ASYMMETRY AND REGRESSION

Philip Harris Monchar, AT&T Long Lines

Background

This paper is concerned with the assumption of symmetry underlying both correlation and regression. In particular, the paper examines some of the practical effects of violating the assumption of symmetry in the independent variable. It is noteworthy that standard statistical textbooks in sociology, psychology, and education seem to give scant explicit regard to the consequences of violating this assumption. In addition, a computerized literature search of the statistical and social science fields, as able to identify very few articles dealing with this issue, and not one of them was dated prior to 1975. The problem addressed in this article was encountered in an analysis of telecommunications data that involved a hypothesized quadratic model. In the course of the analysis an unexpected non-orthogonal quadratic regression equation of the form, \(Y = b_0 + b_1 X_1 + b_2 X_1^2 \). Given the highly collinear relationship between \(X_1 \) and \(X_1^2 \) one would find it difficult to determine and to interpret the two coefficients of slope, \(b_1 \) and \(b_2 \). In addition, the determination of the true correlation between \(Y \) and \(X_1 \), and between \(Y \) and \(X_1^2 \), would be problematic. Thus, we will transform the above regression equation to the algebraically equivalent form which according to many will solve the two problems raised earlier in this paragraph: And,

\[
Y = a + b_1(X_1 - \bar{X}_1) + b_2(X_1 - \bar{X}_1)^2.
\]

For Marquardt and Snee (1975), \((X_1 - \bar{X}_1) \) is orthogonal to \((X_1 - \bar{X}_1) \) whereas Bradley and Srivastava (1977 and 1979) and Stimson, Carmines, and Geller (1978) claim that the orthogonal relationship only exists under conditions of symmetry in \(X_1 \). I follow the latter viewpoint. In fact, the limiting factor for determining orthogonality between \(X_1 \) and its square is not viewed as

\[
\Sigma (X_1 - \bar{X}_1)^2 = 0,
\]

rather as

\[
\Sigma (X_1 - \bar{X}_1)^2 = 0.
\]

Table 1 summarizes the effect of asymmetry on both the sum of deviations and the signed sum of squared deviations about a mean. Table 2 extends the effects summarized in Table 1 to the correlation between the two deviations, \((X_1 - \bar{X}_1) \) and \((X_1 - \bar{X}_1)^2 \).

Table 1: The Effects of Asymmetry on the Sum of Deviations about a Mean

<table>
<thead>
<tr>
<th>Deviation</th>
<th>Symmetry</th>
<th>Asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma (X_1 - \bar{X}_1))</td>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>(\Sigma (X_1 - \bar{X}_1)^2)</td>
<td>*</td>
<td>0</td>
</tr>
</tbody>
</table>

A Monte Carlo sampling experiment was used to create 257 sets of 100 random variates of assorted, yet known, distributional characteristics. Each set of 100 random variates was generated by means of a standard algorithm (Procedure UNIFORM of SAS-79.3). This procedure produced 100 pseudo-random numbers (from a uniform distribution...
over the range zero to one. Each U_i in each set was converted to a simulated Weibull value using the function: $X_i = \log(U_i) \cdot 1/a$, where $a=0.4$ and 0.5 to 5.0 by increments of 0.5. The values, $(X_{11} - X_1)$ and $(X_{11} - X_2)^2$ were generated for each X_{11} within its data set for each of the 297 data sets. The skewness and kurtosis of each of the 297 Weibull distributions were recorded.

Two new variables, Y_L (linear) and Y_Q (quadratic) were created in each of the 297 data sets according to the algorithms:

$$Y_L = (X_{11} - X_1)^2 + a_1$$ and $$Y_Q = (X_{11} - X_1)^2 + a_2,$$

where a_1 and a_2 are random normal variables of equivalent range and standard deviations as $(X_{11} - X_1)$ and $(X_{11} - X_2)^2$ respectively. The correlations between Y_L and $(X_{11} - X_1)$ and Y_Q and $(X_{11} - X_1)^2$ are approximately 0.7. Next, for each of the 297 Weibull distributions of 100 variables the mean and standard deviation of $(X_{11} - X_1), (X_{11} - X_2)^2$, Y_L and Y_Q were set to 50 and 10 respectively.

The intercorrelations were calculated and recorded. Since we are concerned with modelling the ill-effects for correlation analysis of violating the assumption of symmetry in the X-variable we will examine the relationships between skewness and kurtosis in X and 1) the correlation between $(X_{11} - X_1)$ and $(X_{11} - X_2)^2$; and 2) the correlation between linear Y and $(X_{11} - X_2)^2$.

Finally, the procedure GLM of SAS-79.3 was used to perform multiple regressions on the models: $Y_L = (X_{11} - X_1) + (X_{11} - X_2)^2$, where Y_L has a true linear relationship to $(X_{11} - X_1)$; and $Y_Q = (X_{11} - X_1) + (X_{11} - X_2)^2$, where Y_Q has a true second degree polynomial relationship to $(X_{11} - X_1)$. In order to model the ill-effects for regression analysis of violating the symmetry assumption for the independent variable we chose to examine the relationships between skewness and kurtosis in X and 1) the size of the b coefficient in the equation, $Y_Q = (X_{11} - X_1) + (X_{11} - X_2)^2$; and 2) the change in R^2 due to the second degree polynomial term in the regression on quadratic Y.

Table 3 below summarizes the ranges of values for each of the variables of interest. First, the 297 data sets were ranked in ascending order of their skewness of distribution. Then, the 297 data sets were divided into 9 equal groups of 33 and nine median values for each variable were recorded.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median</th>
<th>R^2</th>
<th>b</th>
<th>Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>0.30</td>
<td>0.50</td>
<td>0.60</td>
<td>0.40</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.30</td>
<td>0.50</td>
<td>0.60</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Table 4 below lists the intercorrelations amongst the above variables. Even a cursory glance at the graphs which follow later clearly shows that most of the relationships, while significant, are not linear. However, as will be demonstrated later the assumption of linearity is quite acceptable. Thus, the correlation coefficients in Table 4 generally underestimate the strengths of the relationships in the range of values of interest. The following graphs will show the effects of the data distribution of the independent variable on several aspects of correlation and regression. The correlations between $(X_{11} - X_1)$ and $(X_{11} - X_2)^2$, and between Y_L and $(X_{11} - X_2)^2$; the standard error of slopes for $(X_{11} - X_1)$ on Y_Q and the change in R^2 due to $(X_{11} - X_2)^2$ being regressed on Y_Q in the full-rank quadratic model are illustrated for skewness in Graphs 1a-d and for kurtosis in Graphs 2a-d. The broken horizontal lines in Graphs 1a, 1b, 2a and 2b represent the values of the correlation coefficient ($r > 0.34$) required for the 0.1 level of significance when Ho: $p = 0$ (two-tailed) at the sample size of 100 used in each of the 297 sets.
Graphs 1a and 2a describe the effects of skewness and kurtosis in X on the relationship between $(X_1 - \bar{X}_1)$ and $(X_1 - \bar{X}_1)^2$ which, according to Marquardt and Snee, is an orthogonal one. Both graphs show that the relationship is not always orthogonal. Whereas the relationship is quite clear-cut for skewness, for kurtosis the relationship is only straightforward at its higher values. For skewness (Graph 1a) quite moderate deviations from symmetry (skew $> \pm .40$) are associated with significant ($\alpha = .01$) correlations between the first and second-order polynomial terms of X.

Graphs 1b and 2b show a similar picture for the relationship between the correlation of a truly linear Y to $(X_1 - \bar{X}_1)^2$ and skewness and kurtosis in X respectively. Again, the relationships are clearer for skewness than for kurtosis. The significant spurious correlation demonstrated at skewness of greater than -.6 or +.8 is attributed to the relationships: $Y_L = f(X_1 - \bar{X}_1)$ and $(X_1 - \bar{X}_1)^2 = f(X_1 - \bar{X}_1)$ when X has an asymmetrical distribution, therefore, $Y_L = (X_1 - \bar{X}_1)^2$.

Graphs 1c and 2c illustrate the relationships between the magnitude of the standard error of slope in a regression, in this case a quadratic regression, and skewness and kurtosis in X respectively. For the ranges of skewness and kurtosis present here, the order of magnitude for the standard error of slope is basically unchanging for skewness of -.75 to 1.25 and kurtosis of -1.0 to 1.5. However, for the entire ranges of skewness and kurtosis illustrated in these graphs the magnitude of the standard error of slope changes by a factor of four.
Finally, Graphs 1d and 2d picture the relationships between the change in R^2 attributable to $(X_i - \bar{X})^2$ in the quadratic equation and skewness and kurtosis in X respectively. These relationships are more moderate than the previous ones, although the relationships remain positive.

Conclusion

I feel that these results emphasize the need to know the distribution of the data. The implicit assumption found in many social science textbooks that only major violations of data symmetry are of concern is shown to be of questionable validity. Rather, the data presented here have indicated that quite moderate deviations from symmetry can induce significant spurious relationships among supposedly orthogonal variables. In general, skewness is sufficient for assessing the dangers of spurious relationships or falsely high standard errors of slope in regression. However, the addition of kurtosis does add a small amount of information which while significant is not really meaningful. I would recommend that the assumption of symmetry be taken seriously and that asymmetrical distributions of variables be transformed such that $E[\text{SGN}(X_i - \bar{X})^2] = 0$. Symmetrical data distributions have been shown to clearly simplify the correct interpretation of correlation and regression analyses.

In conclusion, I feel the effects of data distribution on regression and correlation statistics modeled here are sufficiently important to warrant explicit notes of caution in statistics textbooks.

Bibliography

