A SAS MACRO FOR PLOTTING "PAIR CHART" AND OBTAINING TWO SAMPLES
MANN-WHITNEY, WILCOXON AND KOLMOGOROV-SMIRNOV STATISTICS

Agam N. Sinha, Kenneth A. Hardy
Social Science Statistical Laboratory
Institute for Research in Social Science
University of North Carolina, Chapel Hill, N.C.

ABSTRACT

The "pair chart" is a useful, graphical representation of ordered data for two-sample problems. In addition, it provides a convenient format for computing common two-sample inferential statistics such as the Wilcoxon, Mann-Whitney and Kolmogorov-Smirnov tests. This paper presents a SAS macro for plotting pair charts on the pen plotter at the UNC Computing Center (or the screen of a Tektronix video terminal) and also calculating the above two-sample test statistics.

Introduction

The nonparametric statistical technique for the classical two-sample comparison problem consists basically in computing either (a) a linear rank statistic, or (b) a statistic based on the empirical distribution functions of the two samples. The classical statistics belonging to the former category are those of Mann-Whitney and Wilcoxon, and statistics belonging to the latter category are those of Kolmogorov-Smirnov and Cramer-von Mises. Quade (1973) has given an ingenious method of comparing two samples pictorially through a diagram that he calls a "pair chart". He has discussed many descriptive uses of pair charts and also explained how to interpret them. The present paper reviews the computational procedures involved with the two-sample Mann-Whitney, Wilcoxon and Kolmogorov-Smirnov statistics, and presents a SAS macro for computing these statistics, and plotting pair charts using a Calcomp plotter or Tektronix video terminal.

Mann-Whitney and Wilcoxon Statistics

Let X_1, X_2, \ldots, X_M be an ordered random sample of M observations from an unknown distribution $F(x)$, and let Y_1, Y_2, \ldots, Y_N be a random sample of N observations from some other unknown distribution $G(y)$, where the two samples are drawn quite independently. The classical two-sample problem consists in testing the null hypothesis

$$
H_0: F(x) = G(y) \quad (1)
$$

$$
H_1: F(x) \neq G(y)
$$

The Mann-Whitney (1947) statistic to test the above hypothesis is computed as follows.

First, all possible pairs of observations $(X_i, Y_j; i = 1, 2, \ldots, M, j = 1, 2, \ldots, N)$ are formed yielding MN such pairs. These pairs are then sorted into three categories as follows:

Type I: pairs in which $X_i > Y_j$;

Type II: pairs in which $X_i < Y_j$; and

Type III: pairs in which $X_i = Y_j$ (ties).

The Mann-Whitney statistics U_x and U_y are given by

$$
U_x = \text{(Number of Type II pairs)} + \frac{1}{2} \cdot \text{(Number of Type III pairs)} \quad (2)
$$

$$
U_y = MN - U_x
$$

To compute the Wilcoxon statistic for testing the null hypothesis (1), first combine the two-sample observations, and then rank order their values keeping track of which sample each observation came from. If R_i is the rank of X_i in the combined samples ($i=1, 2, \ldots, M$), it can be shown that

$$
R_i = i + \text{(Number of Type I pairs)} \quad (3)
$$

where $i = 1, 2, \ldots, M$.

The Wilcoxon statistic is defined as

$$
T_x = \sum_{i=1}^{M} R_i \quad (4)
$$

The relationship between T_x and U_x is given by

$$
T_x = U_x + \frac{M(N+1)}{2} \quad (5)
$$

For purposes of testing significance, the percentile points of the distributions of U_x and T_x under H_0 can be found in any text on nonparametric statistics (e.g. Siegel, 1956; Hollander and Wolfe, 1973).

Kolmogorov-Smirnov Statistic

The two-sample Kolmogorov-Smirnov statistic for testing the null hypothesis (1) is calculated as follows:

Assume that the variables on which observations have been made are continuous (i.e. interval scale variables). Let $F_1(z)$ and $F_2(z)$ be the empirical distribution functions of the samples X_1, X_2, \ldots, X_M and Y_1, Y_2, \ldots, Y_N respectively. Thus

$$
NF_1(z) = \text{Number of observations } X_i \text{ such that } X_i \leq z \quad (6)
$$

$$
NF_2(z) = \text{Number of observations } Y_j \text{ such that } Y_j \leq z \quad (7)
$$

$$
i = 1, 2, \ldots, M, \quad j = 1, 2, \ldots, N.
$$
The one-sided Kolmogorov-Smirnov tests reject H_0: $F(x) = G(y)$ for large values of

$$D_x = \max_{1 \leq i \leq M} \left| \frac{F_N(z_i) - G_N(z_i)}{N} \right| \quad (8)$$

$$D_y = \max_{1 \leq j \leq N} \left| \frac{G_N(z_j) - F_M(z_j)}{M} \right| \quad (9)$$

The two-sided test rejects H_0: $F(x) = G(y)$ for large values

$$D = \max(D_x, D_y) \quad (10)$$

A convenient way to compute D_x, D_y and D is as follows:

$$D_x = \max_{1 \leq i \leq M} \left| \frac{F_N(z_i) - G_N(z_i)}{N} \right|$$

$$D_y = \max_{1 \leq j \leq N} \left| \frac{G_N(z_j) - F_M(z_j)}{M} \right| \quad (11)$$

The percentile points or the distributions of D for the one-sided and two-sided tests are tabulated in any standard text on nonparametric statistics.

Pair Chart

Quade (1973) has shown how to get an insight into the two-sample comparison problem by drawing a "pair chart". He has also indicated how to obtain Mann-Whitney, Wilcoxon and Kolmogorov-Smirnov statistics from the pair chart.

The steps involved in drawing a pair chart are as follows:

Step 1: Combine the two samples and arrange the observations in ascending order of magnitude keeping track of identity of the variable (X or Y);

Step 2: Draw a rectangle of width M units and height N units;

Step 3: Starting from the lower left corner of the rectangle (i.e., the origin), draw a line one unit to the right (or upwards) if the smallest observation in the combined sample (as obtained in Step 1) is an X (or a Y);

Step 4: Starting from the end of the line drawn in Step 3, draw another line to the right (or upwards) if the second smallest observation is an X (or a Y).

Continue drawing such lines until the line for the largest observation has been drawn.

SAS Macro PCHART

The SAS macro PCHART enables user to get the pair chart plotted using CALCOMP plotter (or TERKTRONIX) besides giving the Mann-Whitney, Wilcoxon, and Kolmogorov-Smirnov statistics. PCHART uses PROC PLOTTER (PROC PLOTTEK for Tektronix video display) of SAS. The outputs given by PCHART are:

1. the observations in the two samples given as 'X-values' and 'Y-values';
2. the ranking of observations in the combined sample;
3. Mann-Whitney statistics U_x and U_y;
4. Wilcoxon statistics T_x and T_y;
5. Kolmogorov-Smirnov statistic D (two-sided); and
6. the pair chart from CALCOMP plotter.

(See APPENDIX for job set up, examples, and macro listing.)

References

APPENDIX

I. JOB SET UP

The following JCL and SAS program are needed to execute the macro:

```sas
/* XXXXXX JOB ....................
 // *PL=XXX...
 // EXEC SAS
 //SYSIN DD *

 ....... Deck containing the macro PCHART........
 MACRO AREA XMIN=0 XMAX=nn YMIN=0 YMAX=mm
 XLEN=nn YLEN=mm N=11 XINC=1 YINC=1 %
 * WHERE nn=NO. OF X-OBSNS., mm=NO. OF Y-OBSNS.;
 DATA XDATA;
 INPUT X @@;
 CARDS;
 DATA YDATA;
 INPUT Y @@;
 CARDS;
 PCHART;
 CALPLOT; *FOR PLOTTING WITH PEN PLOTTER;
 OR;
 TEKPLOT; *FOR DISPLAY ON THE SCREEN OF
// TERKTRONIX;

II. EXAMPLE**

We have considered here one of the examples (involving ties) illustrated by Quade (1973).
### Statistical Analysis System

<table>
<thead>
<tr>
<th>XP</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL5</td>
<td>COL6</td>
<td>COL7</td>
<td>COL8</td>
<td></td>
</tr>
<tr>
<td>X-VALUES</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XP</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL5</td>
<td>COL6</td>
<td>COL7</td>
<td>COL8</td>
<td></td>
</tr>
<tr>
<td>Y-VALUES</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

#### Ordered X Values

<table>
<thead>
<tr>
<th>XA</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL5</td>
<td>COL6</td>
<td>COL7</td>
<td>COL8</td>
<td></td>
</tr>
<tr>
<td>ROW1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

#### Ordered Y Values

<table>
<thead>
<tr>
<th>YA</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL5</td>
<td>COL6</td>
<td>COL7</td>
<td>COL8</td>
<td></td>
</tr>
<tr>
<td>ROW1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

#### Ordered X and Y Values: 1 = X-Value, 2 = Y-Value

<table>
<thead>
<tr>
<th>COMB</th>
<th>COL1</th>
<th>COL2</th>
<th>COL3</th>
<th>COL4</th>
<th>COL5</th>
<th>COL6</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL7</td>
<td>COL8</td>
<td>COL9</td>
<td>COL10</td>
<td>COL11</td>
<td>COL12</td>
<td>COL13</td>
</tr>
<tr>
<td>VALUES</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDENTITY</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Kolmogorov-Smirnov Statistic

(TWO SIDED)

<table>
<thead>
<tr>
<th>MAT</th>
<th>* X_OBS</th>
<th>* Y_OBS</th>
<th>D_STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROW1</td>
<td>8</td>
<td>8</td>
<td>0.375</td>
</tr>
</tbody>
</table>
### MANN-WHITNEY STATISTICS

<table>
<thead>
<tr>
<th>UX</th>
<th>COL1</th>
<th>ROW1</th>
<th>30</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>UY</th>
<th>COL1</th>
<th>ROW1</th>
<th>34</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N1</th>
<th>COL1</th>
<th>ROW1</th>
<th>9</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N2</th>
<th>COL1</th>
<th>ROW1</th>
<th>8</th>
</tr>
</thead>
</table>

### WILCOXON STATISTIC

<table>
<thead>
<tr>
<th>TX</th>
<th>COL1</th>
<th>ROW1</th>
<th>66</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N1</th>
<th>COL1</th>
<th>ROW1</th>
<th>8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N2</th>
<th>COL1</th>
<th>ROW1</th>
<th>8</th>
</tr>
</thead>
</table>

#### PAIR CHART

![Pair Chart Image]

---

437
MACRO PCHART

PROC MATRX;
FETCH X DATA=XDATA;
FETCH Y DATA=YDATA;
XP=X';YP=Y';
FNAME='X-VALUES';FNAME2='Y-VALUES';
PRINT XP FONAME=FNAME1;
PRINT YP DONAME=FNAME2;
FNAME XP YP DONAME FNAME2;
NX=NCOW(X); NY=NCOW(Y); UX=J(NX,1,2); DO I=1 TO NX; TT=0; TTT=0; DO N=1 TO NY; IF YY(M,1)<XX(I,1) THEN DO; TT=T+1; END;
IF YY(M,1)>XX(I,1) THEN DO;
TTT=TTT+1; END;
UX(X,1)=T+1/4;END;
UY=MXXM(UX,1); UX=MXX2(UX,1);TX=UX(M((N141))#2/2; ID="; INCY=C;
DO I=1 TO N1;
FY=";IY=1;DO K=2 TO N1;
IF XX(I,1)=XX(K,1) THEN DO;
KX=KX+1;END;END;
FY=X;IX=1;
IF YY(I,1)=YY(K,1) THEN DO;
KY=KY+1;END;END;
XI=X+(KX+1)#/2;YI=Y+(KY+1)#/2;NXX=KX+1;
NYY=KY+1;
DO I=1 TO NXX;
DO I=1 TO NYY;
IF XX(I,1)=XX(KX,1) THEN DO;
KXX=KXX+1;END;END;
IF YY(I,1)=YY(KY,1) THEN DO;
KYY=KYY+1;END;END;
IF YY(I,1)>XX(KX,1) THEN DO;
KXX=KXX+1;END;END;
IF XX(I,1)>YY(KY,1) THEN DO;
KYY=KYY+1;END;END;
XX(1)=XXX(1);YY(1)=YYY(1);DEW=XXX(1)+1;";END;END;END;
FREE XX YY;
PRINT XX YY;
PRINT XY;
FREE XY;
FREE XA;
FREE YA;
FREE IA;
FREE J Ax Y; FREE K X Y; FREE L X Y; FREE M X Y; FREE N X Y; FREE O X Y; FREE P X Y; FREE Q X Y; FREE R X Y; FREE S X Y; FREE T X Y; FREE U X Y; FREE V X Y; FREE W X Y; FREE X Y; FREE Y X; FREE X Y; NOTE SKIP=1 ORDERED X VALUES;
PRINT XA;
FREE XA;
NOTE SKIP=1 ORDERED Y VALUES;
PRINT YA;
FREE YA;
NOTE SKIP=2 ORDERED X AND Y VALUES:
1 = X-VALUE, 2 = Y-VALUE;
N = 3fIP;
TFISP = J (N, 3, 0);
K = 0;
DO I = 1 TO IP;
X = DEL (I, 1); Y = DEL (I, 2); NX = DEL (I, 3); NY = DEL (I, 4);
Y = I + 1;
K = K + 1; KK = K + 1; KKK = KKK + 1;
C1 = K - NY/2; D1 = Y - NY/2;
C2 = X; D2 = Y;
C3 = K + NY/2; D3 = Y + NY/2;
Y = K + 1;
TISP (K, 1: 3) = C1 | D1 | SYM;
TISP (KK, 1: 3) = C2 | D2 | SYM;
TISP (KKK, 1: 3) = C3 | D3 | SYM;
K = KKK;
END;
PL0'T = PLOT /TX;
END;
IND = (IP + 2);
DP = (0 | 1 | (IND) // N1 | N2 | IND);
PLOT = PLOT // DP;
FREE DEL TISP DP C1 C2 C3 D1 D2 D3;
D1 = PLOT (*, 1) // N1; D2 = PLOT (*, 2) // N2;
NOTE PAGE * SKIP = 1 MAX = WHITNEY STATISTICS;
PRINT UX UX N1 N2;
FREE UX UX;
NOTE SKIP = 1 WILCOXON STATISTI;
PEN TX N1 N2;
FREE TX;
DIFF = ABS (D1 - D2);
MAX = DIFF;
MAT = N1 | N2 | D;
CHR = 'X' X OBS 'D_STAT';
NOTE PAGE * SKIP = 1 KOLMOGOROV-SMIRNOV STATISTI;
NOTE * SKIP = 1 (TWO SIDED);
PRINT MAT COLNAME = CNAME;
N22 = 1 * N2;
W1 = (W22 / N22) # (1: N22);
W1 = W1 * 1 (1, N1); W1 = SHAPE (W1, 1);
W2 = (1: N1) * 1 (1, N22); W2 = SHAPE (W2, 1);
PTG = N1 | N22;
S1 = J (N2, 1, 1);
PTG1 = W2 | W1 | S1;
FREE W1 W2 S1;
S11 = 1 * N1;
W3 = (W1 | W1) # (1: N11);
W3 = W3 * 1 (1, N2); W3 = SHAPE (W3, 1);
W4 = (1: N2) * 1 (1, N11); W4 = SHAPE (W4, 1);
PTG = N11 |
S2 = J (N11, 1, C);
PTG2 = W3 | W4 | S2;
FREE W3 W4 S2;
PTG1 = PTG1 / PTG2;
FREE PTG1 PTG2;
PTG = PLOT | // PLOT;
FREE PLOT;
OUTPUT PLOT OUT = PLOT (FILENAME = (C11 = X COL2 = Y COL3 = SYM));

MACRO CALPLOT
PROC FLOTTAG NIP TITLE = 'FAV CHART ' DEFSIZE = .025 AREA ;
GRAPH X Y; ID SYM; FORMAT X Y 3.5;

MACRO TBXPLOT
PROC FLOTTAG NIP TITLE = 'FAV CHART ' DEFSIZE = .025 AREA ;
GRAPH X Y; ID SYM; FORMAT X Y 3.5;

439
<table>
<thead>
<tr>
<th>INDEX #</th>
<th>NAME: MACRO KM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESCRIPTION: THIS MACRO HAS ONE-HALF PAGE OF CODE FOR KAPLAN-MEIR ESTIMATION OF SURVIVAL DISTRIBUTIONS</td>
</tr>
<tr>
<td></td>
<td>REQUIREMENTS:</td>
</tr>
<tr>
<td></td>
<td>REFERENCE:</td>
</tr>
<tr>
<td></td>
<td>CONTACT: HARRELL, FRANK</td>
</tr>
<tr>
<td></td>
<td>ADDRESS: UNIVERSITY NORTH CAROLINA CHAPEL HILL NC 27514</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX #</th>
<th>NAME: FUNCTION PUTBIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESCRIPTION: ALLOWS USERS TO STORE ANY BIT STRING SUBSET OF A SAS VARIABLE</td>
</tr>
<tr>
<td></td>
<td>REQUIREMENTS: 8 K</td>
</tr>
<tr>
<td></td>
<td>REFERENCE:</td>
</tr>
<tr>
<td></td>
<td>CONTACT: HARRELL, FRANK</td>
</tr>
<tr>
<td></td>
<td>ADDRESS: UNIVERSITY NORTH CAROLINA CHAPEL HILL NC 27514</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX #</th>
<th>NAME: PROC PLOTTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESCRIPTION: LINE/PLT PLOTTING FOR CALCOMP PLOTTER</td>
</tr>
<tr>
<td></td>
<td>REQUIREMENTS: LOCALLY WRITTEN BASIC SYMBOL AND LINE PLOTTING SUBROUTIN AND CALCOMP PLOTTER WITH 110K OF CORE.</td>
</tr>
<tr>
<td></td>
<td>REFERENCE:</td>
</tr>
<tr>
<td></td>
<td>CONTACT: HARRELL, FRANK</td>
</tr>
<tr>
<td></td>
<td>ADDRESS: UNIVERSITY NORTH CAROLINA CHAPEL HILL NC 27514</td>
</tr>
</tbody>
</table>

440
INDEX # 4  NAME: MACRO TABULAR

DESCRIPTION: USES TABULAR METHOD OF ANALYSIS TO COMPUTE USER SPECIFIED SINGLE DEGREE OF FREEDOM LINEAR CONTRASTS ON TREATMENT MEANS FROM BALANCED FACTORIAL EXPERIMENTS. EASIER AND MORE CONVENIENT THAN GLM.

REQUIREMENTS: 85 CARD IMAGES

REFERENCE:

CONTACT: CARMER, SAMUEL
E: AGRONOMY DEPT.
ADDRESS: UNIVERSITY ILLINOIS
               URBANA
               IL 61801

INDEX # 5  NAME: MACRO RIDGREGR

DESCRIPTION: CALCULATES COEFF. OF RIDGE REGRESS. AND ALLOWS SELECTION APPROPRIATE COEFF. VALUES. USER SPECIFIES DEP. VARIABLE & RANGE OF K (BIAS) VALUES FOR ANALYSIS. OUTPUTS MEANS, VARIANCES, CORR. MATRIX, VAR. INFLATION FACTORS & OTHER STAT. WITH RIDGE TRACE PLOT.

REQUIREMENTS: USES SAS 76.5 PROC'S FORMAT, MATRIX, AND PLOT

REFERENCE:

CONTACT: ROGERS, ROBERT HILDEBRAND, R.
E: USDA FOREST SERVICE
ADDRESS: UNIVERSITY MISSOURI
               COLUMBIA
               MO 65201

INDEX # 6  NAME: PROC AOYMEAN

DESCRIPTION: PERFORMS A ONE-WAY AOY USING GROUP SIZES, MEANS AND STANDARD DEVIATIONS AS INPUT. T-TESTS FOR 3 TYPES OF COMPARISONS: 1) GROUPS WITH THE FIRST GROUP, ALL POSSIBLE PAIRS OF GROUPS, AND USER SUPPLIED CONTRASTS

REQUIREMENTS: 37.8K

REFERENCE:

CONTACT: TESAR, T. P.
E: UPJOHN COMPANY
ADDRESS: 7293-32-1
               KALAMAZOO
               MI 49001
INDEX # 7
NAME: PROC CCPL0T

DESCRIPTION: PRODUCES A CALCOMP PLOT WITH AS MANY AS FIVE FUNCTIONS (ONE SET OF AXES). EACH FUNCTION IS DEFINED BY A PAIR OF VARIABLES.
USER CONTROLS PLOT SIZE, SYMBOLS FOR EACH FUNCTION, AXIS LABELS, LEGENDS, AND SCALPS.

REQUIREMENTS: 48.4K

REFERENCE:

CONTACT: TESAR, T. P.
E: UPJOHN COMPANY
ADDRESS: 7293-32-1
       KALAMAZOO
       MI 49001

INDEX # 8
NAME: MACRO HIST

DESCRIPTION: PROVIDES FOR VERT. & HOR. HISTOGRAMS WITH SINGLE AXIS LABELING AND TITLE INFORMATION. USES PUT STATEMENTS TO FORMAT THE GRAPHS. FREQUENCIES ARE ALSO PLOTTED.

REQUIREMENTS: 1K

REFERENCE:

CONTACT: THARP, M. L. STRAND, R. H.
E: ENVIRONMENTAL SCI. DIV.
ADDRESS: P.O. BOX X, BLDG. 1505, ORNL
       OAK RIDGE
       TN 37830

INDEX # 9
NAME: PROC DISPLAY

DESCRIPTION: PLOTS 2-DIMENSIONAL DATA USING SAS ON A CALCOMP PLOTTER. LINEAR OR LOG. SCALES, UP TO 500 PTS., AXES LABELS, TITLING, AND UP LINES PER GRAPH ARE AVAILABLE.

REQUIREMENTS: DISSPLA SOFTWARE & CALCOMP PLOTTER 4K

REFERENCE:

CONTACT: OLSON, R. J.
E: ENVIRONMENTAL SCI. DIV.
ADDRESS: P.O. BOX X, BLDG. 1505, ORNL
       OAK RIDGE
       TN 37830
INDEX # 10  NAME: PROC WILCOX

DESCRIPTION: DISTRIBUTION-FREE ESTIMATES OF THE RATIO OF TWO RANDOM VARIABLES. CONFIDENCE INTERVALS ARE ALSO ESTIMATED. PRODUCES WILCOXON T-STATISTIC FOR PAIRED SAMPLES.

REQUIREMENTS: 4K

REFERENCE:

CONTACT: KUMAR, DEVA
       & : ENVIRONMENTAL SCI. DIV.
ADDRESS: P.O. BOX X, BLDG. 1505, ORNL
        OAK RIDGE, TN 37830

INDEX # 11  NAME: FUNCTION GETBIT

DESCRIPTION: ALLOWS USERS TO RETRIEVE ANY BIT STRING SUBSET OF A SAS VARIABLE

REQUIREMENTS: 4K

REFERENCE:

CONTACT: HARRELL, FRANK
       & : BIOSTATISTICS DEPT.
ADDRESS: UNIVERSITY NORTH CAROLINA
        CHAPEL HILL, NC 27514

INDEX # 12  NAME: MACRO RECODE

DESCRIPTION: RECODES A SPECIFIED VALUE OF INDICATED VARIABLES ON ALL OBSERVATIONS ON A SAS DATA SET TO A SECOND SPECIFIED VALUE (12 CARD IMAGES)

REQUIREMENTS:

REFERENCE:

CONTACT: HENDERSON, DON
       & : DATA SYSTEMS APPLICATION DIV.
ADDRESS: ARS, NATIONAL AGRIC. LIB. BLDG.
        BELTSVILLE, MD 20705
INDEX # 13

NAME: MACRO KSISAMP

DESCRIPTION: KOLMOGOROV-SMIRNOV ONE SAMPLE TEST. OUTPUTS SAMPLE SIZE, TEST STATISTIC DSDP, AND, WHEN N GE 30, SELECTED ASYMPTOTIC CRITICAL VALUES FOR DETERMINING P-VALUE.

REQUIREMENTS:

REFERENCE: SUGI 77 PROCEEDINGS

CONTACT: GJERTSEN, W. R. HARRELL, P. E.
        E: SAS INSTITUTE, INC.
        ADDRESS: P.O. BOX 10066
        RALEIGH, NC 27605

INDEX # 14

NAME: MACRO KSISAMP

DESCRIPTION: KOLMOGOROV-SMIRNOV TWO SAMPLE TEST. OUTPUTS SAMPLE SIZE N1 AND N2, TEST STATISTIC DSDP, AND, WHEN N1 AND N2 GE 30, SELECTED ASYMPTOTIC CRITICAL VALUES FOR DETERMINING P-VALUE.

REQUIREMENTS:

REFERENCE: SUGI 77 PROCEEDINGS

CONTACT: GJERTSEN, W. R. HARRELL, P. E.
        E: SAS INSTITUTE, INC.
        ADDRESS: P.O. BOX 10066
        RALEIGH, NC 27605

INDEX # 15

NAME: MACRO DATALOG

DESCRIPTION: A SERIES OF MACROS FOR UNIVARIATE DESCRIPTIVE STATISTICS PROVIDING: A) LISTING OF MOMENT AND PERCENTILE INFORMATION, B) OUTLIER (FAR-OUT VALUES) REPORT, AND C) ONE OR MORE PLOTS. OUTPUT IS FLEXIBLY CONTROLLED BY THE USER.

REQUIREMENTS:

REFERENCE: SUGI 77 PROCEEDINGS

CONTACT: GJERTSEN, W. R.
        E: SAS INSTITUTE, INC.
        ADDRESS: P.O. BOX 10066
        RALEIGH, NC 27605
### SAS Macro INDEX BY KEYWORD

<table>
<thead>
<tr>
<th>INDEX #</th>
<th>KEYWORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ANOVA</td>
</tr>
<tr>
<td>5</td>
<td>BIASED</td>
</tr>
<tr>
<td>2</td>
<td>BIT</td>
</tr>
<tr>
<td>11</td>
<td>BIT</td>
</tr>
<tr>
<td>3</td>
<td>CALCOMP</td>
</tr>
<tr>
<td>7</td>
<td>CALCOMP</td>
</tr>
<tr>
<td>4</td>
<td>CONTRASTS</td>
</tr>
<tr>
<td>10</td>
<td>DISTRIBUTION</td>
</tr>
<tr>
<td>1</td>
<td>DISTRIBUTIONS</td>
</tr>
<tr>
<td>1</td>
<td>ESTIMATION</td>
</tr>
<tr>
<td>5</td>
<td>ESTIMATION</td>
</tr>
<tr>
<td>10</td>
<td>ESTIMATION</td>
</tr>
<tr>
<td>4</td>
<td>FACTORIAL</td>
</tr>
<tr>
<td>9</td>
<td>GRAPHICS</td>
</tr>
<tr>
<td>8</td>
<td>GRAPHS</td>
</tr>
<tr>
<td>8</td>
<td>HISTOGRAMS</td>
</tr>
<tr>
<td>1</td>
<td>KAPLAN-MEIR</td>
</tr>
<tr>
<td>13</td>
<td>KOLMOGOROV-SMIRNOV</td>
</tr>
<tr>
<td>14</td>
<td>KOLMOGOROV-SMIRNOV</td>
</tr>
<tr>
<td>2</td>
<td>MANIPULATION</td>
</tr>
<tr>
<td>11</td>
<td>MANIPULATION</td>
</tr>
<tr>
<td>15</td>
<td>MOMENTS</td>
</tr>
<tr>
<td>15</td>
<td>OUTLIERS</td>
</tr>
<tr>
<td>7</td>
<td>PLOT</td>
</tr>
<tr>
<td>15</td>
<td>PLOT</td>
</tr>
<tr>
<td>3</td>
<td>PLOTTER</td>
</tr>
<tr>
<td>3</td>
<td>PLOTTING</td>
</tr>
<tr>
<td>9</td>
<td>PLOTTING</td>
</tr>
<tr>
<td>10</td>
<td>RANDOM</td>
</tr>
<tr>
<td>12</td>
<td>RECODING</td>
</tr>
<tr>
<td>5</td>
<td>REGRESSION</td>
</tr>
<tr>
<td>5</td>
<td>RIDGE</td>
</tr>
<tr>
<td>10</td>
<td>SAMPLING</td>
</tr>
<tr>
<td>2</td>
<td>SUBSTRING</td>
</tr>
<tr>
<td>11</td>
<td>SUBSTRING</td>
</tr>
<tr>
<td>1</td>
<td>SURVIVAL</td>
</tr>
<tr>
<td>4</td>
<td>TABULAR</td>
</tr>
<tr>
<td>12</td>
<td>TRANSFORMATION</td>
</tr>
<tr>
<td>15</td>
<td>UNIVARIATE</td>
</tr>
</tbody>
</table>