This course teaches analysts how to use SAS/ETS software to diagnose systematic variation in data collected over time, create forecast models to capture the systematic variation, evaluate a given forecast model for goodness of fit and accuracy, and forecast future values using the model. Topics include Box-Jenkins ARIMA models, dynamic regression models, and exponential smoothing models.
Naucz się
- Build simple forecast models.
- Build advanced forecast models for autocorrelated time series and for time series with trend and seasonality.
- Build forecast models that contain explanatory variables.
- Build models to assess the impact of events such as public policy changes (for example, DUI laws), sales and marketing promotions, and natural or man-made disasters.
Kto powinien uczestniczyć
Scientists, engineers, and business analysts who have the responsibility of forecasting or evaluating policies and practices for their organizations
Before attending this course, you should have:
- Experience using SAS to enter or transfer data and to perform elementary analyses, such as computing row and column totals and averages, and producing charts and plots. You can gain this experience by completing the Programowanie w SAS część 1: podstawy course.
- Experience in data analysis and statistical modeling. You can gain the prerequisite knowledge by completing the Statystyka 2: analiza wariancji i regresja course.
- Experience with stationary ARMA models and elementary forecast models like time trend models and exponential smoothing models for forecasting. You can gain this experience by completing the Podstawy modelowania szeregów czasowych course.
Knowledge of SAS Macro language programming is useful but not required.
To szkolenie wykorzystuje oprogramowanie SAS/ETS