Supervised Machine Learning Procedures Using SAS Viya in SAS StudioThere is a new version of this course. Please see Supervised Machine Learning Procedures Using SAS Viya in SAS Studio. This course combines data exploration, visualization, data preparation, feature engineering, sampling and partitioning, model training, scoring, and assessment. It covers a variety of statistical, data mining, and machine learning techniques performed in a scalable and in-memory execution environment. The course provides theoretical foundation and hands-on experience with SAS Visual Data Mining and Machine Learning through SAS Studio, a user interface for SAS programming. The course includes predictive modeling techniques such as linear and logistic regression, decision tree and ensemble of trees (forest and gradient boosting), neural networks, support vector machine, and factorization machine. Learn how to
Who should attendData analysts, data miners, mathematicians, statisticians, data scientists, citizen data scientists, qualitative experts, and others who want an introduction to supervised machine learning for predictive modeling
Before attending this course, you should have, at minimum, an introductory-level familiarity with basic statistics. SAS experience is helpful but not required. Coding experience is helpful but not required. This course addresses SAS Viya software.
Introduction to SAS Viya, Data Preparation, and Exploration
DMML34
|
Ireland |