
Paper 041-2008

Using Advanced Features of User-defined Formats and Informats

Ron Cody, Camp Verde, Texas

INTRODUCTION
User-defined formats can do much more than make output from SAS procedures more readable. You will
see how to use formats to create new variables and to perform table-lookups. You can even create your
own informats to alter data values as they are being read into a SAS data set. Finally, certain SAS
procedures support multi-label formats—that is, the ability to have a single value correspond to more than
one format range.

USING FORMATS WITH A PUT FUNCTION TO CREATE NEW VARIABLES
There are times when you would like to create a new variable consisting of formatted values. Program 1

demonstrates how this is done.

Program 1 Using a format and a PUT function to create a new variable

proc format;
 value agefmt 0 - <20 = '< 20'
 20 - <40 = '20 to 39'
 40 - <60 = '40 to 59'
 60 - high = '60+';
run;

data survey;
 set learn.survey;
 AgeGroup = put(Age,agefmt.);

run;

The key to this program is the PUT function. This function take the value of its first argument, formats this
value with the format listed as the second argument, and returns the formatted value. Remember that the
PUT function always returns a character value. In this example, AgeGroup is a character variable with a
length of eight bytes (the length of the longest formatted value). Here is a listing of data set SURVEY:

Listing of SURVEY

ID Gender Age Salary Ques1 Ques2 Ques3 Ques4 Ques5 AgeGroup

001 M 23 28000 1 2 1 2 3 20 to 39
002 F 55 76123 4 5 2 1 1 40 to 59
003 M 38 36500 2 2 2 2 1 20 to 39
004 F 67 128000 5 3 2 2 4 60+
005 M 22 23060 3 3 3 4 2 20 to 39
006 M 63 90000 2 3 5 4 3 60+
007 F 45 76100 5 3 4 3 3 40 to 59

Beyond the BasicsSAS Global Forum 2008

CREATING USER-DEFINED INFORMATS

Although you are probably familiar with using PROC FORMAT to create user-written formats, you may not
have used this procedure to create your own informats. You can use user-written informats to alter values
as they are read from a raw data file, or with the INPUT function to perform a table look-up. Let's look at an
example:

Your raw data consists of ID's and letter grades (A+, A, A-, etc.). You want to convert these letter grades
into numbers according to a predefined table. The program below creates an informat called CONVERT
and uses that informat to read the letter grades.

Program 2 Demonstrating a user-written INFORMAT

proc format;
 invalue convert 'A+' = 100
 'A' = 96
 'A-' = 92
 'B+' = 88
 'B' = 84
 'B-' = 80
 'C+' = 76
 'C' = 72
 'F' = 65;
run;

data grades;
 input @1 ID $3.
 @4 Grade convert2.;
datalines;
001A-
002B+
003F
004C+
005A
;

You use an INVALUE statement to create an informat. The rules are similar to the ones you use in creating
formats. One tiny difference is that informat names can only be 31 characters in length (including the $ if it
will be used to read character data). For those with curious minds, SAS uses one byte in the format catalog
(the @ sign) to differentiate between formats and informats (if you look at the entries in your catalog with the
FMTLIB option or PROC CATALOG, you will see the @ signs added to the informat names).

Following the keyword INVALUE, you type the name of the informat you want to create. Just as with
formats, you must start the name with a dollar sign if it is to be used to create character data. In Program 2
above, even though you are reading character values (A+, A, A-, etc.) the resulting variable (Grade) will be a
numeric variable. If you used the name $CONVERT instead of CONVERT in this program, the variable
Grade would be character.

Next, you specify ranges, and equal sign and labels. Again, the same rules as formats.

You use your informat just as you would a built-in SAS informat. Notice that you can add a width to it to
specify how many columns of data to read. Here is a listing of data set GRADES:

Beyond the BasicsSAS Global Forum 2008

Listing of GRADES

ID Grade

001 92
002 88
003 65
004 76
005 96

It is important to remember that the original character data values are not part of this data set. If you wanted
both the original letter grade and its corresponding numeric value, you could read the letter grade as a
character variable and use an INPUT function (with the CONVERT informat) to create the numeric grade.

There are some useful options that you can use when you create your informats. UPCASE and JUST are
two such options. UPCASE, as the name implies, will convert the data values to uppercase before checking
on the informat ranges. JUST will left-align character values. Let's use these two options to enhance
Program 2.

Program 3 Demonstrating INFORMAT options UPCASE and JUST

proc format;
 invalue convert(upcase just)
 'A+' = 100
 'A' = 96
 'A-' = 92
 'B+' = 88
 'B' = 84
 'B-' = 80
 'C+' = 76
 'C' = 72
 'F' = 65
 other = .;
run;

data grades;
 input @1 ID $3.
 @4 Grade convert2.;
datalines;
001A-
002b+
003F
004c+
005 A
006X
;

title "Listing of GRADES";
proc print data=grades noobs;
run;

Notice that the raw data values being read contain upper- and lowercase values and the value for student
005 contains a leading blank. We also added a student with an invalid grade (X). To prevent error

Beyond the BasicsSAS Global Forum 2008

messages in the SAS Log, the informat category OTHER was added so that invalid values would be
converted to numeric missing values. The listing below shows that all the data values were read correctly:

Listing of GRADES

ID Grade

001 92
002 88
003 65
004 76
005 96
006 .

ENHANCED NUMERIC INFORMAT – READING CHARACTER AND NUMERIC DATA IN ONE
STEP

There is a little-know feature in user-defined informats—the ability to create an informat that reads both
character and numeric data and creates a numeric variable. The examples that follow show ways that you
can take advantage of this feature.

For this first example, you have temperature readings on hospital patients. Since many of the patients have
a "normal" temperature (98.6 degrees Fahrenheit), it is convenient to record normal temperatures by
entering an 'N' as a data value. Some sample lines of data are:

101 N 97.3 n N 104.5

Notice that some of the N's are in uppercase and others in lowercase. Before we look at the elegant
enhanced informat solution, let's look at a tradition approach:

Program 4 A traditional approach to reading a combination of character and numeric
data

data temperatures;
 input Dummy $ @@;
 if upcase(Dummy) = 'N' then Temp = 98.6;
 else Temp = input(Dummy,8.);
 drop dummy;
datalines;
101 N 97.3 n N 104.5
;

Each data value is read as character data. A check is made to see if this value is equal to an upper- or
lowercase 'N'. If so, Temp is set to 98.6—if not, the INPUT function performs the character to numeric
conversion. This works fine, but compulsive programmers (who me?) are always looking for a more elegant
solution. The program below uses an enhanced numeric informat:

Beyond the BasicsSAS Global Forum 2008

Program 5 Using an enhanced numeric informat to read a combination of character
and numeric data

proc format;
 invalue readtemp(upcase)
 96 - 106 = _same_
 'N' = 98.6
 other = .;
run;
data temperatures;
 input Temp : readtemp5. @@;
datalines;
101 N 97.3 n N 67 104.5
;

The UPCASE option converts any character to uppercase. The keyword _SAME_ in this informat leaves
any numeric values in the range 96 to 106 unchanged. Values of 'N' are converted to the numeric value of
98.6 and any values that are not in the range 96 to 106 or equal to 'N' are set to a numeric missing value.
The technique of using the keyword _SAME_ for valid values and setting other values to missing is one way
to screen unwanted extreme values as they are being read. A listing of data set temperatures is shown
next:

Listing of Data Set TEMPERATURES

 Temp

101.0
 98.6
 97.3
 98.6
 98.6
 .
104.5

The next program reads a combination of letter and number grades. The grades A-F are converted to
number grades as follows: 'A' = 95, 'B' = 85, 'C' = 75, 'F' = 65. Number grades are not changed. Here is the
program:

Program 6 Another example of an enhanced numeric informat

proc format;
 invalue readgrade(upcase)
 'A' = 95
 'B' = 85
 'C' = 75
 'F' = 65
 other = _same_;
run;

data school;
 input Grade : readgrade3. @@;
datalines;
97 99 A C 72 f b
;

Beyond the BasicsSAS Global Forum 2008

Here the values A-F are converted to the appropriate numeric value and all other values are left unchanged.
Here is a listing of the data set:

Listing of SCHOOL

Grade

 97
 99
 95
 75
 72
 65
 85

USING FORMATS (AND INFORMATS) TO PERFORM A TABLE LOOK-UP

Table look-up is a process where one or more data values are used to retrieve a value for another variable.
For example, given an item number from a catalog, you might want to retrieve a product name and a price.

SAS provides you with a variety of ways to perform a table look-up, such as a data set MERGE, a key value
from an index, an array, formats, and informats. Since SAS formats are stored in memory, they are fast and
efficient. Program 7, uses a item number (ItemNumber) to look up a product name and its price. Here is the
program:

Program 7 Using formats and informats to perform a table look-up

proc format;
 value namelookup
 122 = 'Salt'
 188 = 'Sugar'
 101 = 'Cereal'
 755 = 'Eggs'
 other = ' ';
 invalue pricelookup
 'Salt' = 3.76
 'Sugar' = 4.99
 'Cereal' = 5.97
 'Eggs' = 2.65
 other = .;
run;

data grocery;
 input ItemNumber @@;
 Name = put(ItemNumber,namelookup.);
 Price = input(Name,pricelookup.);
datalines;
101 755 122 188 999 755
;

A user-defined format is used, along with a PUT function, to retrieve a product name from the ItemNumber.
An informat, relating product names and prices is used with an INPUT function to retrieve the price. The
reason an INFORMAT was used for the price look-up was that the INPUT function can return a numeric
value. Remember that the PUT function always returns a character value. (If you used a format, you would
have to perform a character to numeric conversion to obtain a numeric value for the price.)

Beyond the BasicsSAS Global Forum 2008

Both the format and informat use the keyword OTHER to assign a missing value to an invalid item code. A
listing of data set GROCERY follows:

Listing of GROCERY

 Item
Number Name Price

 101 Cereal 5.97
 755 Eggs 2.65
 122 Salt 3.76
 188 Sugar 4.99
 999 .
 755 Eggs 2.65

USING A SAS DATA SET TO CREATE A FORMAT

The example in the last section used only a small number of item codes. If you have a large number of
values, writing a format statement by hand is tedious. Luckily, SAS allows you to use a specially
constructed SAS data set to create a SAS format. The PROC FORMAT option CNTLIN= (control in) allows
you to name the SAS data set (or data view) that you want to use.

Control input data sets require a minimum of three variables named FMTNAME, START, and LABEL.
FMTNAME is a character variable that specifies the format or informat name; START is either a single value
to be formatted or, if END is also used, the beginning of a range. You should include a dollar sign as the
first character of FMTNAME if you are creating a character format. Optionally, you can include a variable
called TYPE that is either a 'C' for character formats or 'N' for numeric formats.

If you have data values and format labels already stored in a SAS data set, you can use that data set as
input to a DATA step (with variables renamed as needed) to create your control data set.

This sounds complicated, but an example should make it clear. You have a permanent SAS data set
(CODES) that contains ICD-9 code values (International Classification of Diseases, version 9) and
descriptions. You want to create a format that provides labels for each of the ICD-9 codes. So that you can
try this yourself, the program below creates this permanent SAS data set CODES.

Program 8 Creating a test data set that will be used to make a CNTLIN data set

data learn.codes;
 input ICD9 : $5. Description & $21.;
datalines;
020 Plague
022 Antrax
390 Rheumatic fever
410 Myocardial infarction
493 Asthma
540 Appendicitis
;

You want to use this data set to create a control input data set as follows:

Beyond the BasicsSAS Global Forum 2008

Program 9 Creating a CNTLIN data set from an existing SAS data set

data control;
 set learn.codes(rename=
 (ICD9 = Start
 Description = Label));
 retain Fmtname '$ICDFMT'
 Type 'C';
run;

title "Demonstrating a Input Control Data Set";
proc format cntlin=control fmtlib;
run;

The RENAME= data set option is used to rename ICD9 to START and Description to LABEL. A RETAIN
statement is used to set FMTNAME to '$ICDFMT' and TYPE equal to 'C'. Using a RETAIN statement is
more efficient than an assignment statement, since these values are set at compile time—an assignment
statement executes for each iteration of the DATA step. The CNTLIN= option names this data set and the
FMTLIB option generates a table showing the ranges and format labels. Below are both a listing of the
CONTROL data set and the output from PROC FORMAT:

Listing of CONTROL

Start Label Fmtname Type

 020 Plague $ICDFMT C
 022 Antrax $ICDFMT C
 390 Rheumatic fever $ICDFMT C
 410 Myocardial infarction $ICDFMT C
 493 Asthma $ICDFMT C
 540 Appendicitis $ICDFMT C

Demonstrating a Input Control Data Set

„ƒƒ†
‚ FORMAT NAME: $ICDFMT LENGTH: 21 NUMBER OF VALUES: 6 ‚
‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 21 FUZZ: 0 ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
‚START ‚END ‚LABEL (VER. V7|V8 21NOV2005:10:14:05)‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
‚020 ‚020 ‚Plague ‚
‚022 ‚022 ‚Antrax ‚
‚390 ‚390 ‚Rheumatic fever ‚
‚410 ‚410 ‚Myocardial infarction ‚
‚493 ‚493 ‚Asthma ‚
‚540 ‚540 ‚Appendicitis ‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

Instead of creating a SAS data set to be used with CNTLIN, you could elect to create a data view instead. A
data view can be thought of as a virtual data set. Depending on your application, using a data view may be
more efficient than using a SAS data set. The only change to

Beyond the BasicsSAS Global Forum 2008

Program 9 would be to replace the DATA statement with the following:

data control / view = control;

The program below shows how you might use this format.

Program 10 Using the CNTLIN= created data set

data disease;
 input ICD9 : $5. @@;
datalines;
020 410 500 493
;
title "Listing of DISEASE";
proc print data=disease noobs;
 format ICD9 $ICDFMT.;
run;

Here is the output:

Listing of DISEASE

ICD9

Plague
Myocardial infarction
500
Asthma

Notice that there is no format for the ICD-9 code of 500. If you were writing your own PROC FORMAT
statements, you could use the keyword OTHER to provide a label for non-matching codes. If you want to
accomplish this using a CNTLIN data set, you need a way to assign a value to OTHER. CNTLIN data sets
use the variable HLO (stands for High, Low, Other) to indicate that you want to use one of these keywords
and not an explicit range value.

If you want to assign the label, 'Not Found' for all ICD-9 codes not in the list, you proceed as follows:

Program 11 Adding an OTHER category to your format

data control / view=control;
 set learn.codes(rename=
 (ICD9 = Start
 Description = Label))
 end = last;
 retain Fmtname '$ICDFMT'
 Type 'C';
 if last then do;
 Start = ' ';
 Hlo = 'o';
 Label = 'Not Found';
 end;
run;

Beyond the BasicsSAS Global Forum 2008

Program 11 also demonstrates how to use a data view instead of a SAS data set. You want to add one
observation at the bottom of your CONTROL data set with the value of HLO equal to 'o' (OTHER) and
LABEL equal to 'Not Found'. You can do this by using the END= data set option to test for the end of the
input data set. The variable Last will be true when the last observation in data set CODES has been read.
HLO and LABEL are both assigned a value and a single observation is added to the end of the data set.
Here is a listing of data set CONTROL:

Listing of CONTROL

Start Label Fmtname Type Hlo

 020 Plague $ICDFMT C
 022 Antrax $ICDFMT C
 390 Rheumatic fever $ICDFMT C
 410 Myocardial infarction $ICDFMT C
 493 Asthma $ICDFMT C
 Not Found $ICDFMT C o

The last observation in this data set contains the instructions for setting OTHER equal to 'Not Found'.
Although we decided to set START to a missing value in this program, It was not actually necessary since
the keyword OTHER and not an actual range is being used.

When this new format is used in Program 10, the ICD-9 code of 500 is now labeled as 'Not Found'. Below
are both the output from PROC FORMAT showing that the OTHER category was added to the format and a
listing of the DISEASE data set:

„ƒƒ†
‚ FORMAT NAME: $ICDFMT LENGTH: 21 NUMBER OF VALUES: 6 ‚
‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 21 FUZZ: 0 ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
‚START ‚END ‚LABEL (VER. V7|V8 21NOV2005:10:43:16)‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
‚020 ‚020 ‚Plague ‚
‚022 ‚022 ‚Antrax ‚
‚390 ‚390 ‚Rheumatic fever ‚
‚410 ‚410 ‚Myocardial infarction ‚
‚493 ‚493 ‚Asthma ‚
‚**OTHER** ‚**OTHER** ‚Not Found ‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

Listing of DISEASE

ICD9

Plague
Myocardial infarction
Not Found
Asthma

UPDATING AND MAINTAINING YOUR FORMATS: CNTLOUT

Beyond the BasicsSAS Global Forum 2008

Suppose you want to add some ICD-9 codes to your existing $ICDFMT format. The easiest way to
accomplish this is to first use the CNTLOUT= option of PROC FORMAT to create a data set containing all
the formatting information. You can then use this data set in a DATA step to add new codes or modify
existing ones.

As an example, suppose you want to add two new ICD-9 codes to your $ICDFMT format, 427.5 (Bronchitis)
and 466 (Cardiac arrest). The following program will do the trick:

Program 12 Updating an existing format using a CNTLOUT data set

proc format cntlout=control_out;
 select $ICDFMT;
run;

data new_control;
 length Label $ 21;
 set control_out end=Last;
 output;
 if Last then do;
 Hlo = ' ';
 Start = '427.5';
 End = Start;
 Label = 'Cardiac Arrest';
 output;
 Start = '466';
 End = Start;
 Label = 'Bronchitis';
 output;
 end;
run;

proc format cntlin=new_control;
 select $ICDFMT;
run;

You first run PROC FORMAT with the CNTLOUT= option, creating an output data set containing all of the
information necessary to recreate the format. A SELECT statement allows you to choose which format you
want to use to create this data set. Here is a listing of this CNTLOUT data set:

Beyond the BasicsSAS Global Forum 2008

Listing of CONTROL_OUT

FMTNAME START END LABEL MIN MAX DEFAULT LENGTH FUZZ

ICDFMT 020 020 Plague 1 40 21 21 0
ICDFMT 022 022 Antrax 1 40 21 21 0
ICDFMT 390 390 Rheumatic fever 1 40 21 21 0
ICDFMT 410 410 Myocardial infarction 1 40 21 21 0
ICDFMT 493 493 Asthma 1 40 21 21 0
ICDFMT **OTHER** **OTHER** Not Found 1 40 21 21 0

PREFIX MULT FILL NOEDIT TYPE SEXCL EEXCL HLO DECSEP DIG3SEP DATATYPE LANGUAGE

 0 0 C N N
 0 0 C N N
 0 0 C N N
 0 0 C N N
 0 0 C N N
 0 0 C N N O

Notice that there are additional variables that PROC FORMAT uses when creating a format You do not
need to concern yourself with these variables—SAS will use them as needed. The next step is to add
observations to the end of this data set, containing the new codes and their labels. You can do this in a
DATA step, by first reading all of the existing format information and then adding the new ones.
(Alternatively, you could create a data set of the new codes and use PROC APPEND to add these
observations to the end of the existing control data set.) A LENGTH statement is used to ensure that the
storage length for Label is sufficient for any new labels you want to create.

Program 12 uses the data set option END= to determine when you have read the last observation from data
set CONTROL_OUT. At this point, the statements in the DO group execute, outputting two observations to
the end of the new data set. It is important to set the variable HLO (High, Low, Other) to missing and to set
the variable End equal to the Start values. Since these variables exist in CONTROL_OUT data set and are
read with a SET statement, they are automatically retained. Therefore, if you do not assign values to these
variables, they will retain the values they had in the last observation in data set CONTROL_OUT.

Finally, you use the CNTLIN= option to recreate the $ICDFMT format. Instead of the FMTLIB option, a
SELECT statement is used to identify which format you want to list. When you use a SELECT statement
with PROC FORMAT, it is not necessary to also include the FMTLIB option. Here is the output from PROC
FORMAT, showing that the format now contains the two additional codes:

Beyond the BasicsSAS Global Forum 2008

Listing of CONTROL_OUT

„ƒƒ†
‚ FORMAT NAME: $ICDFMT LENGTH: 21 NUMBER OF VALUES: 8 ‚
‚ MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 21 FUZZ: 0 ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
‚START ‚END ‚LABEL (VER. V7|V8 22NOV2005:10:23:49)‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
‚020 ‚020 ‚Plague ‚
‚022 ‚022 ‚Antrax ‚
‚390 ‚390 ‚Rheumatic fever ‚
‚410 ‚410 ‚Myocardial infarction ‚
‚427.5 ‚427.5 ‚Cardiac Arrest ‚
‚466 ‚466 ‚Bronchitis ‚
‚493 ‚493 ‚Asthma ‚
‚**OTHER** ‚**OTHER** ‚Not Found ‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

USING FORMATS WITHIN FORMATS: NESTING FORMATS

When you define format or informat labels, you can also include the name of a SAS or user-written format or
informat, rather than a text string in place of a label. Here is an example:

You want to read dates from July 15, 2005 to December 31, 2006 using the mmddyy10. informat. Dates
before July 15, 2005 should be formatted as "Not Open" and dates after December 31, 206 should be
formatted as "Too Late." You can use nested formats as follows to accomplish this task:

Program 13 Demonstrating nested formats

proc format;
 value registration low - <'15Jul2005'd = 'Not Open'
 '15Jul2005'd - '31Dec2006'd = [mmddyy10.]
 '01Jan2007'd - high = 'Too Late';
run;

The format mmddyy10. is placed in square brackets where you normally place a format label. Program 14
uses this format to process registration dates and produce a list of dates and names.

Program 14 Creating a test data set

data conference;
 input @1 Name $10.
 @11 Date mmddyy10.;
 format Date registration.;
datalines;
Smith 10/21/2005
Jones 06/13/2005
Harris 01/03/2007
Arnold 09/12/2005
;

A listing of data set CONFERENCE is shown below:

Beyond the BasicsSAS Global Forum 2008

Listing of CONFERENCE

 Name Date

Smith 10/21/2005
Jones Not Open
Harris Too Late
Arnold 09/12/2005

The next example uses nested user-written informats. In this example, you are given data on benzene
exposure. Some of the values are actual benzene levels in parts per million, other values are the year a
worker was exposed. For each of the years from 1946 to 1952, benzene levels were tabulated. For years
outside this range, the actual benzene levels were reported. Some sample data, consisting of either a year
or a benzene level is shown below:

File: c:\books\learning\benzene.txt

001 90
002 1950
003 217
004 1952
005 177

All of the benzene levels are much less than any of the year values so there is no confusion whether to read
a value as a year or a benzene level. Creating a data set of ID's and benzene levels is greatly simplified by
nesting informats, like this:

Program 15 Using the nested format in a DATA step

proc format;
 invalue yearexp 1946 = 250
 1947 = 244
 1948 = 240
 1949 = 200
 1950 = 188
 1951 = 150
 1952 = 100;
 invalue exp low - <1946 = [7.1]
 1946 - 1952 = [yearexp.]
 1952< - high = [7.1];
run;

data benzene;
 infile 'c:\books\learning\benzene.txt';
 input ID Exposure : exp4.;
run;

The first informat, YEAREXP substitutes a benzene level for each of the years from 1946 to 1952. The
informat EXP uses a SAS 7.1 informat for values less than 1946 or greater than 1952. Otherwise, the
YEAREXP informat is used.

This problem could have also been solved using formats instead of informats. To use formats, you would
need to read a raw data value and use a PUT function to obtain a formatted value. Since the result of a

Beyond the BasicsSAS Global Forum 2008

PUT function is a character value, you would also need to use an INPUT function to obtain a benzene level
as a numeric value. Creating informats makes the process much simpler.

MULTILABEL FORMATS

Under normal circumstances, you get an error message if any of your format ranges overlap. However, you
can create a format with overlapping ranges if you use the multilabel option on the VALUE statement.
Certain multilabel enabled procedures can then use the multilabel format to produce tables showing all of
the format ranges. Here is an example:

You want to see the variable Age (from the SURVEY data set) broken down two ways—one, in 20 year
intervals; the other by a split at 50 years old. You first create a multilabel format like this:

Program 16 Creating a MULTILABEL format

proc format;
 value agegroup (multilabel)
 0 - <20 = '0 to <20'
 20 - <40 = '20 to <40'
 40 - <60 = '40 to <60'
 60 - <80 = '60 to <80'
 80 - high = '80 +'

 0 - <50 = 'Less than 50'
 50 - high = '> or = to 50';
run;

Without the multilabel option, PROC FORMAT will issue an error message about overlapping ranges and fail
to create the format.

You can use this format in PROC MEANS, PROC SUMMARY, and PROC TABULATE. Here is a PROC
MEANS example:

Program 17 Using a MULTILABEL format with PROC MEANS

title "Demonstrating a Multilabel Format";
title2 "PROC MEANS Example";
proc means data=learn.survey;
 class Age / MLF;
 var Salary;
 format Age agegroup.;
run;

It is important to use the MLF (multilabel format) option on the class statement if you want to use this feature
of the format. Here is the output:

Beyond the BasicsSAS Global Forum 2008

Demonstrating a Multilabel Format
PROC MEANS Example

The MEANS Procedure

 Analysis Variable : Salary

 N
Age Obs N Mean Std Dev Minimum Maximum
ƒƒ
20 to <40 3 3 29186.67 6798.13 23060.00 36500.00

40 to <60 2 2 76111.50 16.2634560 76100.00 76123.00

60 to <80 2 2 109000.00 26870.06 90000.00 128000.00

> or = to 50 3 3 98041.00 26857.01 76123.00 128000.00

Less than 50 4 4 40915.00 24104.46 23060.00 76100.00
ƒƒ

Inspection of this output shows average Salary broken down by Age in two ways: In 20 year intervals and by
a split at 50 years old.

You can use multilabel formats with PROC TABULATE to create interesting tables. Here is a program to
compute frequencies in a table of Age by Gender:

Program 18 Using a MULTILABEL format with PROC TABULATE

title "Demonstrating a Multilabel Format";
title2 "PROC TABULATE Example";
proc tabulate data=learn.survey;
 class Age Gender / MLF;
 table Age ,
 Gender;
 format Age agegroup.;
run;
quit;

This produces the following output:

Beyond the BasicsSAS Global Forum 2008

Demonstrating a Multilabel Format
PROC TABULATE Example

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ Gender ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ F ‚ M ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ N ‚ N ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Age ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚
‚20 to <40 ‚ .‚ 3.00‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚40 to <60 ‚ 2.00‚ .‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚60 to <80 ‚ 1.00‚ 1.00‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚> or = to 50 ‚ 2.00‚ 1.00‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Less than 50 ‚ 1.00‚ 3.00‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Notice that certain age groups are not shown in the table. For example, there were no subjects in the 0 to
<20 age group. To see all of the possible format ranges in your table, you can use the PRELOADFMT
option on the CLASS statement. Preloaded formats allow PROC TABULATE to list categories for which
there are no data values.

Here is the PROC TABULATE code with the PRELOADFMT option and two additional options to control the
printing of missing values. (They will be explained following the program.)

Program 19 Using the PRELOADFMT, PRINTMISS, and MISSTEXT options with PROC
TABULATE

title "Demonstrating a Multilabel Format";
title2 "PROC TABULATE Example";
proc tabulate data=learn.survey;
 class Age Gender / MLF preloadfmt;
 table Age ,
 Gender / printmiss misstext=' ';
 format Age agegroup.;
run;
quit;

The PRELOADFMT option forces the procedure to list all of the format ranges. This option will have no
effect without the PRINTMISS option on the TABLE statement. Remember that PRINTMISS is an
instruction to include categories that contain one or more missing values of a CLASS variable. Finally, the
MISSTEXT= option tells the procedure what character (or characters) you would like printed that represents
missing values (the default is a period). Here you choose a blank to represent missing values. Finally, the
output:

Beyond the BasicsSAS Global Forum 2008

Demonstrating a Multilabel Format
PROC TABULATE Example

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ†
‚ ‚ Gender ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ F ‚ M ‚
‚ ‡ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚ ‚ N ‚ N ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Age ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‰ ‚ ‚
‚0 to <20 ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚20 to <40 ‚ ‚ 3.00‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚40 to <60 ‚ 2.00‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚60 to <80 ‚ 1.00‚ 1.00‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚80 + ‚ ‚ ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚> or = to 50 ‚ 2.00‚ 1.00‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰
‚Less than 50 ‚ 1.00‚ 3.00‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒŒ

Now all the Age ranges appear in the table and the missing values are printed as blanks.

USING THE INPUTN FUNCTION TO PERFORM A MORE COMPLICATED TABLE LOOK-UP

This final example of the paper performs a two-way table look-up, using a function that allows you to
compute an informat name in a DATA step. This section is a bit complicated and you may either want to skip
it or refer to the SAS OnLine Doc™ for more information on the INPUTN function and control input data sets.

The problem: You have a table of years (1944 to 1949) and job codes (A through E). Each combination of
year and job code has a benzene exposure (in parts per million) associated with it. The table below list
these values:

 Job Code
Year A B C D E

1944 220 180 210 110 90
1945 202 170 208 100 85
1946 150 110 150 60 50
1947 105 56 88 40 30
1948 60 30 40 20 10
1949 45 22 22 10 8

One way to compute an exposure, given a year and job code, is to create an informat for each year,
assigning each of the job codes a label containing the exposure value. An informat is used instead of a

Beyond the BasicsSAS Global Forum 2008

format since you can use an INPUT (or as you will see, an INPUTN) function with the user defined informats
to obtain a numeric value directly. If you did this "by hand" you would proceed like this:

Program 20 Partial program showing how to create several informats

proc format;
 invalue exp1944fmt (upcase)
 'A' = 220
 'B' = 180
 'C' = 210
 'D' = 110
 'E' = 90
 other = .;
 invalue exp1945fmt (upcase)
 'A' = 202
 'B' = 170
 'C' = 208
 'D' = 100
 'E' = 85
 other = .;
 invalue exp1946fmt (upcase)
 'A' = 150
 . . .
run;

It takes far less work to create an input control data set (CNTLIN) to create the required informats. You
proceed as follows:

Program 21 Creating several informats with a single CNTLIN data set

data exposure;
 retain Type 'I' Hlo 'U';
 do Year = 1944 to 1949;
 Fmtname = cats('exp',Year,'fmt');
 do Start = 'A','B','C','D','E';
 End = Start;
 input Label : $3. @;
 output;
 end;
 end;
 drop Year;
datalines;
220 180 210 110 90
202 170 208 100 85
150 110 150 60 50
105 56 88 40 30
 60 30 40 20 10
 45 22 22 10 8
;

title "Creating the Exposure Format";
proc format cntlin=exposure fmtlib;
run;

Beyond the BasicsSAS Global Forum 2008

Type = 'I' tells PROC FORMAT that you want to create a numeric informat. The Value of 'U" for the HLO
variable tells the procedure to use the UPCASE option on the INVALUE statement. You want informat
names of the form:

expyyyyfmt

where yyyy is a year value from 1944 to 1949. The CATS function concatenates (joins) each of the
arguments after first stripping off any leading or trailing blanks. This function also allows numeric arguments
and performs the numeric-to-character conversion as well. Here are the first few observations in the
EXPOSURE data set:

First 10 Observations of EXPOSURE

Type Hlo Fmtname Start End Label

 I U exp1944fmt A A 220
 I U exp1944fmt B B 180
 I U exp1944fmt C C 210
 I U exp1944fmt D D 110
 I U exp1944fmt E E 90
 I U exp1945fmt A A 202
 I U exp1945fmt B B 170
 I U exp1945fmt C C 208
 I U exp1945fmt D D 100
 I U exp1945fmt E E 85

By the way, if you want to see selected informats using the SELECT statement of PROC FORMAT, you
need to include an @ sign as the first character in the informat name. For example, to list the contents of
exp1944fmt and exp1945fmt, you would use:

Program 22 Using a SELECT statement to display the contents of two informats

proc format;
 select @exp1944fmt @exp1945fmt;
run;

When you use a SELECT statement with PROC FORMAT, it is not necessary to include the FMTLIB option
as well.

Continuing with our program. Now that you have an informat for each of the six years, all you have to do is
use the year and job code to create an informat name and use that name with an INPUT function to retrieve
the exposure. Here is the program:

Beyond the BasicsSAS Global Forum 2008

Program 23 Using user-defined informats to perform a table look-up, using the INPUTN
function

data read_exp;
 input Worker $ Year JobCode $;
 Exposure = inputn(JobCode,cats('exp',Year,'fmt8.'));
datalines;
001 1944 B
002 1948 E
003 1947 C
005 1945 A
006 1948 d
;

You cannot use the INPUT function in this program because the informat name must be a constant. The
INPUTN function allows you to create the informat name in the DATA step. By the way, the 'N' in the name
INPUTN stands for numeric. You need to tell SAS ahead of time if the informat you are going to create is
going to be character or numeric (it can't tell if the name starts with a $ until it is created). There are two
corresponding functions, PUTN and PUTC that allow you to create character or numeric format names in the
DATA step.

When this program runs, the informat names are created with the CATS function. Each year value creates a
different informat name to be used in the INPUTN function. Here is a listing of the resulting data set:

Listing of READ_EXP

 Job
Worker Year Code Exposure

 001 1944 B 180
 002 1948 E 10
 003 1947 C 88
 005 1945 A 202
 006 1948 d 20

The last few sections of this paper may seem, at first glance, to be a "bit off the deep end." However, if you
try experimenting and writing a few programs of your own using these ideas, you will see how powerful
these tools can be.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ronald Cody

89 Lazy Brook Road

Flemington, NJ 08822

E-mail: ron.cody@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Beyond the BasicsSAS Global Forum 2008

	2008 Table of Contents

