stage 2, metadata without transparent end user access is at least one step backwards in productiv-
ity.  As the metadata contents stabilized, we continued developing easily-used tools to provide access to statisticians 
and programmers. 

Tool Building.  An attendant part of the spec writing process was creating a spec document for the programmers.  A 
macro, %printSpecs – was developed to create a PDF or RTF that clearly displayed the variables that needed to 
be created for a dataset.  Color-coding and other text rendering techniques were used to highlight important items.  
Recalling our experience from earlier projects (most notably, "live by the metadata, die by the metadata"), we devel-
oped a macro to examine the metadata for consistency.  Among other tests, it examines the metadata for: 
• like-named variables with different attributes (e.g., variable SUBJID has length 12 in dataset AE and length 15 in 

dataset CM) 
• variables with attributes that are not suitable for FDA submissions (i.e., those that are not acceptable in SAS 

transport files) 
• other conditions which could not be readily programmed in the Access user interface 

We also wrote several programmer-oriented macros, among them %ATTRIB.  It reads metadata for a dataset and 
creates fragments of ATTRIB, KEEP, and LENGTH statements.  This relieves the programmer from having to manu-
ally create labels, assign formats, and other variable-attribute related tasks.  This is especially helpful when attributes, 
or even the inclusion of the variable in the dataset, can change frequently.  With the metadata-driven approach, all 
that has to change is the metadata and the %ATTRIB macro calls remain the same.  That is, changes are made once, 
"upstream" in the work flow, rather than manually and possibly many times further "downstream" in the process. 

Generalized Tools.  Several other factors influenced tool development during this time.  Unlike the earlier, deadline-
driven NDA projects, we now had the luxury of at least a little bit of time.  We removed project-specific coding from 
the macros and screens, and ended up with a suite of generalized tools, written without any study-specific 
references.  The transition from coding for a specific study to all possible studies presented a number of programming 
and design challenges.  The benefit of generalization is that the macros, over time, became written in a consistent 
and bullet-proofed manner, following a set of internally-developed Best Practices. 

An outgrowth of the generalized metadata tools was the parallel growth of a library of low-level macros appropriate 
for both metadata and other applications.  Some of the tasks addressed by these macros were: 
• count the number of observations in a SAS dataset or Access table 
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• create macro variables containing the count and distinct values of a variable in a dataset 
• enclose individual tokens in a macro variable in quotes, optionally converting them to upper case 
• build datasets containing variable and dataset attributes in a library 
• given two macro variables containing blank-delimited lists, create counts and macro variables for tokens ap-

pearing in one or both lists 
The macros performed extensive error-trapping, so if there are problems at the start of or during execution, they and, 
in turn, their calling program, could fail gracefully and clearly inform the user of the reasons for failure.  Aside from 
their impact on metadata tool development – more robust applications developed faster with less coding – it is inter-
esting to note something that we did not anticipate.  This period saw the development and refinement of a great num-
ber of generalized, low-level tools, while other stages did not.  That is, the focus of our development efforts changed 
over time, driven by internal and external (client, FDA) needs. 

Training.  As the number of tools grew, so did the need for tool documentation and training.  We developed presen-
tations and documentation that described metadata entry and use of the %attrib and other macros.  There was 
also a growing need for internal documentation that described how the different subsystems (project initialization, 
program setup, and others) were related.  This is an ongoing process whose final form is still undecided. 

Variety of Tools.  The scope of activity described above hints at one of the other key lessons we learned during this 
exciting and challenging time: "it's just not SAS any more."  In order to provide the range of output that both internal 
and external clients required, we had to become newly or more deeply conversant with new tools and techniques.  
Among these were: a better knowledge of Access forms and database design, VBA, and some familiarity with PDF 
and RTF internals (the latter because some clients wanted FDA deliverables in this format).  A skill that is less 
tangible but is essential to success is a good aesthetic sense.  If the metadata entry screens were badly designed 
and cryptically worded, their acceptance would have been slower. 

Stage 3 – “Standardization” – Summary of Changes and Enhancements

Statisticians
Programmers

datasets
variables
project 
configuration

SAS
Access
VBA
RTF, PDF

Improved 
Access forms

Online help

Macros to:
validate metadata
create specification document
create SOP-compliant directory structure
create label, other statements directly 
from metadata

Standardized directory structure, naming conventions improves statistician, programmer productivity
Continually enhance tool set, applications based on user feedback and R&D team members’ usage of tools when 
they were needed for project work

Application functionality and effectiveness is greatly enhanced when other languages/technologies are used. Even 
staying within SAS “box,” still need to have some knowledge of other file formats’ structure.

User Base MetadataSkill Set Interface Key Applications and Tools

Lessons

 

Stage 4 
We felt that the generalized, study-independent code written during Stage 3 benefited a large portion of the internal 
user community: project initialization became routine, and was usually delegated to administrative aides; metadata 
entry and display was performed using stable tools; and a variety of ad hoc tools was developed to meet some of the 
more unique and unanticipated needs of both internal and external clients. 

SDTM: New External Standards.  This standardization and responsiveness was tested when we began dealing with 
a new set of requirements, this time coming from an external source.  During 2006 we began receiving requests from 
clients to produce data and documentation compliant with the Clinical Data Standards Interchange Consortium 
(CDISC) Study Dataset Tabulation Model (SDTM) specification.  Prior to this, our main compliance focus was on FDA 
submissions, which emphasized formatting and documentation of datasets and left dataset and variable naming and 
content to the discretion of the applicant. 

The SDTM introduced a new layer of complexity, namely the control of dataset structure and variable content.  Prior 
to the introduction of these standards, a variable representing a subject's date of birth might be called BDAY, stored 
as a SAS date variable with a label of "Date of birth (YY/MM/DD)."  By contrast, the SDTM model required variable 
BRTHDTC, a label of "Date/time of birth of the subject" and a value stored in a format compliant with the ISO 8601 
standard.  The preferred format for documentation was XML formatted according to a variety of schemas and 
transformed by XSL.  These and a host of other requirements had an impact that was felt from data capture through-
out the system to final deliverables. 
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Fortunately, these requirements were introduced into our work place at a time when it had become metadata-centric.  
Also, the SDTM specifications were partially implemented in an electronic format that was easily converted to our 
metadata structure.  To meet the demands of the SDTM standard, we revamped some applications and developed 
entirely new ones as needed.  The metadata and its Access-based interface were largely rewritten for several 
reasons: 
• SDTM required more tables than our earlier models 
• SDTM had metadata fields that could not be changed for some datasets 
• Some variables were required by the standard, and so could not have the "Include this variable" box unchecked 
• The extra metadata and the need to join tables in the interface introduced the need for new VBA code and Win-

dows API calls. 

Given our experience with the evolution of the non-SDTM interface, and with knowledge of the SDTM implementation 
guidelines in hand, we were able to write the first version of the SDTM interface with a considerable amount of error-
trapping. 

Other familiar tools were rewritten and modified, using the older tools as a starting point.  The spec-printing macro 
was modified for the new fields and tables.  We also developed metadata QC tools and modified the %ATTRIB macro 
to process the SDTM metadata. 

New Client Deliverables.  One of the unanticipated side effects of the new standard was that clients unfamiliar with 
the CDISC requirements required more documentation of our processes.  In order to keep the client informed about 
the various mappings, transpositions and other transformations required by the SDTM model, we began delivering 
%printSpec output.  In other words, what began as an internal tool for the biostatisticians and programmers now 
became a deliverable to the client.  A variety of clients leads, in turn, to a variety of ways the clients wanted to see the 
metadata.  Thus the spec-printing program had options added on that controlled the file format (PDF or RTF), color-
coding, and other features.  Everything, it seemed, was in play and in flux: the format of the data, the way in which we 
documented it for the FDA, and even the internal (now also external) presentation of the metadata. 

Changes to Metadata Content.  During this time, the analysis metadata tools continued to be enhanced.  These are, 
after all, the heart of the FDA submission package, the basis for the statistical tables and figures from which safety 
and efficacy will be determined.  Based on feedback from biostatisticians and programmers, we continued to enhance 
the metadata and the user interface to the metadata.  One of the key improvements was a variable definition reposi-
tory.  This let the user say, in effect, "I'm defining the Adverse Event table for study 104 in this project. It looks a lot 
like study 102.  I can use the repository to copy the metadata from 102 into 104, then tweak the definitions for the 
particular needs of the study." 

This has the potential to save enormous amounts of biostatistician data entry time.  Other metadata enhancements 
also meant that we began to be bogged down with legacy applications: the common spec printing and validation tools 
had to work with the older systems as well as the newer, feature-rich ones.  We realized only after the fact that we 
had become software developers without a true appreciation of the need for versioning and change control.   

Part of this was solved by upgrading older applications.  Another approach was to break up some of the larger appli-
cations, inserting a process that determined which version of the metadata was being used and converting the meta-
data temporarily and on the fly into a standard format for use by the error-checking, transport file creating, or docu-
mentation tool. 

Expanding Skill Set.  We also found that SDTM implementation brought the benefit (to the FDA) of standardization, 
but among the many costs was a dramatic broadening of the skill set required to support it.  As in the previous stage, 
not only was it not SAS any more, some parts were like nothing we had ever seen before.  Creating the documenta-
tion file – define.XML – so that it worked reliably and predictably with FireFox and Internet Explorer required a knowl-
edge not only of XML but also of XML Schema and, most bizarre of all, XSL, the tool by which the raw XML is trans-
formed into the HTML-like screen displaying the metadata.  Making the viewing experience effective and user-friendly 
also required a working knowledge of HTML and JavaScript.  A calm demeanor and a dark sense of humor were 
assets during the early stages of development, when many of disparate technologies did not "play nice" together. 

The SDTM usage of ISO 8601 dates, times, date-times, and durations required development of a variety of macros.  
We had to be able to convert SAS date, time, and date-time variables into the ISO 8601 extended date-time format.  
Likewise, event durations had to be stored according to the standard.  While these values are compliant with the 
needs of the SDTM specification, they also render previously straightforward values such as 
17501 

into readable, but hard to manipulate text such as 
2008-05-12 

A duration that could be measured as the number of days between two events becomes: 
P11M12D 

Fortunately, the SDTM specification allows the creation of supplemental data sets that can contain variables with 
more computer and algorithm-friendly values. 
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The road to SDTM compliance became a bit bumpier last year, with the release of a new version of the standard.  
The majority of changes were easily handled by adding parameters to macros, but identifying what needed to change 
was tedious.  Even something as prosaic as our ISO conversion routine had to be changed to accommodate dates 
with "reduced accuracy."  In earlier versions, a known year, unknown month, and known day had to follow the princi-
ple of "appropriate right truncation."  For example, using the initial SDTM standard if only values for year and day 
were known, a value would look like: 

2007 

Once a date component was missing, other components to its right could not be displayed.  In the new SDTM ver-
sion, however, the value could be represented as: 

2007---14 

Accordingly, a parameter had to be added to the ISO conversion macro, and the macro had to be revalidated. 

The movement to the CDISC SDTM standard has gained so much momentum that its use will soon become 
mandatory for FDA submissions.  This has a number of implications for a CRO, which by its very nature requires that 
it serve multiple "masters."  First, we must develop the necessary tools for SDTM compliance and we must train a 
variety of constituencies: biostatisticians, programmers, sales and marketing representatives, and clients.  Second, 
we must continue to support projects using older systems and provide the means to make the transition to SDTM 
should the client desire to do so.  The variety of SDTM standards, use of eCTD or more traditional directory 
structures, and other choices requires flexibility throughout the project life cycle.  The process has to be configurable 
throughout the cycle, and much of this flexibility is provided by both enhanced metadata content and new and im-
proved tools. 

 

Stage 5 
In seven years the use of metadata at Rho has grown from a good idea implemented for a single multiple-study pro-
ject to a corporate standard implemented in over 150 projects with a user population of over 100 biostatisticians and 
programmers.  One of the key challenges facing us now is keeping the user base happy and growing, while at the 
same time trying to keep things manageable with respect to version control, new tool rollout, and the like. 

Metadata Storage.  Currently, each project has its own Access database for analysis and SDTM metadata.  Thus 
there are hundreds of MDB files scattered throughout the network.  Since they are files in the Windows XP file sys-
tem, they are visible to any one with sufficient security permissions and thus can be deleted, accidentally moved, or 
renamed.  While these events are rare and recoverable, they do lead us with a bit of urgency to the next logical step 
– storing all projects in a single, industrial-strength Oracle™ database. 

The advantages of this move are compelling: 
• the metadata would be secure, not subject to the vulnerabilities of traditional file-based data storage 
• a properly-designed Oracle database's performance can be significantly better than Access, especially when 

processing large amounts of archival, repository data 
• the tables can be viewed and updated with Access forms, which means the current interface would not have to 

change 
• Since it puts us in a true database environment, we would not be able to respond quickly to a user request for 

new fields or tables.  While something of a negative, what this effectively forces us to do is bundle changes, 
make a set of database modifications, and deploy a new version of the system.  This would bring a welcome end 
to the incremental and hard-to-track changes that characterize the current system. 
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The move to Oracle promises to be a large, complex undertaking.  Nevertheless, we still need to be aware of poten-
tial re-use and reinterpretation of our existing metadata.  Two ongoing activities illustrate this. 

Legacy Metadata.  The first of these is conversion of legacy metadata.  New projects and studies are being deployed 
with the new analysis and SDTM user interfaces.  These are, in effect, bright, shiny new toys, and users of the older 
systems, naturally, want to upgrade.  We have developed conversion tools that make older versions of the metadata 
tables compatible with the newer interfaces.  Since there are hundreds of MDBs of varying ages/versions, this only 
fuels our desire for a single database – the Oracle solution described above. 

SDTM Work Flow.  The second area of attention to existing metadata is based on the SDTM-related work flow initi-
ated during Stage 4.  Once the metadata stabilized and we completed several projects, we explored the possibility of 
using the metadata to create program statements that would create variables.  Since many of the SDTM variables 
were copies of raw data or simple transformations, it seemed that the definition field of the metadata could hold spe-
cially-coded instructions.  The following list shows some examples of the syntax: 
• Assign a character constant: constant | 'text' 
• Assign a numeric constant: constant | number 
• Copy a variable from a dataset: copy | libref.dataset.variable 
• Convert a numeric variable: recode | libref.dataset.variable | format. 
• Convert a character variable: recode | libref.dataset.variable | $format. 
• Convert a date variable to ISO 8601 format: date | lib.dataset.variable [ | format. ] 
• Convert a date-time variable to ISO 8601 format: dtm | lib.dataset.variable 

As always, the metadata is complemented by a tool that makes it easily accessible to the end-users, in this case, the 
statistical programmers.  The %seedDomain macro passes through the metadata for a user-specified domain, ex-
amining definitions for keywords.  It generates a plain text file containing all the necessary LIBNAME, DATA, SET and 
assignment statements to create the variables.  The programmer can modify the output file to create the variables not 
automatically generated.  This saves a good deal of programmer time, and allows the programmer to focus on coding 
for the more difficult, non-automated variables.  It is also interesting to note that this tool required no structural 
changes to the metadata.  All that changed was the content of existing metadata fields. 

Integration.  Our department at Rho focuses on supporting FDA submissions.  Other groups have developed sys-
tems to support other aspects of the company.  Thanks to focus groups, department "appreciation" presentations, 
and word of mouth we are becoming aware of the potential for drawing on other systems' data (we have also become 
aware of the need to better document our metadata for potential users outside our usual clientele).  One of these 
systems, used by project managers to track the progress of dataset and display creation, supplements one of the 
more complex and heavily-documented submissions services offered by Rho.  A view to the Oracle tables gave us 
access to the tracking system's contents and saved us a significant amount of interface and tool design effort.  One of 
our queries to the system is reading information about displays.  The display numbers, program names, titles and 
footnotes and other information, for example, are used as part of our automated documentation tools. 

Our use of the project tracker also demonstrates the phasing out of one of our systems.  One of our earlier projects 
required rapid turnaround of hundreds of displays, many of which varied only by populations (gender, age group, 
treatment, etc.).  We developed metadata and tools that exploited the similarities of the displays.  Once the larger-
scoped, Oracle-based system was developed, it became apparent that the display-related information in our old 
system was not needed, and so the TABLES metadata was retired.  You can't be afraid to throw things out. 

Training.  Throughout the life of this and other stages' projects, we've seen new interfaces, new tools, new services 
we can provide to both internal and external clients, and many new biostatisticians and programmers.  Training has 
become one of the most important functions of our department; if a helpful interface feature or time-saving macro is 
not made known to our various constituencies it might as well not exist.  Given the rapidly changing and ever growing 
demands placed on the department, it's natural for us to adopt a work flow that boils down to "got the spec, wrote the 
code, tested the code, what's next on the list?" 

What needs to be added to the quote is: "let me email the users and let them know what I've done."  If the work was 
incremental – a new screen for the metadata entry interface or an additional option in an existing macro – an email 
may be sufficient.  If, however, the work is significantly different or requires a work flow change, more formal training 
may be in order.  How to inform and train the users cab be a matter of personal preference, but whether to inform and 
train is not negotiable. 

We should also note that periodic refresher training is also worthwhile, even if a tool has not undergone any signifi-
cant changes.  By way of example, think about your use of a PROC or DATA step feature that you use on a daily 
basis.  It is likely that you learned a large portion of its functionality years ago and, having grown comfortable with its 
use, you have not returned to the manuals or help screens.  It is also likely that the tool in question has been 
enhanced since your first exposure to it and that you'll be surprised when you read about the "x" option (helpful, and 
present years ago) or the "y" option (really helpful, and added since then).  A refresher training session is always 
helpful, if only to re-present the Big Picture of how the metadata work flow is organized and to remind you what tools 
are available. 
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Conclusion 
The Rho metadata system has evolved from a collection of metadata tables with a minimal interface to a relational 
database with a customized user-friendly full featured front end and a set of complementary tools.  In 2001, at the 
onset of our first NDA project, we did not have the necessary metadata or related tools to complete such a large and 
complex project.  The following example demonstrates how far our capabilities have come. 

We recently completed an NDA submission project containing over twenty studies databases, an integrated data-
base, and over one thousand displays.  The client provided analysis datasets for some of the studies.  We wrote 
custom programs to seed our analysis metadata tables, using macros from our general-purpose macro library to 
gather information from the SAS dictionary tables.  As is typical in such projects, during the last four days before de-
livery to the client, specifications for six of the study databases and the integrated database were still being updated.  
Because we had well-trained users, a solid interface, and easily-programmed, time-tested tools for creating output we 
were able to continually update the submission databases as the metadata changed.  This required a continual re-
validation of the submission databases, creating and validating the transport datasets, and producing the documenta-
tion for each database.  This process was repeated seamlessly as errors were found during the QC process and cor-
rections were made to the metadata.  Such rapid (about an hour to reproduce) turnaround for so many projects sim-
ply would not have been possible without the metadata, tools, and our body of experience.  Likewise, the initial 
population of metadata for the client-supplied datasets was greatly simplified by the use of macros that were 
developed over the years. 

As our metadata system evolved we learned numerous valuable lessons: 
• Metadata driven applications have tremendous potential to improve efficiency and to automate work flow. 
• A set of complementary metadata tools is essential to effectively leverage use of the metadata. 
• The user interface for metadata entry is critical.  If the users like it, they will use it.  Otherwise, it might as well not 

exist. 
• Continuously hold focus group sessions with end-users.  End users are the best source of data for what's work-

ing and what's not working. 
• As the number of users and projects increase, consider and plan for upgrades to the backend database. 
• We're not longer just application programmers. We're now in the software development business. If you build it, 

you own it. That means dealing with maintenance, versioning, archival, and software life cycle issues in general. 
• Documentation and ongoing training are vital. 
• Build a development team that has people who are comfortable with strategic, high-level perspectives as well as 

the day-to-day, low-level hunt for missing semicolons. 
• Systems have a much better chance of success and longevity if they are developed in an environment where it is 

all right if "Plan A" does not always work.  Research and development teams learn as much from failure as 
success. 

Contact 
Your comments and questions are valued and welcome.  Address correspondence to: 

Jeff Abolafia: Jeff_Abolafia@RhoWorld.com 
Frank DiIorio:  frank@CodeCraftersInc.com 
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