
1

Paper 006-2008

Introducing the SAS® Code Analyzer
Eric Thies and Rick Langston, SAS Institute Inc., Cary, NC

ABSTRACT
This paper introduces the PROC SCAPROC procedure, the SAS Code Analyzer that is
new in Release 9.2 of Base SAS® Software. We will examine the advantages of using
the procedure, its syntax and phases of execution, and the output that the procedure
can produce.

ADVANTAGES OF THE PROC SCAPROC PROCEDURE
If you are responsible for maintaining a large legacy SAS application, you are probably
interested in finding ways to improve the performance of the application. This is
especially true if the application makes many passes through the same data sets, and
you know that those passes could potentially be run in parallel. However, it can be
difficult and tedious to convert an application to run parallel steps, even when you have
a good understanding of the application.

The new SCAPROC Base SAS procedure for Release 9.2 can assist in this process.
PROC SCAPROC is an instrumenting procedure that activates hooks within the SAS
System core processes. These hooks allow information to be recorded and
subsequently analyzed to assist in parallelizing the SAS code. Once the SAS code has
been parallelized, you can use it in conjunction with SAS Grid Manager to enable
various SAS steps to run in parallel. This improves the throughput execution time of the
entire SAS job.

SAS jobs consist of many steps or tasks. For example, a SAS job could have a DATA
step that creates data set A, then three PROC SUMMARY steps that all operate on data
set A. Each step creates separate output data sets, and each of the steps executes
sequentially. The DATA step is completed first, then the first PROC SUMMARY step
runs to completion, followed by the second and third PROC SUMMARY steps. As
these steps were running, PROC SCAPROC would gather information to determine if
the three PROC SUMMARY steps could run in parallel.

USING THE PROCEDURE
Let’s see how you would run the PROC SCAPROC procedure to analyze the step
described above:

proc scaproc; record 'out.txt' grid 'gridout.txt'; run;

data a;
 input x y z @@; cards;
1 2 3 4 5 6 7 8 9
run;

Applications DevelopmentSAS Global Forum 2008

2

proc summary data=a;
 var x;
 output out=new1 mean=mx;
 run;
proc summary data=a;
 var y;
 output out=new2 mean=my;
 run;
proc summary data=a;
 var z;
 output out=new3 mean=mz;
 run;

proc scaproc; write; run;

The PROC step is inserted in front of the SAS code to be analyzed. This execution of
PROC SCAPROC triggers the core components of the SAS System to provide
information for activities such as opening and closing SAS data sets. The GRID
statement of the SCAPROC step indicates which file to use in recording information.
After all the PROC SUMMARY steps have reached completion, PROC SCAPROC is
reinvoked, indicating that it is time to analyze the information gathered from the previous
steps.

OUTPUT FROM THE PROCEDURE
Here is the output that is placed into out.txt that was created by the above step:

/* JOBSPLIT: DATASET OUTPUT SEQ WORK.A.DATA */
/* JOBSPLIT: ELAPSED 62 */
/* JOBSPLIT: PROCNAME DATASTEP */
/* JOBSPLIT: STEP SOURCE FOLLOWS */

data a;
 input x y z @@; cards;
1 2 3 4 5 6 7 8 9
run;

/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */
/* JOBSPLIT: DATASET OUTPUT SEQ WORK.NEW1.DATA */
/* JOBSPLIT: SYMBOL GET SYSSUMTRACE */
/* JOBSPLIT: ELAPSED 46 */
/* JOBSPLIT: PROCNAME SUMMARY */
/* JOBSPLIT: STEP SOURCE FOLLOWS */

Applications DevelopmentSAS Global Forum 2008

3

proc summary data=a;
 var x;
 output out=new1 mean=mx;
 run;

/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */
/* JOBSPLIT: DATASET OUTPUT SEQ WORK.NEW2.DATA */
/* JOBSPLIT: SYMBOL GET SYSSUMTRACE */
/* JOBSPLIT: ELAPSED 32 */
/* JOBSPLIT: PROCNAME SUMMARY */
/* JOBSPLIT: STEP SOURCE FOLLOWS */
proc summary data=a;
 var y;
 output out=new2 mean=my;
 run;

/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */
/* JOBSPLIT: DATASET OUTPUT SEQ WORK.NEW3.DATA */
/* JOBSPLIT: FILE OUTPUT U:\m900\com\out.txt */
/* JOBSPLIT: SYMBOL GET SYSSUMTRACE */
/* JOBSPLIT: ELAPSED 46 */
/* JOBSPLIT: PROCNAME SUMMARY */
/* JOBSPLIT: STEP SOURCE FOLLOWS */
proc summary data=a;
 var z;
 output out=new3 mean=mz;
 run;

/* JOBSPLIT: END */

The output file is an executable SAS program that consists of the SAS statements that
were executed, but with the special JOBSPLIT comments, which contain additional
information. The information includes input and output data set activity, flat file activity,
macro variable access, step names, and elapsed time. This output file can be post-
processed by your own applications, but SCAPROC can post-process it, too, and
produce statements for execution on a grid.

If you want grid processing, the first SCAPROC step should contain a GRID option, as
is shown here:

proc scaproc; record 'out.txt' grid 'grid.txt'; run;

When the final SCAPROC step (with the WRITE statement) is seen, the grid.txt file will
contain all of the necessary code to connect to remote sessions and execute portions of

Applications DevelopmentSAS Global Forum 2008

4

the SAS code on different nodes of the grid. In this example, the three separate PROC
SUMMARY steps could be executed simultaneously on different nodes because none of
the steps depends on output that is produced by any of the other PROC SUMMARY
steps.

The output from the analysis phase is a set of RSUBMIT blocks that contains the steps
of the original program. When particular steps of the original program are independent
of each other, each of these steps will be submitted to its own remote session, and the
steps will run in parallel to each other.

Please note that any global statements such as LIBNAME statements should not be
part of the SCAPROC processing. Global statements should probably appear in
autoexec streams for the individual nodes of the grid. You should experiment with the
resultant grid stream to ensure that you will have proper access to all of the input data
sets during the separate executions on the grid nodes.

Note that you can specify the ATTR option on the RECORD statement to also obtain
information about every SAS data set that is read from or written to. This can produce a
lot more output, but it can be worthwhile if you are trying to gather metadata about the
SAS data sets that you are processing.

RUN-TIME CHARACTERISTIC OF THE ANALYZER

It is important to note that the SAS Code Analyzer is a run-time utility. It does not
examine the SAS code, but instead records information that is based on the activity
during DATA steps and procedure steps. But because the SAS Code Analyzer is a run-
time utility, there are no restrictions on what the SAS code is doing. Any amount of
macro usage, %INCLUDEs, and so on, can appear without any adverse effects on the
analyzer.

CONCLUSION

The new SCAPROC procedure simplifies the potentially complex and time-consuming
process of preparing a SAS application for use in a grid environment to allow for faster
throughput.

REFERENCES
A U.S. patent is currently pending for the technology that is used in the SCAPROC
procedure.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at
Eric.Thies@sas.com or Rick.Langston@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2008

	2008 Table of Contents

