IMPORTANT: Il benessere, la salute e la sicurezza di tutti voi e di tutti noi rappresentano una priorità per SAS. A tutela di ciò e in ottemperanza a quanto previsto dalle misure stabilite dal Governo in termini di prevenzione della diffusione di COVID-19 e da direttiva della nostra casa madre, SAS Institute S.r.l., per tutto il primo semestre 2020 i corsi a calendario pubblico SAS Italia previsti presso tutte le sedi SAS (Milano, Roma, Venezia Mestre) vengono confermati nell’attuale pianificazione ma svolti in modalità Live WEB, ovvero con il docente, di lingua italiana, che svolge il corso in persona, collegato da remoto con video camera e live. Rimangono inalterati i contenuti, la durata, l’interazione docente / partecipanti, la struttura del corso e l'utilizzo dei laboratori virtuali SAS per esercitarsi e svolgere la parte pratica. Tutti gli esami di certificazione presso tutte le sedi SAS sono sospesi. Oltre alla modalità Live Web sono disponibili i corsi anche nella versione E-Learning. Per ulteriori informazioni Contattaci.



SAS Visual Data Mining and Machine Learning

Titolo Livello Formato del corso
SAS Visual Data Mining and Machine Learning in SAS Viya: Interactive Machine Learning
This course provides a theoretical foundation for SAS Visual Data Mining and Machine Learning, as well as hands-on experience using the tool through the SAS Visual Analytics interface. The course uses an interactive approach to teach you visualization, model assessment, and model deployment while introducing you to a variety of machine learning techniques.

4 Esperto Corso in Aula Live Web Classroom e-Learning
SAS Viya and Python Integration for Machine Learning
In this course, you learn to use the Python API to take control of SAS Cloud Analytic Services (CAS) actions from Jupyter Notebook. You learn to upload data into the in-memory distributed environment, analyze data, and create predictive models in CAS using familiar Python functionality via the SWAT (SAS Wrapper for Analytics Transfer) package. You then learn to download results to the client and use native Python syntax to compare models.

3 Intermedio Corso in Aula Live Web Classroom
SAS® Viya® and R Integration for Machine Learning
In this course, you learn to use the R API to take control of SAS Cloud Analytic Services (CAS) actions from Jupyter Notebook. You learn to upload data into the in-memory distributed environment, analyze data, and create predictive models in CAS using familiar R functionality via the SWAT (SAS Wrapper for Analytics Transfer) package. You then learn to download results to the client and use native R syntax to compare models.

3 Intermedio Corso in Aula Live Web Classroom
Deep Learning Using SAS Software
This course introduces the essential components of deep learning. Participants learn how to build deep feedforward, convolutional, and recurrent networks. The neural networks are used to solve problems that include traditional classification, image classification, and time-dependent outcomes. The course also presents practical methods used to enhance training data to produce better models. Lastly, a method for efficiently searching hyperparameters is described.

3 Intermedio Corso in Aula Live Web Classroom e-Learning
Tree-Based Machine Learning Methods in SAS Viya
Decision trees and tree-based ensembles are supervised learning models used for problems involving classification and regression. This course covers everything from using a single tree to more advanced bagging and boosting ensemble methods in SAS Viya. The course includes discussions of tree-structured predictive models and the methodology for growing, pruning, and assessing decision trees, forest and gradient boosting models. The course also explains isolation forest (an unsupervised learning algorithm for anomaly detection), deep forest (an alternative for neural network deep learning), and Poisson and Tweedy gradient boosted regression trees. In addition, many of the auxiliary uses of trees, such as exploratory data analysis, dimension reduction, and missing value imputation, are examined, and running open source in SAS and running SAS in open source are demonstrated.

The self-study e-learning includes:

  • Annotatable course notes in PDF format.
  • Virtual lab time to practice.

4 Esperto e-Learning