
1

Paper 032-2008

Clinical-Data Acceptance Testing Procedure
Sunil Gupta, Quintiles, Thousand Oaks, CA

ABSTRACT

In the pharmaceutical industry, there is a regulatory responsibility, 21 CFR Part 11, to analyze only the clinical data
that has passed data acceptance testing or is considered ‘clean data’ after a database lock. Clinical data acceptance
testing procedure involves confirming the validity of critical data variables. These critical data variables might need to
be non-missing, consist only of valid values, be within a range, or be consistent with other variables. If incorrect
clinical data is analyzed, then invalid study conclusions can be drawn about the drug’s safety and efficacy.

In 2001, the Data Warehousing Institute conducted a survey of over 600 business professionals. Across all
industries, the survey results estimate that data quality problems cost U.S. corporations more than $ 600 billion per
year. Proactive steps need to be taken to identify, isolate and report clinical data issues using a system that is
flexible, easy to update and facilitates good communication with the Clinical Data Management (CDM) department to
help resolve these data quality problems.

This paper will review an effective method to implement a clinical data acceptance testing procedure using edit check
macros for creating an RTF file with minimum SAS® expertise and maintenance. In addition, because all clinical
studies have common issues, the edit check macros developed could easily be used to check similar data issues
across other clinical studies.

THE PROBLEM WITH DATA ISSUES

In general, the CDM department may not spend enough resources to check the quality of the data. This is because
CDM’s main responsibility is to collect and structure the incoming data. Since the biostatistics department is
generally responsible for the final study results, they must often exercise control on data quality before accepting the
raw clinical data. The problem often occurs when SAS statistical programmers and statisticians in the biostatistics
department process the original ‘unchecked’ clinical data to get incorrect results and conclusions. For example, even
simple checks such as viewing invalid values for the variable gender are not performed. This could result in
confusion and frustration.

According to the 2001 survey by the Data Warehousing Institute in figure 1, the sources of data quality problems
across all industries can be identified below. It is interesting to note that while most data issues are caused by data
entry errors, there is still a substantial amount of data issues that are caused by system related changes, conversions
or errors. This indicates that similar types of validation checks should be applied throughout the process of data
collection, storage, transfer, conversion and update. For clinical trials, various studies suggest that up to 5 percent of
raw data values in clinical trial databases are erroneous initially.

Figure 1. Sources of Data Quality Problems across all Industries

Beyond the BasicsSAS Global Forum 2008

2

Examples of using ‘unchecked’ data that resulted in significant delays and costs include:
� In February 2003, the U.S. Treasury Department mailed 50,000 Social Security checks without a beneficiary

name. The missing names data issue was due to a software program maintenance error.
� In October 1999, the $ 125 million NASA Mars Climate Orbiter, an interplanetary weather satellite, was lost

in space due to a data conversion error. The data issue was due to performing certain calculations in
English units (yards) when it should have used metric units (meters).

Specifically, this paper will review an effective method to implement a clinical data acceptance testing procedure to
check data quality with each data transfer, conversion or update. The two main categories of clinical data issues may
be grouped as incorrect and incomplete data. In general, incorrect data issues consist of unexpected raw values,
invalid raw values, incorrect conversion of raw values or inconsistent raw values with another variable or record.
Also, incomplete data issues consist of missing values when required.

THE SOLUTION TO RESOLVE DATA ISSUES

As SAS statistical programmers, you can easily write programs to list all unique values of the gender variable, for
example, to inform the team that an invalid value exists for that variable. Once you can isolate clinical data issues,
they become ‘known’ and can be ‘accounted for’ to explain differences in expectations and conflicts. Implementing
the clinical data acceptance testing procedure involves developing a collection of single purpose macros with basic
requirements. Once the system is in place for one clinical study, multiple studies could also be checked as a
universal set of macros since the checks are all repetitive and standard.

The benefits of using these macros are increased productivity by quickly and easily apply the macros to other clinical
studies, the acceptance of CDM to use the systematic approach method of communicating common issues/concerns,
and the biostatistics department having more confidence in the raw clinical data. The end result is that deadlines are
not missed since SAS programs do not have to be written defensibly to account for these data issues.

According to the same 2001 survey by the Data Warehousing Institute in figure 2, the benefits of high quality data
across all industries can be identified below. During the FDA submission process, a single version of the truth and
increased customer satisfaction are very important to recognize reduced costs and minimum delays to get the drug
approved. These outcomes are well worth the average cost of $20 to $25 per case report form page or up to 15 % of
the clinical research budget to ensure data quality.

Figure 2. Benefits of High Quality Data across all Industries

Overall, the process flow consists of accessing raw data, which may contain invalid data, with edit check macros to
monitor data issues so that only valid data is used in the final analysis data sets, tables, lists and graphs. With this
solution, if invalid data is used in the outcome, then the unexpected results can be explained.

Raw Data Edit Check Process Outcome

Demog: Valid/Invalid Data

Vitals: Valid/Invalid Data

Labs: Valid/Invalid Data

Adverse Events: Valid/Invalid
Data

1. Identify Invalid Data
based on DMP

2. Isolate Data Issue

3. Communicate Finding to
CDM

1. MONTHLY: Monitor
Improvements in Invalid
Data

2. FINAL: Use Valid Data in
Analysis data sets, Tables,
Lists and Graphs

Beyond the BasicsSAS Global Forum 2008

3

Specifically, the solution involves these four steps before having the database lock:
1. Specifying Requirements in Data Management Plan (DMP)
2. Developing and Testing Edit Check Macros
3. Communicating Results with Clinical Data Management (CDM)
4. Monitoring the Metrics of Data Issues

SPECIFYING REQUIREMENTS IN DATA MANAGEMENT PLAN (DMP)

The first critical step in data acceptance testing is to specify the requirements in a Data Management Plan (DMP).
Within the DMP, the requirements should be clear and complete for all possible data issues. It will be helpful for the
subject matter expert to use the case report forms and the protocol when developing the requirements. In addition,
often, important variables used in tables, lists and graphs maybe included in the DMP. The data checks performed
should check each of the conditions specified for each clinical raw data set.

As a minimum, for example, the DMP should include the following clinical data checks:

1. All unique key variables in each raw data set are required.
o Example: Patient ID variable is non-missing and unique.

2. Confirm minimum and maximum values of selected variables.
o Example: Demog data set: valid age values within lower and upper range values. Lab data set:

valid toxicity and hemoglobin values within lower and upper range values. Vitals data set: valid
temperature and blood pressure values within lower and upper range values.

3. Display all unique values of selected variables.
o Example: Demog data set: valid treatment (active, placebo).

4. Display values of selected variables to meet specific database queries.
o Example: Endpt data set: valid primary and secondary variables.

5. Confirm the logic between two variables.
o Example: Adverse Events data set: adverse event description, preferred term, and system organ

class are required variables if any are non-missing.
6. Confirm the consistency between two clinical dates.

o Example: Adverse Events data set: Adverse start dates before or same day as adverse stop dates.
7. Check for duplicate records.
8. Compare and identify differences of common variables between two data sets.

o Example: Raw Adverse Events data set and Analysis Adverse Events data set.

In addition to the minimum checks to perform, these additional checks help ensure a more successful clinical study
by monitoring important clinical issues:

1. Are there any protocol violations that should be excluded from analysis?
2. Are the treatment groups randomly distributed based on safety subset population?
3. Have lab values been correctly converted from reported units to standard international units?
4. For each lab, are the normal range flags correct based on the lower and upper range values?
5. For each lab, are there major deviations in value from baseline over time?
6. For each lab data transfer, are patients correctly identified?
7. Are the top 10 adverse events expected?
8. Are patient follow-up visit windows in compliance with the protocol?
9. For any critical variable, are there any outliers?

By applying standard edit check macros to perform standard data checks, more time can be spent on investigating
the unique and more complex data issues of clinical studies. In addition, the focus for SAS statistical programmers is
on generating more data checks since it is easy to copy a single edit check macro call in one SAS line instead of
copying a block of SAS code for each new data check. In the Unix environment, the process of copying and pasting
a single SAS line takes only two key strokes. In addition, any edit check macro call can be turned on or off with the
asterisk character ‘*’.

A secondary benefit is that the traditionally very lengthy SAS program is now much easier to maintain since it is
easier to read and update. As an example, for one clinical study, the clinical data acceptance testing program
contains 75 edit check macro calls. The number of SAS lines in this program is only 150 lines as compared to over
2,000 lines (150 x 14) with traditional SAS programming techniques. For better organization, these edit check macro
calls are grouped by the raw clinical data set checked and then by the type of data check performed. Using edit
check macros improves productivity of standard data checks by at least 80%.

Beyond the BasicsSAS Global Forum 2008

4

DEVELOPING AND TESTING EDIT CHECK MACROS

The challenge is to develop a system that is flexible enough to not run selected data checks, modify data checks and
add new data checks as requested. In addition, it is important for the system to display the message ‘No records
found’ to confirm that the data quality check was performed and that data assumptions were met. Finally, feedback
from CDM needed to be incorporated with the reporting process for each data issue identified. This is important to
prevent ‘re-inventing the wheel’.

Due to limited programming resources and short timelines, a simple approach using ODS and minimum SAS macro
programming is taken to develop and test task-oriented macros. Some macros are individually associated with
selected SAS procedures such as Proc Freq, Proc Means, Proc Compare and Proc Print. These macros offered the
ability to apply the most frequently used SAS procedure options as standards with a consistent reporting layout.

When designing the macros, the following were functional requirements:

A. Macros use basic macro programming techniques that are easy to understand
- Quick development of new macros
- Quick enhancements to existing macros

B. Macros provide informative feedback in titles
- Input data set name
- Variables checked
- Any subset condition applied

C. Macros provide reference information in footnotes
- Program name
- Output file name
- Date executed

D. Macros display data issues
- Patient and visit identification
- Data values of variable checked
- Supporting variables (if any)
- One data issue/page
- Findings saved to one RTF file

Essentially, the input parameters to the edit check macros are directly applied in the SAS procedure and displayed in
the title since it is important to display the source data set, the variable being checked and the condition to report the
data issue. These are important details for CDM to first confirm the biostatistics data issue finding before taking any
action. As footnotes, the date executed and the source program name are displayed so that exact raw snapshot data
sets could be compared.

To meet the requirements of the DMP, data issues are categorized so that edit check macros would have specific
functions.

In general, the edit check macros are designed to meet the following types of data issues:

Type of Data Issue

Brief Description

Acceptable Values Values are one of the valid values for variable
Character Formats Format of values within character variables are as expected
Consistency Across Variables Values are consistent across multiple variables
Consistency Across Data sets Values are consistent across multiple data sets
Non-Duplicate Records Each record is unique and not duplicated
Protocol Compliance Rules Study specific logic-based check to confirm data compliance, ex. lab conversion
Range Check Values are within a specified range
Required Value Value is non-missing
Unique Value Values are unique

Beyond the BasicsSAS Global Forum 2008

5

Below are brief descriptions of selected edit check macros. To help better apply these edit check macros, a user
guide with all macro parameters and example macro calls was developed.

Brief description of selected edit check macros

Macro

Brief Description

%crt_comp Compare data values and variable attributes of two data sets (Proc Compare).
%exprpt Exception Reporting: data set exists?, variable exists?, records exists?, non-missing values exist?
%negval Check for negative values.
%subqry Display selected variables in one data set based on condition in another data set, useful for

checking data across data sets (Proc SQL with subquery). Note that this is an exception macro
since most all other edit check macros can only process a single data set.

%u_eccust Display selected variables based on customized user conditions using a single IF statement. Note
that this is an exception macro since most all other edit check macros use the WHERE statement.

%u_ecdup Check for duplicate records.
%u_ecfreq Display frequency of selected single or multiple crossed variables (Proc Freq).
%u_ecmens Display descriptive statistics including range values of continuous variables (Proc Means).
%u_ecprnt Display selected variables with selected conditions (Proc Print).

Below are general rules when applying the edit check macros:

1. The variable patient is required in almost all macros.
2. All variables must be in a single data set to use macros except for macros such as %subqry which allows for two
data sets.
3. It is recommended to create the macro variable ‘study’ to be used in the title of the output.
4. In many cases, data set option can be applied to the input data set for additional flexibility.
5. Most macros allow for subset condition using a valid ‘where statement’ that is flexible to handle most any
expression with function or calculation. The %u_eccust macro, however, uses the ‘if statement’. For many macros,
other valid SAS statements such as the ‘format statement’ may be used with or without the ‘where statement’.

To apply standardization across the edit check macros, standard macro parameters are used.

Basic edit check macro call with standard macro parameters

%let study = proto1; < libref of data sets to check – raw or analysis data sets >

%edit_check_macro(

edsn = &study.XXX < data set name with optional data set option or if used

 with a SAS procedure then a SAS procedure option >,

ecvr = < one or more edit check variable names >,

byvars = < variable such as patient for by-group processing >,

ecvrl = < one or more extra supporting variable names to display >,

esub = < subset condition using “where statement” >,

fnote = < user defined message to better understand data check >);

To understand the concept of the simple approach taken to develop these edit check macros, the %u_ecfreq macro
is displayed below. The %u_ecfreq macro is used to display frequency of selected single or multiple crossed
variables. It is one of the most frequently used macros since it easily sorts and counts all unique combinations of
variables. This becomes helpful, for example, to validate one variable derived from another variable. With the ‘list’
and ‘missing’ Proc Freq options, the unique variable combinations are listed in rows instead of in separate columns.

In the %u_ecfreq macro call below, all of the variables, from the keyword ‘_all_’, in the ptinfo data set in the &study
libref will be individually summarized. There are no subset conditions applied so all records will be included. The title
displays the study number, data set accessed, variable checked and the subset condition applied if any.

In addition, only the default footnote will be displayed. Notice that multiple user supplied footnotes can be applied
with the ‘\’ delimiter. The footnotes block of code is conditionally applied if &fnote macro parameter is specified.
Finally, the &ecvr macro parameter is directly applied to the ‘table’ statement and the &esub macro parameter is a
separate independent SAS statement within Proc Freq. Since statements such as ‘where’ or ‘format’ are valid SAS
procedure statements, the macro accepts these as input macro parameters. In addition, with the inclusion of the ‘;’,
more than one SAS statement can be specified for additional flexibility.

Beyond the BasicsSAS Global Forum 2008

6

SAS code for %u_ecfreq macro

%macro u_ecfreq(

 edsn = &study.ptinfo, /* dataset name */

 ecvr = %str(_all_/list missing), /* variable or list of variables also,

 can pass cross tables with options */

 esub = , /* subset where condition,

 can also be a format statement */

 fnote = /* optional footnotes with ‘\’ delimiter */

);

 title1 "Study: &study - Edit Check in &edsn dataset";

 title2 "PROC FREQ of %upcase(&ecvr) variable with the condition: &esub";

 %if %length(&fnote)>0 %then %do;

 %if %index(&fnote,\)=0 %then footnote3 &fnote.;;

 %if %index(&fnote,\)>0 %then %do;

 %let fnote3=%scan(&fnote,1,\);

 footnote3 &fnote3;

 %let fnote4=%scan(&fnote,2,\);

 footnote4 &fnote4;

 %end;

 %end;

 proc freq data=&edsn;

 tables &ecvr;

 &esub;

 run;

footnote3;

%mend u_ecfreq;

Below is a %u_ecfreq macro call to display sex and race unique values. Notice that aside from the footnote, the
complete macro call takes only one SAS line which can easily be copied and modified for other data checks.

Example of %u_ecfreq macro call to check for invalid Sex and Race values

%u_ecfreq(edsn = &study..ptinfo, ecvr = sex race/list missing, esub =,

 fnote = %str(Note to CDM: Confirm valid gender\Note to CDM: Confirm valid race));

The output from these edit check macros is standardized to contain all of the relevant information needed by CDM to
confirm the data issue finding before taking any action: study number (proto1), data set name (ptinfo), variable
checked (sex, race), subset condition (if any), patient number (if applicable), visit date (if applicable), unexpected data
values, supporting variables (if any), program name (t_data_acceptance_checks.sas) and date checked
(12MAY2007), and user specified footnote (Note to CDM) to communicate data issue found. Note that each edit
check macro call displays results on the next page so that the data checks are not confused.

As can be seen from the results below, invalid sex values ‘Mal’ and invalid race values ‘X’ exist in the ptinfo data set.
Once CDM identifies the source of these data issues, then the ‘Note to CDM’ footnote can be updated to document
these data issue.

Output of %u_ecfreq macro call

Study: proto1 - Edit Check in proto1.ptinfo dataset

PROC FREQ of SEX RACE/LIST MISSING variable with the condition:

The FREQ Procedure

 Cumulative Cumulative

sex Frequency Percent Frequency Percent

ƒƒƒ

Female 4 40.00 4 40.00

Mal 2 20.00 6 60.00

Beyond the BasicsSAS Global Forum 2008

7

Male 4 40.00 10 100.00

 Cumulative Cumulative

race Frequency Percent Frequency Percent

ƒƒ

Asian 1 10.00 1 10.00

Black 1 10.00 2 20.00

White 7 70.00 9 90.00

X 1 10.00 10 100.00

Program: t_data_acceptance_checks.sas Output: edit_check_results.rtf 12MAY2007

Note to CDM: Confirm valid gender

Note to CDM: Confirm valid race

The %crt_comp macro is used to compare common variables between raw and analysis data sets. For common
variables with different names, the variable names from both data sets need to be specified in the same
corresponding order. For common variables with the same name, an option exists to automatically identify these
common variables. This automatic feature saves programmer’s time from this administrative task. Adding this
automatic feature does, however, require some knowledge of the SAS data dictionary tables.

The %crt_comp macro is useful to handle most all cases of comparing two data sets. Not only can permanent or
temporary data sets be compared, but the %crt_comp macro can apply subset conditions or data set options on each
data set, check common and uncommon variables, remove duplicate records, and apply Proc Compare standard
options. Note that the %crt_comp macro requires knowledge of Proc SQL and Proc Compare and is one of the more
complicated edit check macros.

In the %crt_comp macro call below, all of the input parameters are specified. Note that the %str() macro function
may be required if any input parameter contains special characters such as ‘=’, the equal sign or ‘;’, the semicolon.

Example of blank %crt_comp macro call with all input macro parameters

%crt_comp(

 ec1dir =, /* prefix study directory data set 1 */

 ec1dsn =, /* data set name 1 */

 ec1var =, /* variable names from data set 1 */

 ec2dir =, /* prefix study directory data set 2 */

 ec2dsn =, /* data set name 2 */

 eco2dsn =, /* output data set name 2 */

 ecr2dsn = 0, /* remove duplicate records 0 = no, 1 = yes */

 ec2var =, /* variable names from data set 2 */

 ecvrlt =, /* common variable names to compare or _all_ */

 ecid =, /* matching variable name for data set 1 */

 ecid2 =, /* matching variable name for data set 2 */

 ec1wst =, /* optional where condition on data set 1 */

 ec2wst =, /* optional where condition on data set 2 */

 ec1opt =, /* optional option condition on data set 1 */

 ec2opt =, /* optional option condition on data set 2 */

 cmpopt = %str(method=exact) /* proc compare method option - brief or all */

);

In the single, one line %crt_comp macro call below, a comprehensive Proc Compare using the results of the data
dictionary tables is performed. This macro has also been very useful in the validation of analysis data sets created
from raw data sets.

Example of %crt_comp macro call to compare ptinfo and rptinfo data sets

%crt_comp(ec1dir=a,ec1dsn=ptinfo,ecid=patient,ec2dir=a,ec2dsn=rptinfo,ecid2=patient);

Beyond the BasicsSAS Global Forum 2008

8

The results of the %crt_comp macro call to compare two data sets ptinfo and the corresponding raw data set rptinfo
show that the macro automatically identified and compared the four common variables between the two data sets.
As shown below, the two data sets have the same number of variables and observations. For the non-missing id
variable patient, there are differences in values for sex and age. Since the raw data set, rptinfo, has valid values for
sex and age, there must be a conversion problem when creating sex and age variables in the ptinfo data set.

Output of %crt_comp macro call

Study: proto1 - Edit Check in proto1.ptinfo dataset

Compare aproto1: BASE Dataset ptinfo with aproto1: COMPARE Dataset rptinfo

Compare common variables

Column Name

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

patient

age

sex

race

Study: proto1 - Edit Check in proto1.ptinfo dataset

Compare aproto1: BASE Dataset ptinfo with aproto1: COMPARE Dataset rptinfo

Compare common variables

The COMPARE Procedure

Comparison of WORK.PTINFO with WORK.RPTINFO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs

WORK.PTINFO 21MAY07:06:00:52 21MAY07:06:00:52 4 10

WORK.RPTINFO 21MAY07:06:00:52 21MAY07:06:00:52 4 10

Variables Summary

Number of Variables in Common: 4.

Number of ID Variables: 1.

Number of VAR Statement Variables: 4.

Observation Summary

Observation Base Compare ID

First Obs 1 . patient=.

 . 1 patient=101

First Match 2 2 patient=102

First Unequal 2 2 patient=102

Last Unequal 3 3 patient=105

Last Obs 10 10 patient=115

Number of Observations in Common: 9.

Number of Observations in WORK.PTINFO but not in WORK.RPTINFO: 1.

Number of Observations in WORK.RPTINFO but not in WORK.PTINFO: 1.

Total Number of Observations Read from WORK.PTINFO: 10.

Beyond the BasicsSAS Global Forum 2008

9

Total Number of Observations Read from WORK.RPTINFO: 10.

Number of Observations with Some Compared Variables Unequal: 2.

Number of Observations with All Compared Variables Equal: 7.

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 2.

Number of Variables Compared with Some Observations Unequal: 2.

Total Number of Values which Compare Unequal: 3.

Maximum Difference: 40.

Variables with Unequal Values

Variable Type Len Ndif MaxDif

age NUM 3 2 40.000

sex CHAR 25 1

Value Comparison Results for Variables

 || Base Compare

 patient || age age Diff. % Diff

 _______ || _________ _________ _________ _________

 ||

 102 || 0 40.0000 40.0000 .

 105 || -2.0000 20.0000 22.0000 -1100

 || Base Value Compare Value

 patient || sex sex

 _______ || ___________________+ ___________________+

 ||

 102 || Mal Male

The %u_ecdup macro is used to check for duplicate records. This standard check should be applied to all raw and
analysis data sets. With a simple macro call in one SAS line, this becomes an easy task to perform for all raw and
analysis data sets. The two types of duplicate records check that can be performed using %u_ecdup macro are for
all variables in the data set and for key variables.

The ‘_all_’ keyword can be used when the key variables are unknown or if known, then key variables can be
confirmed. Options exist to create a data set of unique key variables along with any supporting variables. While the
%u_ecfreq macro contains only one Proc Freq, the %u_ecdup macro is a little more complex since it contains five
SAS procedures and two data steps.

Example of %u_ecdup macro call to check for duplicate records

* Check for duplicate records by all variables;

%u_ecdup(

 edsn = &study..ptinfo, /* Data set name */

 ecvr = _all_, /* Error check variables, default is all variables */

 ecvrl =, /* Extra variables to be kept in the output dataset */

 fnote =, /* Optional footnote */

 eoutdsn = /* Output dataset */

);

* Check for duplicate records by key variables;

%u_ecdup(edsn = &study..ptinfo, ecvr = patient);

Beyond the BasicsSAS Global Forum 2008

10

One of the important benefits of using these macros is that a message is always displayed whether the data issue
exists or not. This helps to confirm that the specific data issue is in fact programmed and that no data issue was
found. Since clinical data dumps occur on a monthly basis, data checks that are clean one month may not be clean
the next month.

Output of %u_ecdup macro call

Study: proto1 - Edit Check in proto1.ptinfo dataset

Indicate the result of checking for duplicated records

 Error Code

No duplicated records found for _ALL_

Program: t_data_acceptance_checks.sas Output: edit_check_results.rtf 12MAY2007

Study: proto1 - Edit Check in proto1.ptinfo dataset (Results on next page)

Indicate the result of checking for duplicated records

 Error Code

No duplicated records found for PATIENT

Program: t_data_acceptance_checks.sas Output: edit_check_results.rtf 12MAY2007

The %u_eccust macro is used to check for almost any customized data checks. This macro allows for more complex
checks that can be performed using a valid single ‘if’ statement.

For example, the macro call below checks for incorrect hemoglobin normal range flags. In the ‘if’ statement, there are
four conditions applied any of which will display data issues once the first condition is met:

1. Non-missing hehgb, hehgbl and hehgbh values
2. If ‘L’ flag is incorrectly assigned based on lab value and lower lab value range
3. If ‘H’ flag is incorrectly assigned based on lab value and higher lab value range
4. If ‘N’ flag is incorrectly assigned based on lab value and lower and higher lab value ranges

Example of %u_eccust macro call

%u_eccust(

 edsn = c990736.vlabs, /* Harmonized dataset name */

 ecvr = labdt, /* Variable name for edit check */

 ecst = %str(if labnme='wbc' and not ((.1 < labv < 100))),

 /* Actual If condition statement with NOT built in */

 titles =, /* Extra Title */

 fnote =, /* Optional footnote */

);

%u_eccust(edsn = h&study..hematol

 ,ecvr = hehgb hehgbf hehgbl hehgbh

 ,ecst = if nmiss(hehgb, hehgbl, hehgbh) = 0

 and ((hehgb < hehgbl and hehgbf ne 'L')

 or (hehgb > hehgbh and hehgbf ne 'H')

 or (hehgbl <= hehgb <= hehgbh

 and hehgbf ne 'N')));

As discussed, one of the advantages of having the edit check macro call on one SAS line is to easily copy the line
and change the variable name or subset condition for the next edit check. Below are the multiple %u_ecfreq macro
calls from the production edit check program to check for missing or negative values of 14 hematology lab variables.
As a SAS statistical programmer, this code is not only easier to read, but also easier to maintain. The 14 SAS lines
below would have taken over 200 lines (14 x 15) in a traditional SAS program. As you can see with this approach,
data checks are easy to produce with minimum SAS programming.

Beyond the BasicsSAS Global Forum 2008

11

Multiple %u_ecfreq macro calls

%u_ecfreq(edsn=&study..hematol, ecvr=hewbc, esub=where hewbc <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=heneut, esub=where heneut <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=hesegs, esub=where hesegs <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=heband, esub=where heband <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=hegran, esub=where hegran <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=hebaso, esub=where hebaso <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=heeosn, esub=where heeosn <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=helymp, esub=where helymp <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=hemono, esub=where hemono <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=heatyp, esub=where heatyp <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=hemeta, esub=where hemeta <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=hemylc, esub=where hemylc <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=heprmy, esub=where heprmy <= .);

%u_ecfreq(edsn=&study..hematol, ecvr=hemylb, esub=where hemylb <= .);

Below are the multiple %u_ecmens macro calls from the production edit check program to check for descriptive
statistics and range values of 20 lab variables. Since the results of each lab variable are saved on individual pages,
specific pages in the RTF file can be referenced when identifying data issues in a summary report. The 20 SAS lines
below would have taken over 350 lines (20 x 18) in a traditional SAS program.

Multiple %u_ecmens macro calls

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='wbc');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='neut');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='segs');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='band');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='gran');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='baso');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='eosn');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='lymp');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='mono');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='atyp');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='meta');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='mylc');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='prmy');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='mylb');

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='hct', byvars=class);

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='hgb', byvars=class);

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='plt', byvars=class);

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='rbc', byvars=class);

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='wbc', byvars=class);

%u_ecmens(edsn=&study..vlabs, ecvr=labv, esub=where labnme='anc', byvars=class);

COMMUNICATING RESULTS WITH CLINICAL DATA MANAGEMENT (CDM)

To have an effective system, all parties involved need to work together to improve communication, coordination and
cooperation. The data issues identified by the biostatistics department are only as good as they are timely
communicated in a clear, reproducible method to be received for some type of data corrective action. In general,
before CDM takes any data corrective action, their first step is to confirm your findings of the raw clinical data that
they supplied. If a discrepancy exists between what the biostatistics department expects and what CDM supplies,
then an adjustment to the database design and system may be required.

Each edit check macro is designed to provide all of the following required information needed to identify data issues:
study number, data set name, variable checked, subset condition (if any), patient number (if applicable), visit date (if
applicable), unexpected data values, supporting variables (if any) and date checked. The RTF file containing one
page for each data issue can be e-mailed to CDM for their review. Once CDM accepts the data issues, then time can
be spent to resolve and prevent these data issues. This requires coordination with the source of the raw clinical data
to educate the staff and possible cooperation with application developers to prevent data entry and inconsistent data
errors. It may be that additional training on how to complete more difficult sections of case report forms is required to
prevent selected data issues. If possible, SOPs should include standard processes for identifying and reporting data
issues and validation rules should be applied at the source of data entry to better resolve data issues.

Beyond the BasicsSAS Global Forum 2008

12

For some special cases, it may be acceptable to correct obvious data issues. For these cases, it is strongly
recommended to clearly specify what conditions and what changes can be performed. In addition, upper senior
management must approve these data mapping changes. Finally, the original raw clinical data value should always
be kept for auditing purposes so that the new data value is stored in another variable. An example of an obvious data
issue could be having a blank or ‘No’ to the question “Has the patient had any Adverse Events?” and adverse event
records actually existing for that patient. It may be acceptable to change the blank or ‘No’ to ‘Yes’.

As an alternative, a new derived variable could be created based on the condition if any adverse event record exists,
then value is ‘Yes’ and the original raw value is kept unchanged in another variable not used in analysis. This is the
preferred method used when converting lab values from reported units to standard units. As always, this data
correction should be checked as part of the edit check process. In this case, these two conditions should be
consistent with each other.

MONITORING THE METRICS OF DATA ISSUES

Very often, because raw data dumps occur on a monthly basis, data checks can be monitored with each raw data
dump. By creating a metrics tracking system, the monitoring of data checks becomes more standardized. The
metrics tracking system also serves as a report card that can be communicated to all parties involved including senior
management. In general, the metrics tracking system consists of the timeliness of the data dump, accuracy of the
data, completeness of the information, and consistency of the data across studies.

On a monthly basis before database lock, the goal is to monitor improvements such as reduction of invalid or
inaccurate data and increase of required data. Note that the true accuracy of the raw clinical data can only be
determined by comparing the raw data set with the case report forms which the data was entered from. In general, it
is not the responsibility of the biostatistics department to perform an audit using the case report forms.

One approach for measuring the quality of information in the metrics tracking system is by the type and number of
failed data acceptance tests. In general, for any critical data checks performed, all tests must pass at database lock
time before fully accepting the clinical data. With this requirement, none or minimum data issues are expected in the
final study results.

Specifically, several methods exist to determine the error rate calculation of the data issues identified. The numerator
and denominator used in the error rate calculation depend on the unit base selected. In general, the unit base could
be one of the following three options: total number of data checks performed, total number of records checked, or
total number of patients checked.

Using the ptinfo data set of 10 records as an example, below are three unit base options for error rate calculation:

1. Total number of data checks performed

 a. Number of checks failed/total number of checks performed, ex. 4/5, 80 %

 In this data set of 10 records and 10 patients, 80% of the 5 data checks performed failed. This indicates that at
 least one patient has multiple data issues across all types of clinical data. The scope of data issues is not good for
 these patients. Note that this metric is similar to a moving target since checks can be dropped, modified or added.

 b. Number of failed records/(total number of records x total number of checks performed), ex. 6/(10 x 5), 12 %

 In this data set of 10 records and 10 patients, 6 failed records from the 5 data checks indicates that not all patients
 have data issues. Based on this metric value, only 12 % of the records checked have data issues.

 c. By the data check performed: Number of failed records/(total number of records x total number of checks
 performed)

Ptinfo data set with 5 data checks performed: 10 patients (1 record/patient)

Data Check Performed

Records Passed Test

Records Failed Test

% Records Failed

1. ptno is valid 9 1 10 %
2. age is valid 8 2 20 %
3. sex is valid 8 2 20 %
4. race is valid 9 1 10 %
5. no duplicate records 10 0 0 %
Total 44 6 12 %

Beyond the BasicsSAS Global Forum 2008

13

 The table above indicates that age and sex had the most data issues and that no duplicate records exist in the
 data set.

2. Total number of records checked

 Number of problem records/total number of records in data set, ex. 3/10, 30 %

 Ptinfo data set records

 Obs ptno age sex race

 1 . 35 Mal X 1 . 35 Mal X 1 . 35 Mal X 1 . 35 Mal X

 2 102 0 Mal White 2 102 0 Mal White 2 102 0 Mal White 2 102 0 Mal White

 3 105 3 105 3 105 3 105 ----2 Female White2 Female White2 Female White2 Female White

 4 107 30 Male Black

 5 110 31 Male White

 6 111 28 Female White

 7 112 33 Female White

 8 113 35 Male Asian

 9 114 42 Male White

 10 115 54 Female White

 This method gives, at best, only a high level view of the data issue since it combines all data issues as a single
 data issue per record. While the 30 % failure rate is more than double the 12 % failure rate using the previous
 method, this approach could have been based on 1 or 100 data checks. It will be more useful to include the
 number of checks performed at a summary level so that a detailed breakdown can then be future analyzed.

3. Total number of patients checked

 Number of patients with data issues/total number of patients in data set, ex. 3/10, 30 %

 Since this method is similar to the second method of combining all data issues as a single data issue per patient,
 the same reasoning as above is also applicable to this error rate calculation. Note that in this simple example, the
 30 % matches the error rate calculation of the second method because the data set has one record per patient.

The total number of data checks performed method is selected as the unit base to more accurately track the
improvements in data issues. This is the only unit base method that takes into consideration the amount of time it
takes to SAS statistical programmers to write edit checks instead of assuming that all edit checks are automatically
available without a need to unselect, modify or add more data checks. This unit base method provides information on
the scope of data issues as well as the impact of each data issue.

If the type of failed data acceptance test indicates a systemic problem, then corrective action needs to be taken
immediately to fix the clinical data and to fix the clinical data process component that failed. An example of this would
be the incorrect conversion of clinical lab values from reported units to standard units.

The costs associated with processing poor clinical data can be measured by submission delays as well as making
incorrect conclusions in the clinical study report submission for product approval. While submission delays can cost
pharmaceutical companies many millions of dollars in lost sales per day, the cost of submitting invalid clinical study
results may be much more. In addition, the cost increases as patient lives become affected.

Without the established data acceptance testing process, more time is spent on trying to develop and validate tables,
lists and graphs that contain data issues, which are the cause for delays, confusions and misinterpretations of the
clinical results. Because the reputation of SAS statistical programmers and statisticians on the team are at stake, it is
more important to first identify clinical data issues before generating the final analysis data sets, tables, lists or
graphs.

Beyond the BasicsSAS Global Forum 2008

14

SUMMARY

By implementing a simple, yet effective solution to this major problem, the biostatistics department is able to allocate
minimum resources with minimum SAS statistical programming experience to update and add new edit checks for all
clinical studies. With the addition of the e-mail notification, the biostatistics department is able to take actions more
quickly and communicate the data issues to the team more effectively. In addition, because these techniques to
review clinical data are effective, some edit check macros are also useful for analysis data set validation.

At a very high level, clinical data acceptance testing procedure for data can be considered similar to the traditional
user acceptance testing for system applications. The same principles of good requirements, valid data and coding
and comprehensive testing should be applied in both cases. SOPs and guidelines need to be written to assure
proper steps are in place for processing correct clinical data. All team members are responsible for being trained and
following these SOPs and guidelines.

It is important to note that the data acceptance testing procedure assumes that the data in the data sets accurately
reflects the case report forms since the auditing of the case report forms is a separate task. The edit check macros
are very useful to confirm the consistency and validity of the clinical data to make valid critical study conclusions.
Once mission-critical data acceptance tests fail, the team is automatically informed so that clinical results based on
the current data is not analyzed without first making data corrections.

Future plans to enhance the edit check macros are to use SAS version 9.0 functions. The new SAS version 9.0
functions can be used to easily identify unexpected data values in character variables. For example, the following
functions ANYALNUM(), ANYALPHA(), ANYDIGIT(), and ANYPUNCT() will return the first location of the
alphanumeric, letter, digit or punctuation corresponding. In addition, the corresponding inverse of these functions are
NOTALNUM(), NOTALPHA(), and NOTDIGIT().

REFERENCES
Bentley, John E., “Software Testing Fundamentals – Concepts, Roles, and Terminology”, SUGI 30, Planning,
Development and Support

Brunelle, Rocco and Robert Kleyle, “A Database Quality Review Process with Interim Checks”, Drug Information
Journal, Vol. 36, pp. 357-367, 2002

Ciambrone, Katherine R., “Fit for Reporting”, Data Basics, Society for Clinical Data Management, Summer 2004
newsletter, http://www.scdm.org

Cody, Ron. 1999. Cody’s Data Cleaning Techniques Using SAS® Software, Cary, NC: SAS Institute Inc.

Collins, Sylva H., “Ensuring Quality Data”, Data Basics, Society for Clinical Data Management, Summer 2007
newsletter, http://www.scdm.org

Doles, Wanda, “Managing Laboratory Data”, Data Basics, Society for Clinical Data Management, Spring 2004
newsletter, http://www.scdm.org

Eckerson, Wayne, ‘Data Quality and the Bottom Line’, The Data Warehousing Institute, 2002
http://www.dataflux.com/Resources/file-stream.asp?rid=37

English, Larry, ‘Don’t just comply; Prevent’, SAS.com,
http://www.sas.com/news/sascom/2005q3/column_guestenglish.html

English, Larry, Information Impact International Inc, http://www.infoimpact.com/

FDA, 21 CFR Part 11, Electronic Records, Electronic Signatures; Final Rule, Federal Register, Vol. 62, No. 54,
13429, March 20, 1997.

Fendt, Kaye H., “The Case for Clinical Data Quality”, Data Basics, Society for Clinical Data Management, Summer
2004 newsletter, http://www.scdm.org

Gupta, Sunil. 2006. Data Management and Reporting Made Easy Using SAS® Learning Edition 2.0. Cary, NC: SAS
Institute Inc.

Gupta, Sunil and Curt Edmonds, Sharpening Your SAS® Skills, Boca Raton, FL: Chapman & Hall/CRC Press, 2005

Beyond the BasicsSAS Global Forum 2008

15

Nahm, Meredith, “Data Gone Awry”, Data Basics, Society for Clinical Data Management, Fall 2007 newsletter,
http://www.scdm.org

Nahm, Meredith, Dziem, Greg, Fendt, Kaye, Freeman, Lisa, Masi, Joann, Ponce, Zoe, “Data Quality Survey Results”,
Data Basics, Society for Clinical Data Management, Summer 2004 newsletter, http://www.scdm.org

Raeburn, Vicki, “Measuring Customer Data Quality”, DM Review, December 2007

Shiang, Keh-Dong, “PROC SQL: A Powerful tool to Improve Your Data Quality”, SUGI 31, Posters

Silva, Greg, “Consistent Variables + Consistent Checks = Cleaner Data”, PharmaSUG 2005

Stephens, R. Todd, “Collaboration by Data Organizations”, DM Review, December 2007

CONTACT INFORMATION

The author welcomes your comments and suggestions.

Sunil K. Gupta
Associate Director, Statistical Programming
Quintiles
325 E. Hillcrest Dr., Suite 200
Thousand Oaks, CA 91360
Phone: (805)-557-7700 E-mail: Sunil.Gupta@Quintiles.com

Sunil is the Associate Director, Statistical Programming at Quintiles. He has been using SAS® software for over 14
years and is a SAS Base Certified Professional. He has participated in over 6 successful FDA submissions. His
projects with pharmaceutical companies include the development of a Macro-Based Application for Report
Generation and Customized Plots and Charts. He is also the author of Quick Results with the Output Delivery
System, developer of over five SAS programming classes, developer of Clinical Trial Reporting Templates for quick
generation of tables, lists and graphs and was a SAS Institute Quality Partner™ for over 5 years. Most recently, he
released his new book, Data Management and Reporting Made Easy with SAS Learning Edition 2.0, and has co-
authored the book Sharpening Your SAS Skills. Currently, is teaching his new class, Best Practices in SAS
Statistical Programming for Regulatory Submission.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

Beyond the BasicsSAS Global Forum 2008

	2008 Table of Contents

