SAS/ETS

名称 水平 培训形式
Stationarity Testing and Other Time Series Topics Business Knowledge Series
This course addresses a basic question in time series modeling and forecasting: whether a time series is nonstationary. This question is addressed by the unit root tests. One of the most common tests, the Dickey-Fuller test, is discussed in this lecture.

3 Intermediate e-Learning
Establishing Causal Inferences: Propensity Score Matching, Heckman's Two-Stage Model, Interrupted Time Series, and Regression Discontinuity Models Business Knowledge Series
This course introduces some methods commonly used in program evaluation and real-world effectiveness studies, including two-stage modeling, interrupted time-series, regression discontinuity, and propensity score matching. These methods help address questions such as: Which medicine is more effective in the real world? Did an advertising program have an impact on sales? More generally, are the changes in outcomes causally related to the program being run?

3 Intermediate e-Learning
FDP - Shaping an Advanced Analytics Curriculum
The course teaches you fundamental concepts and relevant techniques in statistical and analytical domains that are relevant in today's world. The course also enables you to explore academic and collaborative opportunities with SAS in the area of advanced analytics for designing better curriculum and effective pedagogy.

0 No level Live Web Classroom
Time Series Feature Mining and Creation New
In this course, you learn about data exploration, feature creation, and feature selection for time sequences. The topics discussed include binning, smoothing, transformations, and data set operations for time series, spectral analysis, singular spectrum analysis, distance measures, and motif analysis.

3 Intermediate e-Learning
统计学 2: 方差分析与回归
本课程教你如何分析连续响应数据和离散计数数据。线性回归、Poisson回归、负二项回归、Gamma回归、方差分析、指标变量线性回归、协方差分析和混合模型方差分析。

3 Intermediate Classroom Live Web Classroom e-Learning
State Space Modeling Essentials Using the SSM Procedure in SAS/ETS
This course covers the fundamentals of building and applying state space models using the SSM procedure (SAS/ETS). Students are presented with an overview of the model and learn advantages of the State Space approach. The course also describes fundamental model details, presents some straightforward examples of specifying and fitting models using the SSM procedure, and considers estimation in SSM, focusing on the Kalman filter and related details. The course concludes with a variety of SSM modeling applications, focused mainly on time series.

4 Expert Live Web Classroom
Forecasting Using SAS Software: A Programming Approach
This course teaches analysts how to use SAS/ETS software to diagnose systematic variation in data collected over time, create forecast models to capture the systematic variation, evaluate a given forecast model for goodness of fit and accuracy, and forecast future values using the model. Topics include Box-Jenkins ARIMA models, dynamic regression models, and exponential smoothing models.

4 Expert Classroom Live Web Classroom