Learning SAS® by Diagrams and Examples
Joanne Peng, Indiana University, Bloomington, IN
Shu-Yeng Wong, IUPUI, Indianapolis, IN

ABSTRACT
This paper outlines an alternative method of teaching SAS to computer-inexperienced and statistics-phobic students in social sciences. Specifically, we are interested in demonstrating how the SAS system and its programming capability can be easily understood through diagrams and examples. We believe diagrams are so effective visually that they assist students in conceptualizing the structure and logic inherent in SAS programming language. Hence, they help to reduce logical errors often made by beginning-level users who lack training in any formal programming language.

Examples of short SAS programs, on the other hand, can be used as templates by students. These templates teach students to "speak" the SAS language correctly, thus, minimizing the likelihood of making syntax errors.

This alternative method of teaching has been tried in an introductory SAS course at Indiana University for four years. Students who completed such a course readily demonstrated an ease with reading SAS manuals and, therefore, were capable of handling their own data analysis tasks independently.

We intend to illustrate our alternative teaching method with examples drawn from our teaching, research, and consulting experiences with a variety of projects.

INTRODUCTION
Over the years, we have witnessed many students trying hard to be initiated into the wonderful network of the "SAS Users Club," and yet stumbling countless times along the way before they finally earned the right to entry. One reason that these students had to struggle so hard is because they typically lacked computer skills in their background—most of them were social science majors, had taken one or two statistics course(s), yet never took a course in a "formal" programming language and probably never would. Another reason is that most SAS manuals are next to impossible to comprehend; they appear to have been written by experts who already know the system and who have difficulty communicating to readers about what they know. Consequently these books are not "user friendly" and answers are seldom found in the most accessible and "logical" places in the manual, except for the SAS Introductory Guide. The type of errors made by entry-level users usually is either (1) the logical error or (2) the syntax error.

To help these users avoid making these types of errors and ease their difficulty of learning SAS, we subsequently developed a one-credit hour mini course. The goal of this course is to train graduate students in social sciences to be well-versed in SAS language so that they can become self-sufficient in analyzing data for their dissertations or for research projects.

The particular teaching method we use for this mini course consists primarily of diagrams and examples. Since diagrams are visual, they help students form concepts about the logical structure inherent in the SAS system. They also provide an alternative learning aid for students when dealing with abstract and technical features of SAS.

Examples of simple, short SAS programs, on the other hand, are used as "templates" or "building blocks" for complex programs in the future. These examples are oriented toward solving a real-world problem and, at the same time, teaching students to "speak" the SAS language correctly, thus, minimizing the likelihood of making syntax errors.

After introducing each instructional unit, students engaged in activities such as (a) checking on their own understanding with a set of multiple choice questions, (b) solving two to four problems in ten days, (c) providing feedback on the written materials furnished by the instructor, and (d) submitting their own multiple choice questions for future students enrolled in this course. Throughout the course, the instructor not only assisted students in interpreting various error messages but also compiled them into a Wordperfect file which would benefit prospective students enrolled in the same course.

This alternative method has been tried at Indiana University for the past four years. Students who completed such a course readily demonstrated an ease with reading SAS manuals and, therefore, were able to handle their own data analysis tasks independently. This confidence prepared them for other SAS products such as SAS/Graph, SAS/ETS, etc. Several of them even went on to become SAS consultants at the university computing support center.

We feel this approach to teaching SAS to beginners can be easily modified for alternative user groups or nonacademic settings. It requires only that users be naive and yet motivated. How hard is it to meet this requirement? It cannot be harder than reading a SAS manual!!!

A 3-Stage Concept
At the core of our teaching method is the conceptualization of a 3-stage approach to data analysis/file management within the SAS system. The first stage is referred to as the INPUT stage, the second stage is the PROCESS stage, and the third is the OUTPUT stage.

Within each stage, we further introduce detailed concepts such as, Raw Data File and SAS Data Set at the INPUT stage, or Data Processing and Procedure Processing at the PROCESS stage, and Raw Data File, Customized Report, SAS LOGISAS Listing, and SAS Data Set at the OUTPUT stage. Figure 1 illustrates this 3-step concept.

Within the Data Processing, commands are grouped into nine categories due to their similar functions: Documentation, Transformation, Conditional/repetitive processing, Variable selection, Observation selection, Data set management, User interface, Data indexing and retrieval, and Destination.

Likewise, various selected statistical procedures are combined into six subtypes, depending on their analysis objectives, which are listed under Procedure Processing. These six subtypes include:

- Descriptive analysis
- Summative tabulation
- Categorical data analysis
- Mean analysis
- Prediction, and
- Classification.

1196
What is so special about this 3-stage concept?

The conceptualization of the 3-stage approach of teaching SAS grew out of our experiences as an instructor and a computer science course consultant in an academic setting. The target recipients of this teaching method were students with diverse professional backgrounds; the shared commonality among them was their lack of experience with any computer programming language. For this reason, we relied extensively on a visual presentation format to get many of our ideas across. Thus, the first special feature about this conceptualization is its reliance on graphical representations of concepts and relations implied in SAS system.

The second special aspect about our approach is the circular nature of SAS statements. Thus, Figure 1 shows a starting point on the top of the diagram but no stopping point. In essence, this figure is to capture the endless possibilities of interweaving commands from all three stages within the same SAS program. Yet commands classified into a particular stage can be interchangeably called up without any particular consideration given to the sequencing effect. Commands belonging to different stages do have to follow the general sequence of INPUT \(\rightarrow \) PROCESS \(\rightarrow \) OUTPUT (then back to the INPUT stage again).

For example, a SAS log or SAS listing or a SAS data set has to be created, or output, after the Procedure Processing. It is unnecessary, however, to follow the rigid sequence of stages in their order; it is possible instead to skip a stage in between. For instance, a raw data file INPUT can be read into a SAS data set OUTPUT without the intermediate Data Processing or the Procedure Processing.

The third characteristic, though minor to this conceptualization, lies in the choice of terms which are standard terminologies in computer programming languages. Thus, upon completing this course, if a student wishes to continue pursuing additional computer science courses, he/she will have a minimal transition with concepts and terms.

The fourth and the most important characteristic is our consideration of an entry-level user's point of view. The three-stage approach is more holistic than the traditional dichotomy of DATA step and PROC step, presented in all SAS manuals and publications. Though the separation of DATA step and PROC step is technically correct, it is too simplistic to help beginners form a picture of how various commands are interconnected. Furthermore, there are too many rules, too much material to cover within each step. For example, the following commands can all go into the DATA step:

- TITLE, LABEL, FORMAT, functions, PUT, INPUT, SUM statements, KEEP, DROP, various DO statements, LINK, RETURN, DELETE, OUTPUT, WHERE, SET, MERGE, UPDATE, BY, LENGTH, RENAME, RETAIN, ARRAY, INFORMAT, ATTRIB, and many others.

Without a doubt, this list of commands is overwhelming to a beginner; it makes the learning process difficult to even get started. The lack of a proper understanding of how to classify commands is frustrating for user to pass beyond the DATA stage. In frustration, he/she typically resorts to a blind trial-and-error approach in debugging errors which results in more frustration.

Yet our conceptualization of Data Processing provides a systematic clustering of commands according to their functions. It is only partially related to the DATA step concept, since Data Processing includes all that is necessary or desirable for preprocessing user's data so that they become suitable either for forming a SAS data set or for additional statistical analysis (see Figure 1). Under this definition, Data Processing, therefore, includes many of the typical DATA step commands plus sorting, formatting procedures and generic PROC DATASETS, PROC CONTENTS for data indexing and data set management. Figure 2 presents such a nomenclature of various commands and PROC's which we consider relevant and intuitive to user's idea of "data processing."
How is this approach to teaching/learning implemented?

Our proposed approach to teaching and learning SAS has been implemented in a 1-credit hour course at Indiana University for the past four years. The frequency of course offering has been once each semester; the instructor is the first author. Enrollment of this course is approximately 10 with a slight increase observed in the past two semesters. Since this course is an elective course, enrolled students are truly motivated to learn the materials and have an above average ability/aptitude for computers. The majority of students are education majors; others come from diverse backgrounds such as kinesiology, marketing, economics, statistics, applied math, science education, nursing, and computer science. All students have been graduate students.

The course has been oriented toward mainframe SAS version because of IU’s open policy on computing time (what a blessing!). Over the years, we have witnessed an increase in students’ knowledge about the mainframe operating system, the editor, the mail utility and interface between the mainframe and the personal computer. Consequently we spent no more than half a lecture (or one hour) on these concepts in the current semester.

Teaching Materials

Teaching SAS for one credit hour has not been easy; the format we are presently using is 10 weekly lectures and 5 take-home assignments. Learning materials have been divided into 5 instructional units. Thus, each unit is covered in two lectures, each of which lasts 2 hours. To help students minimize their anxiety about learning, teaching materials were distributed to students as Wordperfect files which students could print into a hard copy prior to each lecture. A table of contents is presented below:

SAS Unit 1

Introduction to SAS
Where do I start?
3-stages to learning SAS statements
The general appearance of a SAS command file
Steps for creating and submitting a SAS command file
Input Stage
reading the raw data file
INPUT INFILE CARDS or DATALINES using SAS data set in a DATA step or a PROC step

SAS Unit 2

DATA = option in a PROC step

Output Stage
creating a SAS data set
DATA OUTPUT in DATA step
OUTPUT in PROC step
creating a raw data file
FILE PUT LIST

Data Processing : Transformation
Simple Arithmetic Operations: +, -, *, /, **
Constant Assignment
Arithmetic Functions
Trigonometric and Hyperbolic Functions
Functions That Generate Pseudo-random Variables
Selected Functions That Calculate Simple Statistics
SUM and SUM Function
Other Functions

Quiz for Unit 1

SAS Unit 3

Data Processing : Documentation
TITLE LABEL FORMAT PROC FORMAT /* Comment */

Data Processing : Declaration
FORMAT INFORMAT LENGTH ATTRIB RENAME RETAIN ARRAY OPTIONS

Data Processing : VAR Selection
KEEP DROP KEEP= DROP=

Data Processing : OBS. Selection
Subsetting IF WHERE DELETE FIRSTOBS= OBS= WHERE=

Data Processing : Data Set Management
How and Why Do You Reshape SAS Data Sets?
SET MERGE UPDATE
The Use of IN= variable in a SET, MERGE, or UPDATE statement
PROC SORT PROC CONTENTS PROC PRINT

Quiz for Unit 2

Data Processing : Conditional Processing
Comparison Operators and Logical Operators
IF-THEN/ELSE DO-END
The ARRAY Declaration

DO
DO OVER - END
DO WHILE - END
DO UNTIL - END
What is the Generic Logic Behind the iterative DO, DO WHILE, and DO UNTIL?

What is the Generic Logic Behind the iterative DO, DO WHILE, and DO UNTIL?

The underlying structure we hope to communicate to students with this example is as follows:

Raw Data file
SAS data set (EX1)
PROC MEANS
VAR V1 V2 V3
RUN;

The underlying framework for this example is as follows:

SAS data set (EX1)
DATA EX2; /* input stage */
SET EX1; /* input stage */
IF SEX = 'F'; /* OBS. selection */
V1 = SQRT (V1); /* data transformation */
V2 = 1/V2; /* process stage */
P3 = (V1 + V2)/2; /* process stage */
PROC MEANS /* process stage */
DATA=EX2; /* process stage */
VAR V1 V2 V3; /* process stage */
RUN; /* listing and log outputs */

Example 2: [Data transformation and average analysis]

Example 3: [Substituting missing data by group means]

Obviously this example is more complex than the previous ones; the concept we are hoping to teach to students is this:

SAS data set
INPUT stage
SAS data set (EX2) OUTPUT stage ➔
PROC MEANS PROCESS stage
SAS SAS OUTPUT stage
Listing LOG

Example 3: [Substituting missing data by group means]

SAS data set
INPUT stage
PROC MEANS PROCESS stage
SAS SAS OUTPUT stage
Listing LOG
These examples were illustrative of the teaching style and the layout of the course materials used throughout the lectures. In other words, these examples were presented in a sequence of increasing difficulty and complexity. In the beginning of the course, simple examples which contain one SAS command or statement are given. As the course progresses, two or more commands/statements are incorporated into the same examples (complex examples). The one-command-per-example approach effectively teaches students the correct syntax of each and every SAS command. The multiple-command-per-example approach, on the other hand, demonstrates how to use SAS to solve a real-world problem. Thus, these complex examples are intended to minimize students' logical errors. The value of accumulating these practical problem-solving skills attracts students not only find an answer to a problem they frequently studying these solutions and the accompanying explanations.

For instance, we pose students with this question: "If a questionnaire on Family Values contains negatively worded questions and yet the same Likert scale (of 1-5 where 1 = strongly disagree, ..., 5 = strongly agree) has been used for all questions, how do you reverse scores obtained from these negative items so that they mean the same thing as all other scores?"

We then show six methods for solving this problem—three methods for reversing a single item and three for multiple items. Each solution is in fact a short SAS program with explanations given on the side (see Case 1 and Case 2 below). By studying these solutions and the accompanying explanations, students not only find an answer to a problem they frequently encounter in their own work, but also learn to "talk" like a real SAS user.

Case 1: Scale reversal for a single item

SAS Programs

<table>
<thead>
<tr>
<th>SAS Programs</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF a=5 THEN a=1; ELSE IF a=4 THEN a=2; ELSE IF a=1 THEN a=5;</td>
<td></td>
</tr>
<tr>
<td>SELECT (a); WHEN (5) a=1; WHEN (4) a=2; WHEN (2) a=4; WHEN (1) a=5; OTHERWISE;</td>
<td></td>
</tr>
<tr>
<td>a = 6 - a;</td>
<td></td>
</tr>
</tbody>
</table>

Case 2: Scale reversal for multiple items

SAS programs

<table>
<thead>
<tr>
<th>SAS programs</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1 = 6 - v1; v2 = 6 - v2; v3 = 6 - v3; v5 = 6 - v5; v7 = 6 - v7;</td>
<td></td>
</tr>
<tr>
<td>ARRAY v (5) v1 v2 v3 v5 v7; DO i = 1 TO 5; v(i) = 6 - v(i); END;</td>
<td></td>
</tr>
<tr>
<td>ARRAY v1 v2 v3 v5 v7; DO OVER v; v = 6 - v; END;</td>
<td></td>
</tr>
</tbody>
</table>

Quiz Questions

The multiple-choice questions, treated as a QUIZ, were developed for students which are all aimed at augmenting students' capacity to transfer what they learn from lectures, written examples, or hands-on experience to real-world problems. These activities include (a) answering approximately 20 multiple-choice questions at the end of each unit, (b) completing weekly assignments, and (c) providing feedback on lectures and written coursework on a biweekly basis.

The following is SPSS except for:

1. **FILE HANDLE**
2. **DATA LIST**
3. **MISSING VALUES**
4. **VARIABLE LABELS**
5. **RE**

Assignment Problems

The second learning activity, i.e., the weekly assignment, asked students to solve 2 or 3 real-world problems each week. The weekly assignment examines students' ability to apply the knowledge and logical thinking to problems they might face someday. For example, the following two problems were assigned on the unit which dealt with file management and categorical data analysis:

A. Given two data sets below, can you think of a way to combine them so that a travel agent may generate complete information for your spring vacation which consists of the date, flight number, carrier, from (city), to (city), the time of departure and arrival?

Data NUMBER

<table>
<thead>
<tr>
<th>variables:</th>
<th>Date</th>
<th>Number</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>030493</td>
<td>23</td>
<td>NW</td>
<td></td>
</tr>
<tr>
<td>031293</td>
<td>405</td>
<td>U.S.</td>
<td></td>
</tr>
<tr>
<td>031493</td>
<td>74</td>
<td>American</td>
<td></td>
</tr>
<tr>
<td>032093</td>
<td>328</td>
<td>TWA</td>
<td></td>
</tr>
<tr>
<td>032593</td>
<td>18</td>
<td>NW</td>
<td></td>
</tr>
<tr>
<td>032993</td>
<td>92</td>
<td>TWA</td>
<td></td>
</tr>
<tr>
<td>033093</td>
<td>266</td>
<td>Eastern</td>
<td></td>
</tr>
</tbody>
</table>

Data TIME

<table>
<thead>
<tr>
<th>variables:</th>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Depart</th>
<th>Arrival</th>
</tr>
</thead>
<tbody>
<tr>
<td>030493</td>
<td>New York L.A.</td>
<td>9:45am</td>
<td>5:05pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031293</td>
<td>Chicago Miami</td>
<td>3:20pm</td>
<td>9:35pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031393</td>
<td>Indy Twin City</td>
<td>8:30am</td>
<td>10:15am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032093</td>
<td>Denver St Louis</td>
<td>1:00pm</td>
<td>6:08pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032593</td>
<td>St Louis Cleveland</td>
<td>4:15pm</td>
<td>7:12pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032993</td>
<td>Boston SF</td>
<td>7:55am</td>
<td>3:16pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033093</td>
<td>Madison Indy</td>
<td>2:18pm</td>
<td>11:43pm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since we believe in the notion of "learning for mastery (LFM philosophy)", there are several learning activities we designed for students which are all aimed at augmenting students' capacity to transfer what they learn from lectures, written examples, or hands-on experience to real-world problems. These activities include (a) answering approximately 20 multiple-choice questions at the end of each unit, (b) completing weekly assignments, and (c) providing feedback on lectures and written coursework on a biweekly basis.
What changes would you suggest to improve students' feedback? The feedback is obtained by using a semi-structured form consisting of direct quotes from students who are enrolled this semester:

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Room</th>
<th>Income (in $1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDY M</td>
<td>28</td>
<td>H</td>
<td>9.6</td>
</tr>
<tr>
<td>SOPHIA F</td>
<td>42</td>
<td>412 M</td>
<td>7.4</td>
</tr>
<tr>
<td>TED M</td>
<td>68</td>
<td>101 H</td>
<td>8.8</td>
</tr>
<tr>
<td>DICKENS M</td>
<td>37</td>
<td>135 M</td>
<td>6.3</td>
</tr>
<tr>
<td>RUTH F</td>
<td>39</td>
<td>430 L</td>
<td>1.3</td>
</tr>
<tr>
<td>CHARLIE M</td>
<td>54</td>
<td>222 M</td>
<td>4.7</td>
</tr>
<tr>
<td>RUTH F</td>
<td>39</td>
<td>430 L</td>
<td>1.3</td>
</tr>
<tr>
<td>ANNE F</td>
<td>58</td>
<td>404 H</td>
<td>10.2</td>
</tr>
<tr>
<td>DAVID M</td>
<td>47</td>
<td>117 M</td>
<td>5.2</td>
</tr>
<tr>
<td>RICHARD M</td>
<td>28</td>
<td>240 H</td>
<td>9.2</td>
</tr>
<tr>
<td>SAM M</td>
<td>36</td>
<td>231 M</td>
<td>6.4</td>
</tr>
<tr>
<td>PETER M</td>
<td>65</td>
<td>108 L</td>
<td>3.3</td>
</tr>
<tr>
<td>LINDA F</td>
<td>20</td>
<td>425 M</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Given the variables of Data A listed above, please:
(a) Sort the Data A by name alphabetically.
(b) Produce two separate percentage bar charts according to sex, and S.E.S.
(c) Suppose that five age groups are defined according to the following age ranges:
group 1 = 20-29
group 2 = 30-39
group 3 = 40-49
group 4 = 50-59
group 5 = 60-69
Produce a frequency bar chart according to age group.
(d) Assuming that the room numbers represent the floor levels. For example: Room 404 is a room on the fourth floor and Room 117 is on the first floor. Sort the data set first by floor level of the rooms and then by sex. Find the relationship between sex and floor level of the room.
(e) Describe the extreme values of INCOME variable. Draw plots and discuss if it's distribution follows a normal curve. For these weekly assignments, a letter grade is assigned based on three criteria: accuracy, programming style and punctuality.

Students' Feedback

The third learning activity, feedback from students on the course notes, is most helpful to the instructor in terms of future course revisions. The feedback is obtained by using a semi-structured form consisting of three questions:
(a) What sections of the Unit 1 (or 2,3,4,5) materials are not clear to you? (b) Did you notice errors in the materials? If yes, please describe them. (c) What changes would you suggest to improve the materials?
One response we always received on question (c) above has been: Include more examples on topic XXX. Here are some of the direct quotes from students who are enrolled this semester:

"Could you give me more examples to help me understand these materials?"

"Page 25—example 11, please give 3 to 4 observations so that this is clear to novice users. Please give example for page 39 as how we can use these internal variables."

"I felt Unit 2 material was very clear and well supported by questions and examples. The only change as I stated with Unit 1 is to include more examples or questions."

"I felt the materials for the most part were very clear. Incorporating the different examples and questions regarding the material is very helpful. Improving this material would consist of doing more of what is already incorporated—just a few more examples or more in-depth questions. So far I have liked the material and have found it to be helpful."

How do we help learners correct errors?

The best way to help learners correct errors is to remind them of principles used in SAS syntax and logic. For example, the most popular error made during the first week of lecture is caused by forgetting a ';' at the end of one or more SAS statement. As a result, we have to constantly drill into students' mind that a SAS statement is like a complete English sentence. When a statement is completed, it ends with a semi-colon, just like a period ('.') in ordinary sentences.

Other rules, such as using '*' for missing observations or restricting data set names or variable names to 8 characters or fewer, are likewise repeated over and over again until students could not stand it any longer; consequently they master these rules like a second nature.

Typical error messages and their interpretation/correction have been compiled into an appendix, attached at the end of the course notes, for students' reference. A sampler of this appendix is enclosed here:

Appendix B: Typical error messages on the LOG file

1. WARNING 14-169; Assuming the symbol CARDS was misspelled as CAR.

2. ERROR 23-2: Invalid option name INPUT.

The Measure of our Success

This alternative method of teaching has been tried in an introductory SAS course at Indiana University for four years. Students who completed such a course readily demonstrated an ease with reading SAS manuals, were capable of handling their own data analysis tasks independently, became intrigued by other SAS products such as SAS/Graph, SAS/ETS, etc. and most impressively, were hired by computer centers at Indiana University and Purdue University as consultants on SAS III.

SAS, SAS/Graph, SAS/ETS are registered trademarks of SAS Institute Inc.

Wordperfect is a registered trademark of WordPerfect Corporation.

VAX is a registered trademark of Digital Equipment Corporation.

In the USA and other countries, * indicates USA registration.