About This Book ... ix
Audience ... ix
Prerequisites .. ix
Conventions .. ix

1 About SAS Concept Creation for SAS Text Miner 1
1.1 What is SAS Concept Creation for SAS Text Miner? 1
1.2 How Do Concepts Work in SAS Text Miner? 2
1.3 Benefits to Using SAS Concept Creation for SAS Text Miner 2
1.4 How Does SAS Concept Creation Work with SAS Text Miner? 4
1.5 The Architecture .. 4

2 Using the Interface ... 5
2.1 Your First Look at SAS Concept Creation for SAS Text Miner 5
2.2 The SAS Concept Creation Menus ... 7
 2.2.1 About the Availability of Menus and Menu Selections 7
 2.2.2 About Menus .. 7
 2.2.3 The File Menu ... 7
 2.2.4 The Edit Menu ... 8
 2.2.5 The View Menu .. 9
 2.2.6 The Build Menu ... 9
 2.2.7 The Project Menu ... 9
 2.2.8 The Concept Menu .. 10
 2.2.9 The Testing Menu .. 11
 2.2.10 The Document Menu ... 11
2.3 The Status Bar ... 13
2.4 The Standard Toolbar .. 13
2.5 The Taxonomy Tab ... 14
2.6 The Right Window Tabs .. 16
 2.6.1 Overview of the Tabs .. 16
 2.6.2 The Definition Tab .. 17
 2.6.3 The Testing Tab .. 18
 2.6.4 The Data Tab ... 19
 2.6.5 About the Document and Concordance Tabs 21
2.6.5.A Overview of the Document Tab ..21
2.6.5.B The Document Tab ...21
2.6.5.C The Document Tab as Concordance22
2.6.5.D The Document Tab as Browser Interface23
2.6.5.E The Components of the Document Tab24

2.7 The Project Settings Windows ...25
2.7.1 Project Settings Overview ...25
2.7.2 The LITI Tab ...26
2.7.3 The Misc Tab ...27
2.7.4 The Concordance Tab ...29

2.8 The Miscellaneous Windows ..31
2.8.1 The Select a Language Window ..31
2.8.2 The Enter Names Window for UTF-8 Languages33
2.8.3 The Number of Taxonomy Nodes Window34
2.8.4 The Concordance Windows That Are Available through the Testing Tab ..35
2.8.5 The Tree Find Window ...36
2.8.6 The Tree Replace Window ...38
2.8.7 The Text Find and Replace Windows39
2.8.8 The Compile Concepts Tab ...39
2.8.9 The Concordance Windows ...40
2.8.10 The Syntax Check Window ...41
2.8.11 The Best Matches Window ...42
2.8.12 The Concept Priorities Window43
2.8.13 SAS Concept Creation Status Window Example45

2.9 The Drop-down Taxonomy Node Operations45
2.9.1 The Project Name Node Operations45
2.9.2 The Language Node Operations ...46
2.9.3 The Concepts Node Operations ..47
2.9.4 The Individual Concept Node Operations48

3 Creating Projects ..49
3.1 Overview of Creating Projects ..49
3.2 Start SAS Concept Creation ...50
3.3 Create a New Project ...51
3.4 Saving the Project ...56
3.4.1 Overview of the Save Operation ..56
3.4.2 Manually Save an Existing Project56
3.4.3 Save a Duplicate Project ...56
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Access an Existing Project</td>
<td>57</td>
</tr>
<tr>
<td>3.6</td>
<td>Choosing Project Settings</td>
<td>59</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Overview of Project Settings</td>
<td>59</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Choose How Matches Are Returned</td>
<td>59</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Choose the Concordance Operations</td>
<td>61</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Choose Miscellaneous Operations</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>Navigating through the Taxonomy</td>
<td>63</td>
</tr>
<tr>
<td>3.8</td>
<td>Specify the .li File in SAS Text Miner</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>Writing Concept Definitions</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Overview of Definitions</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Before You Write Your Definitions</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>The Rule Types</td>
<td>68</td>
</tr>
<tr>
<td>4.4</td>
<td>The Building Blocks</td>
<td>69</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Overview of the Building Blocks</td>
<td>69</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Case-Insensitive Matching</td>
<td>69</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Entering Comments into Rules</td>
<td>69</td>
</tr>
<tr>
<td>4.4.4</td>
<td>The Tokens</td>
<td>70</td>
</tr>
<tr>
<td>4.4.5</td>
<td>The _c Marker</td>
<td>70</td>
</tr>
<tr>
<td>4.4.6</td>
<td>The _w Term</td>
<td>70</td>
</tr>
<tr>
<td>4.4.7</td>
<td>The _cap Term</td>
<td>71</td>
</tr>
<tr>
<td>4.4.8</td>
<td>The > Symbol</td>
<td>71</td>
</tr>
<tr>
<td>4.4.9</td>
<td>The Quotation Marks</td>
<td>72</td>
</tr>
<tr>
<td>4.4.10</td>
<td>The Parentheses, Square Braces, and Curly Braces</td>
<td>72</td>
</tr>
<tr>
<td>4.4.11</td>
<td>The Commas</td>
<td>72</td>
</tr>
<tr>
<td>4.4.12</td>
<td>The Colons</td>
<td>73</td>
</tr>
<tr>
<td>4.4.13</td>
<td>The Spaces</td>
<td>73</td>
</tr>
<tr>
<td>4.4.14</td>
<td>The Part-of-Speech Tags</td>
<td>74</td>
</tr>
<tr>
<td>4.4.15</td>
<td>The Export Feature</td>
<td>74</td>
</tr>
<tr>
<td>4.4.16</td>
<td>The Regular Expressions</td>
<td>75</td>
</tr>
<tr>
<td>4.4.17</td>
<td>The Priorities and Project Settings</td>
<td>75</td>
</tr>
<tr>
<td>4.4.17.A</td>
<td>Overview of Priorities</td>
<td>75</td>
</tr>
<tr>
<td>4.4.17.B</td>
<td>Choose Project Settings</td>
<td>76</td>
</tr>
<tr>
<td>4.4.17.C</td>
<td>Seeing the Priorities for the Taxonomy</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>The Operators</td>
<td>79</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The Boolean Operators</td>
<td>79</td>
</tr>
<tr>
<td>4.5.1.A</td>
<td>The ALIGNED Operator</td>
<td>80</td>
</tr>
<tr>
<td>4.5.1.B</td>
<td>The AND Operator</td>
<td>80</td>
</tr>
<tr>
<td>4.5.1.C</td>
<td>The OR Operator</td>
<td>80</td>
</tr>
</tbody>
</table>
4.8.6 Assigning New Concept Names to Coreference Matches 118
4.8.7 Rank Coreference Definitions and Eliminate False Positives 119
4.9 XML Fields in Rules ... 120
4.9.1 Overview of XML Field Matching .. 120
4.9.2 The SEQUENCE Rule with an XML Field Example 121
4.9.3 Matching More than One XML Field 122
4.10 Writing Multiple Rules for One Definition 123
4.11 Troubleshooting Your Rules ... 123

Part 2: Testing .. 125

5 Assembling Testing Sets ... 127
5.1 Overview of Assembling Testing Sets 127
5.2 Creating Testing Folders .. 128
5.2.1 Create a Testing Directory While You Set Paths 128
5.2.2 Create and Set a Path to the Central Repository 134
5.2.3 Manually Create a Testing Folder and Set a Path for a Newly
 Created Concept .. 137
5.3 Collecting Test Files ... 137
5.4 Import Test Files ... 139
5.5 Delete Testing Files ... 142

6 Testing the Concept Definitions .. 143
6.1 Overview of Testing ... 143
6.1.1 Windows ... 144
6.2 Using the Testing Window ... 144
6.2.1 The Testing Window Messages .. 144
6.3 Batch Testing .. 146
6.3.1 Overview of Batch Testing ... 146
6.3.2 Option 1A: Batch Testing All of the Documents for One Concept . 147
6.3.3 Option 1B: Batch Testing the Testing Taxonomy or
 Out-of-Concept Files ... 148
6.4 Testing with the Document Window ... 150
6.4.1 Overview of Document Window Operations 150
6.4.2 Test Using the Document Window 151
6.4.3 Testing a Web Page in the Document Window 152
6.4.4 Using Windows Commands ... 154
6.4.5 Copy and Paste a Test File ... 155
6.4.6 Using Clear Test Document ... 155
6.4.7 Refreshing the Taxonomy Tree ... 156
About This Book

Audience

SAS Concept Creation for SAS Text Miner (SAS Concept Creation) is designed for subject matter experts who write the complex rules for concepts. These concepts identify the context-sensitive data that exists in your organization’s input documents.

Prerequisites

Here are the prerequisites for using SAS Concept Creation:

- SAS Text Miner loaded onto your machine
- SAS Concept Creation loaded on the same machine as SAS Text Miner, or on a different machine
- License file for SAS Text Miner
- Representative documents where you want to locate metadata

Conventions

This manual uses the following typographical conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGM_ROOT</td>
<td>The root directory where SAS Concept Creation for SAS Text Miner is installed, typically the following:</td>
</tr>
<tr>
<td></td>
<td>Windows: C:/Program Files/SAS/SAS Concept Creation</td>
</tr>
<tr>
<td>.li</td>
<td>The code examples for the .li file are shown in a fixed-width font.</td>
</tr>
<tr>
<td>TEST button</td>
<td>The labels for user interface controls are shown in a bold, sans-serif font.</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Top</td>
<td>The names of taxonomy nodes appear in a fixed-width font.</td>
</tr>
<tr>
<td>www.sas.com</td>
<td>The hypertext links are shown in a light blue, fixed-width font, and are underlined.</td>
</tr>
</tbody>
</table>
1
About SAS Concept Creation for SAS Text Miner

- What is SAS Concept Creation for SAS Text Miner?
- How Do Concepts Work in SAS Text Miner?
- Benefits to Using SAS Concept Creation for SAS Text Miner
- How Does SAS Concept Creation Work with SAS Text Miner?
- The Architecture

1.1 What is SAS Concept Creation for SAS Text Miner?

In most organizations it is necessary to identify metadata, or data on information. This metadata is located in your documents, created internally and externally, and stored in your company’s repositories.

SAS Concept Creation for SAS Text Miner (SAS Concept Creation) is an add-on product that works with SAS Text Miner. SAS Text Miner uses the binary (.li) files created in SAS Concept Creation to locate custom entities in documents that are input to SAS Text Miner.

Using the intuitive, Windows interface in the SAS Concept Creation application, subject matter experts write complex rules to define each concept in the taxonomy. This taxonomy is output as a .li file. To use the .li file that SAS Concept Creation generated, you set properties in the Text Parsing node of SAS Text Miner.
1.2 How Do Concepts Work in SAS Text Miner?

Concepts is another word for the term *custom entities* that is used in SAS Text Miner. SAS Text Miner identifies standard entities such as Percent, Phone, Time, and so on. In order to identify custom entities, SAS Text Miner uses the concepts that you define in SAS Concept Creation. Use the binary files created in SAS Concept Creation to locate custom entities in input documents using SAS Text Miner.

The word *entity* is used in SAS Text Miner to refer to the predefined metadata that can be extracted from unstructured text. Use SAS Concept Creation for SAS Text Miner to specify the *concepts* that locate the metadata that you seek according to the definitions that you write. Concepts are *custom entities* that are similar to entities. However, concepts enable you to specify the semantic relationships between terms that improve the accuracy of entity matching.

1.3 Benefits to Using SAS Concept Creation for SAS Text Miner

SAS Concept Creation expands the benefits available in SAS Text Miner:

Context sensitive matching

Limit concept matching to those matches that occur within the specified context. For example, match New York but not New York City.

Syntax building blocks

Write your definitions to locate concept matches using parts of speech, logical operators, regular expressions, and separator characters.

Concept disambiguation

Return only the specific concept that you are seeking. For example, differentiate between Giants football and Giants baseball.

Relational concepts

Return related concepts. For example, locate the string *Drew Faust is president of Harvard University*, where *Drew Faust* and *Harvard University* are concepts.
Fact extraction

Extract facts from seemingly unrelated pieces of data, similar to relational concepts. Specify operators between the concepts that together form a fact to return the entire string. For example, match Tide is produced by Procter & Gamble.

Stemming

Locate matches on all, or only the noun or verb, forms of a word.

Multiple types of definitions

There are a few types of definitions that you can use to locate matches.

Write multiple rules for one definition

Match on any rule, within a concept definition, in an input document and return a match on this concept.

Write different types of rules for one definition

Specify different types of rules for each concept definition.

Determine how SAS Concept Creation treats overlapping, identical, or duplicate matches

Specify the appropriate settings using the Project Settings - LITI dialog box to determine the matching process in these cases.

Coreference operators

Use coreference operators to write rules that return the canonical form of a word along with the referring term.

Apply concepts as custom entities

After you develop and test the taxonomy, specify the path to the .li file in the Text Parsing node of SAS Text Miner. Concept definitions are applied as custom entities to incoming documents.
1.4 How Does SAS Concept Creation Work with SAS Text Miner?

The functionalities of SAS Concept Creation are fully integrated into the SAS Text Miner user interface. Anyone can use the SAS Concept Creation interface to develop taxonomies, define concepts, and write definitions for these concepts. In addition, SAS Concept Creation enables you to test your concepts to see how well their definitions perform using selected, or real-world, testing documents. After you develop a project, the concepts and their definitions are saved into a .li file that you can import and use with SAS Text Miner.

1.5 The Architecture

Use the architecture diagram below to gain an overview of the project development processes.

Figure 1-1 SAS Concept Creation for SAS Text Miner Architecture
Chapter: 2
Using the Interface

- Your First Look at SAS Concept Creation for SAS Text Miner
- The SAS Concept Creation Menus
- The Status Bar
- The Standard Toolbar
- The Taxonomy Tab
- The Right Window Tabs
- The Project Settings Windows
- The Miscellaneous Windows
- The Drop-down Taxonomy Node Operations

2.1 Your First Look at SAS Concept Creation for SAS Text Miner

To access the SAS Concept Creation for SAS Text Miner (SAS Concept Creation) user interface, go to Start —> Programs —> SAS Concept Creation —> SAS Concept Creation.

Display 2-1 Main Window
The components of the main window are listed below from top to bottom:

Program and Project title bar

display the name of the program and the title of the current project. (The title only appears after you create a new project.)

Menu bar

access drop-down lists for project tasks. For more information, see Section 2.2 *The SAS Concept Creation Menus* on page 7.

Standard toolbar

click shortcut buttons for some operations. For more information, see Section 2.4 *The Standard Toolbar* on page 13.

Taxonomy tab

create, edit, and see the hierarchical structure of the concepts that define your project. For more information, see Section 2.5 *The Taxonomy Tab* on page 14.

Definition tab

(Rules tab changes to Definition tab when you work in concepts area of taxonomy) write the definitions that classify input documents into concepts. For more information, see Section 2.6.2 *The Definition Tab* on page 17.

Testing tab

test your definitions against the testing sets of documents that you assemble. For more information, see Section 2.6.3 *The Testing Tab* on page 18.

Data tab

specify the priorities, case sensitivity, and the paths to testing documents here. For more information, see Section 2.6.4 *The Data Tab* on page 19.

Document tab

see the matches for the tested concept in a single tested document. Also access the concordance operations through this window. For more information, see Section 2.6.5 *About the Document and Concordance Tabs* on page 21.
2.2 The SAS Concept Creation Menus

2.2.1 About the Availability of Menus and Menu Selections

All of the following conditions influence whether a menu or menu selection is available to use:

- Your location in the SAS Concept Creation application. For example, some tasks are available only if you select a tab.
- Whether, or not, you created a project.
- The selections that you choose.

2.2.2 About Menus

Menus contain operations that apply to the entire project, or to the currently displayed tab. For example, create a new project, access an existing project, or build a project.

2.2.3 The File Menu

Here are the operations that are available in the File menu:

New Project
access the New Project window where you name, set the path, and choose a language, for your new project.

Open Project
locate and access an existing project using the Open window that appears.

Save Project
preserve the current project.

Save Project As
save the current project and rename a new, duplicate project.

Exit
close SAS Concept Creation.
2.2.4 The Edit Menu

The standard **Undo**, **Redo**, **Cut**, and **Copy** Window commands are located here. The following operations are also included in this menu:

Cut All Selections

use the SHIFT key to select multiple values, such as several taxonomy nodes. To select noncontiguous values, press the CTRL key and select the specific nodes that you want to delete.

Copy All Selections

copy all of the selected nodes. You can paste these nodes into a different area of the taxonomy as duplicates of the existing nodes.

Note: The **Cut All Selections** and **Copy All Selections** operations delete and copy children, as well as parent, nodes.

Paste

paste a single node into your taxonomy. If you select a parent node, all of the children (subnodes) of the selected parent are pasted into the taxonomy. See the related operation **Paste Single Node** below.

Paste Single Node

paste one copied node into the taxonomy, as a child of the selected parent node.

Text Find

locate text in the **Document** tab.

Text Replace

access the Replace window that you use to substitute text in the **Document** tab.

Tree Find

use the Find window that appears to search the **Taxonomy** tab for concepts.

Tree Replace

enter text into the Replace window to locate and replace in the **Taxonomy** tab.
Find in All Rules
search for a matching string in the concept definitions in the Find in All Rules window that appears.

2.2.5 The View Menu

Use these commands to hide, or show, the standard Toolbar and Status Bar. You can also access the following commands:

Refresh Tree
update the directory tree in the Taxonomy tab when you remove testing messages.

Taxonomy as Text
see the taxonomy in text format.

Number of Taxonomy Nodes
see a list of the taxonomy nodes and a count of the subnodes in the Number of Taxonomy Nodes window that appears.

2.2.6 The Build Menu

The following commands are located in this drop-down menu:

Compile Concepts
build a .li file. The Compile Concepts tab appears at the bottom of the SAS Content Categorization Studio interface where you can see the results of this operation.

Abort Compiling Concepts
stop the process of compiling the concepts. This operation can be used with large concepts projects. When large concepts projects are built, the process of compilation can be lengthily.

2.2.7 The Project Menu

The following commands are located in this drop-down menu:

Add Language
enable the project to be built in a language that you purchased. When you select this operation, the Select a Language window appears. This window contains a drop-down list of the languages that you purchased.

Delete Language
select this operation and a SAS Concept Creation status window appears. You can remove the language applicable to the selected taxonomy node.

Note: If you click Yes in the SAS Concept Creation window, you lose all of the nodes and branches that use this language.

Enable Concepts
enable concept extraction in this project.

Remove Concepts
select the language node in the Taxonomy tab and choose this operation to delete all of the concepts in the taxonomy.

Settings
specify project-wide settings using the Project Settings window that appears.

2.2.8 The Concept Menu

The following commands are located in this drop-down menu:

Add Concept
add a child node to the parent node that you selected.

Note: You can specify duplicate concept names, but only if their case is different.

Delete Concept
remove a node.

Delete All Selected Concepts
remove all of the selected concepts.

Rename Concept
Priorities
access the Concept Priorities window that displays the priority setting for each concept. This setting is specified in the Priority field of the Data tab.

Create Directory Tree
impose a directory structure from the disk to your project or from the project to disk.

2.2.9 The Testing Menu
The following testing operations are located in this drop-down menu:

Import Test Files
display the names of your test documents in the Testing tab.

Import Failing Test Files
bring test documents that could, but should not, pass the test for the selected node into the Testing window to test them. For example, you might want to ensure that the term server that applies to a restaurant concept does not match a computer concept.

Delete Selected Test File
remove the test file that you selected from the Testing tab.

2.2.10 The Document Menu
The following operations are located in this drop-down menu:

Clear Test Document
remove the contents of the Document tab.

Open Test Document
access a test document in the Document tab.

Save Test Document
perform a Save operation. This operation copies the testing document that appears in the Document tab into the folder of your choice.

Save Test Document As
perform a Save as operation. Save the changes in a testing document, shown in the **Document** tab, into the directory of your choice.

Decrease Font Size
minimize the size of the font for the displayed test file.

Increase Font Size
enlarge the size of the font for the displayed test file.

Remove Tags
remove any markup language from the testing document.

Browser
use this operation and its suboptions with a Web document in the **Document** tab. There are selections that are related to the use of the **Browser** selection:

Forward
jump to the next page.

Back
return to the previous page.

Refresh
update the current Web page.

Stop
stop loading the current page.

Home
return to the first page that was loaded into the browser.
2.3 The Status Bar

The **Status Bar** is the horizontal area at the bottom of the SAS Concept Creation interface that indicates the status of the operation that is currently running.

![Display 2-1 Status Bar](image)

Select **View -> Status Bar** to hide, or show, the status bar.

2.4 The Standard Toolbar

Use the standard toolbar, located below the menu bar, to access some operations. These standard toolbar icons are shortcuts to some, but not all, of the commands available from the menu bar.

![Standard Toolbar Buttons](image)

Select or deselect the standard toolbar to hide or show the **Toolbar** operation in the **View** menu.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Click New and the New Project window appears. Name the project, choose a path, and a language for the new project.</td>
</tr>
<tr>
<td></td>
<td>Click Open and the Choose a project file window appears where you locate an existing project file (.tk2).</td>
</tr>
<tr>
<td></td>
<td>Click Save to preserve the changes to the project.</td>
</tr>
</tbody>
</table>
2.5 The Taxonomy Tab

By default, the Taxonomy tab is displayed when you start SAS Concept Creation. Use this window to see the taxonomy of concepts that you define. If you build your taxonomy with more than one language, an additional language branch is added.
The following nodes appear in the taxonomy:

LITI_Demo
 see the name of the project.

English
 see the language branch.

Concepts
 see the unchangeable node name for the concepts extractor.

Top
 see the unchangeable node name for the root of each taxonomy.

Notes: Some of the nodes that are listed above appear only after the related functionality is added to the project. Some of the command shortcuts that are available on the menu and standard toolbars, are also accessible when you right-click on a node in the Taxonomy tab.
2.6 The Right Window Tabs

2.6.1 Overview of the Tabs

Use the tabs that are located on the bottom right-hand side of the user interface to write definitions, enter data, test the taxonomy, and so on.

Display 2-3 Concept Tabs

<table>
<thead>
<tr>
<th>Tab</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Write concept rules.</td>
</tr>
<tr>
<td>Testing</td>
<td>Test documents against the definitions. Also specify the Concordance operations using selections that are available in this window.</td>
</tr>
<tr>
<td>Data</td>
<td>Enter priority and case sensitivity information. Also use this window to specify testing data such as the path to the testing directory.</td>
</tr>
<tr>
<td>Document</td>
<td>See the testing results for one document. The Document window becomes the concordance window when the Concordance check box is selected with either Selected concept or All concepts.</td>
</tr>
</tbody>
</table>

The table below describes the components of these tabs:

Table 2-2: Window Tab Commands
2.6.2 The Definition Tab

Use the **Definition** tab to specify the rule for the selected concept.

Display 2-4 Definition Tab

Use the buttons in the **Definition** tab when you define your concepts:

- **Syntax Check**
 access the Concept Syntax Check window, where you check the syntax of your definitions.

- **Load Text**
 load the full text of a file into the **Definition** tab as your concept definition. For example, write a complex definition using a `.txt` document. Click **Load Text** to access the Open window where you can locate the definition text that you want to load into the **Definition** tab.

- **Ln**
 see the line number where your cursor is located. For example, your cursor might appear on `Ln 56`.
2.6.3 The Testing Tab

Use the Testing tab to check the accuracy of a concept definition against a set of testing documents.

Display 2-5 Testing Tab

The operations that are available in the Testing tab are explained below:

Test files for this concept
test only the test files that are mapped to this concept in the Data tab.

Test all files everywhere
test all of the files in the testing repository against the selected concept. This operation expands the testing process to simulate real-time results.

TEST
start the testing process and SAS Concept Creation displays the results in the Testing window.

No concordance
(default) do not perform any concordance operations.

Concordance for Selected Concept
display the terms that match the selected concept in the input document in the concordance window.

Concordance for All Concepts
display the matched concepts for all of the terms in your definitions. These terms appear in the concordance window, with the names of the concepts that they match.
The path to the testing file is displayed below these operations and above the following headings:

Test File
see a list of the names of all of the test files below this heading. (This list appears after you specify the path to the testing directory in the Data window.)

Result
display the number of matches for this concept definition.

2.6.4 The Data Tab

Use the **Data** tab to enter metadata, the testing path, and other information for each concept.

Figure 2-2 Data Tab

The following table describes the components of the Data window:
Priority
(default: 10) determine the matching concept when a document matches more than one concept and no other determiner makes one match better than another.

Completed
(default) flag this node as finished.

Test Disabled
define helper concepts that are evaluated but not exposed to the user.

Case Sensitive Matching
(default) match a string in an input document that is an exact, case-sensitive match for the specified text.

Case Insensitive Matching
locate a match on a string in an input document when the text of the string is a match, regardless of the case specified by the concept.

Testing Path
specify the pathname to the directory that contains the testing documents that are used to analyze this accuracy of this concept definition.

Propagate
specify the testing path.

Propagate Options
specify either, or both, of the operations under this heading:

Identical Path
specify testing paths to the same repository of testing documents.

Create Folders
automatically create folders for all of the child concepts.
2.6.5 About the Document and Concordance Tabs

2.6.5.A Overview of the Document Tab

The **Document** tab is used to test the text of a test document, a Web page, or any text that you type, or copy and paste, into this window. There is a 1 MB limit for text that is typed, or copied and pasted, into this window. The Document window becomes a concordance window when you choose to use one of the concordance operations.

2.6.5.B The Document Tab

The **Document** tab displays the matching concept rule terms and includes the concordance view.

Figure 2-3 Document Tab for Concepts

Select one of the following test operations in the **Document** tab and see the results in the input document:

Selected concept

(default) test the text in the **Document** tab against the selected concept.

All concepts

test the selected document against all of the concepts in the taxonomy.

After you select one of the operations listed above, click **TEST** and see the following test results for the selected document:
- The matching terms are highlighted in red for the selected concept and blue for all other concepts.
- The PASS or FAIL result is displayed in the testing field to the left of the TEST button.
- Jump to the following or preceding match when you click either the or arrow.

To use the concordance selection, see Section 2.6.5.C The Document Tab as Concordance below.

2.6.5.C The Document Tab as Concordance

A concordance is an ordered list of matched terms for the selected concept. You specify this ordering in the Project Settings - Concordance window. The concordance view displays only the terms that match the concept definition in the Document tab according to the specifications that you set in the Project Settings - Concordance window. You can also see the results for all concepts in the Best Matches window.

Display 2-6 Concordance View

By default, the concordance does not apply. Choose from the following combinations of selections in the Document window to use the concordance:

Concordance and **Selected Concept**

display the terms that match the selected concept in the input document in the concordance window that appears.
Concordance and All Concepts

display the matched concepts for all of the terms in your definitions. These terms appear in the concordance window, with the names of the concepts that they match.

After you click TEST, the Document tab changes into the concordance view. Definition matches appear in list format. If you select All concepts, the Best Matches window displays a list of matching concepts with the total number of their matches. For more information, see Section 2.8.11 The Best Matches Window on page 42.

2.6.5.D The Document Tab as Browser Interface

The Document tab can also be used as a Web browser to test Web documents.

Display 2-7 Document Window as Web Browser

To test a Web document, select Browser View. When the results appear, you can also use the Best Matches window to see the total count of the matches. For more information, see Section 2.8.11 The Best Matches Window on page 42.
2.6.5.E The Components of the Document Tab

The **Document** tab components enable you to test one document using several operations. Use the information in the following table to determine how to use each component of this window.

Table 2-3: Document Tab Components

<table>
<thead>
<tr>
<th>Field or button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test File</td>
<td>Specify one of the following operations:</td>
</tr>
<tr>
<td></td>
<td>- a path to a document</td>
</tr>
<tr>
<td></td>
<td>- a URL to test a Web page</td>
</tr>
<tr>
<td>Go</td>
<td>Begin loading the document.</td>
</tr>
<tr>
<td>Stop</td>
<td>Stop loading the document.</td>
</tr>
<tr>
<td></td>
<td>Use the Open window that appears to locate the document on your machine that you want to test.</td>
</tr>
<tr>
<td></td>
<td>When active, SAS Concept Creation is loading a Web page into the Document tab.</td>
</tr>
<tr>
<td>test file window</td>
<td>Use the test file window to perform one of the following operations:</td>
</tr>
<tr>
<td></td>
<td>See a tested document</td>
</tr>
<tr>
<td></td>
<td>Double-click on a single document in the Testing tab and the Document tab appears. The matching definition terms are highlighted in red in the test document.</td>
</tr>
<tr>
<td></td>
<td>Test a single document</td>
</tr>
<tr>
<td></td>
<td>Access a text in the Document tab when you specify the path to the document using the Test File field or enter a URL.</td>
</tr>
<tr>
<td>status window</td>
<td>See the status of the document, or the number of matches, for the selected concept. The status window is located to the left of the TEST button.</td>
</tr>
<tr>
<td></td>
<td>Navigate through the matched concept terms in the tested document when you click the forward and backward buttons.</td>
</tr>
<tr>
<td>TEST</td>
<td>Test the loaded document.</td>
</tr>
</tbody>
</table>
2.7 The Project Settings Windows

2.7.1 Project Settings Overview

Use the Project Settings windows to set taxonomy-wide operations. If you choose to develop a SAS Concept Creation project that uses more than one language, set the project settings for each language taxonomy separately. You can specify some of the project settings before you add concepts to the taxonomy. For more information, see Section 3.6 Choosing Project Settings on page 59. Modify these settings after testing or during the various stages of project development. For example, change your project settings if you do not obtain the testing results that you require.

Table 2-3: Document Tab Components (Continued)

<table>
<thead>
<tr>
<th>Field or button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected concept</td>
<td>Test only against the selected concept.</td>
</tr>
</tbody>
</table>
| All concepts | Test this document against all of the concepts in this project.
Note: Select this radio button and click **Test**. The Best Matches window appears. This window displays a list of concept matches ordered from best (top of the list) to worst (bottom). |
| Browser View | Select this operation and the following buttons appear in the lower right-hand side of this interface:
- **Home**: Go to the home page.
- **Back**: Return to the last viewed page.
- **Forward**: Go to the next page.
- **Refresh**: Update the Web page.
- **Stop**: End the current process. |
| Remove Tags | See the text of the selected Web page without any markup tags. |
To access Project Settings, complete this step:

Select **Project --> Settings**. The **LITI**, **Concordance**, and **Misc** tabs appear in the Project Settings interface.

Display 2-8 Project Settings Tabs

2.7.2 The LITI Tab

Use the selections in the **LITI** tab to specify how matching strings are treated.

Overlapping Concept Matches

determine how SAS Concept Creation treats overlapping matches. Overlapping matches are strings where part, or all, of a matching string meets the match requirements for more than one concept.

All matches

return all of the terms that match any of the concept definitions in this project

Longest

return a match on the concept that matches the longest string.

Best
return the match with the highest priority setting, only.

Note: If all of the tested concepts have the same priority setting, only the longest matches are returned. For more information, see Section 4.4.17 *The Priorities and Project Settings* on page 75.

Return all identical matches

if you select either the **Longest** or **Best Matches**, **Return all identical matches** becomes available. Select this check box and SAS Concept Creation returns all of the identical longest or best matches—depending on your selection.

Remove duplicate facts

if you specify either a **PREDICATE** or a **SEQUENCE** rule, choose this operation to return only the first instance of a match. For more information, see Section 4.7.2 *The Predicate Sequence Example* on page 107 and Section 4.7.3 *The Predicate Examples* on page 109.

Note: These settings do not affect the returns specified by the **REMOVE ITEM** rule that excludes matches on a concept for disambiguation purposes. For more information, see Section 4.6.6 *Disambiguating Concepts* on page 89.

2.7.3 The Misc Tab

Use the **Misc** tab to specify the various settings that apply to the concepts extractor.
Use the Misc tab to specify the following settings:

Generate Binary Files Compatible With SAS Text Miner Version

if you are not using SAS Text Miner 5.1, click and select either 4.2 or 4.2M1.

Paragraph Separator

input the string that is used as a paragraph separator within your documents when you choose to use the PARA operator. For example, type `<P>`.

XML Default Field

limit search to the specified field. If you leave this field blank, all of the XML fields in the input XML document are searched.

XML Tags to Ignore

choose to exclude one or more XML fields when processing your XML documents.
2.7.4 The Concordance Tab

Select the Project Settings - Concordance window to choose the display parameters for concept matches. (To see the concordance window, click Concordance in the Document tab.) A concordance provides a list of the matching terms in the document.

For each match show

specify how many matching characters, words, or sentences are displayed in the concordance window:

Before (default: 25)

specify how many characters, words, or sentences to display before the match.

After

(default: 25) choose how many characters, words, or sentences to display after the match.

characters

(default) apply the numbers set in the **Before** and **After** fields to the letters in the alphabet, numbers, hyphens, and so on.

words
apply the numbers set in the **Before** and **After** fields to individual words.

sentences
return the specified number of sentences, set in the **Before** and **After** fields.

Sort by
classify matching terms in the concordance view of the **Document** tab:

- **Document Order**
display the matches in the order in which the concepts occur in the document.

- **Matched Text**
sort the matches alphabetically.

- **Concept Name, then Document Order**
sort by matched concept name. Then sort by the order of appearances in the text.

- **Concept Name, then Matched Text**
sort the matches by matched concept name and then sort these matches alphabetically.

Test multiple files
specify these operations when you use more than one testing file:

- **Hide Filenames**
 (default) do not show the names of the files that match in the concordance view.

- **Show Filename**
display the test results, and to the right of this, the name of the file.

- **Show Full Path**
display the test results with the name of the file. The full path of the file appears to the right of the results.

Insert text markers
display text markers in the concordance view of the **Document** tab when you test a single file against multiple concepts. The match text fields display the concept that is the best match for the matched term that is returned. An example of these tags is `<concept1>...</concept1>`.
2.8 The Miscellaneous Windows

2.8.1 The Select a Language Window

Use the Select a Language window to choose the language for the entire taxonomy or a branch of your project. You can choose from any of the languages that you also install for SAS Text Miner.

To access and use the Select a Language window, complete these steps:

1. Right-click on the project node in the Taxonomy tab and select Add Language from the drop-down menu that appears.

![Select a Language window](image1.png)

The Select a Language window appears.

2. Click to the right of the blank field and select a language that you purchased.

![Select a Language window](image2.png)
Languages followed by `UTF8` are in UTF-8 encoding. These languages include English, Chinese, Japanese, Korean, and Russian (Cyrillic characters), and so on. If the language is not followed by `-UTF8`, Latin-1 is used as the character set encoding.

Notes: When UTF-8 encoding is specified, test only documents that are UTF-8 encoded. If you use UTF-8 encoding, make sure that your computer has the appropriate language fonts installed.

3. Click **OK**. The selected language is added to your project. See the English example below.
2.8.2 The Enter Names Window for UTF-8 Languages

Concepts that use UTF-8 encoding require two names in the Enter Names window. Both of these names appear in the **Taxonomy** tab.

To access and use the Enter Names window, complete these steps:

1. Right-click on the **Top** node in the **Taxonomy** tab and select **Add Concept** from the menu that appears.

 ![Image of the Enter Names window]

 The Enter Names window appears.

2. (Optional) Select **Use same name for both fields** and the **Enter Display Name** field is dimmed and unavailable.
3. (Optional) Enter the name of the concept into the **Enter Display Name** field using UTF8 language characters.

4. Enter the name for your concept into the **Enter name for internal data files (Latin-1 characters only)** field.

5. Click **OK**. The new concept appears in the **Taxonomy** tab.

2.8.3 The Number of Taxonomy Nodes Window

See the following information about the taxonomy nodes in the Number of Taxonomy Nodes window:

- number of nodes
- number of subnodes
- nodes without a definition

To access and use the Number of Taxonomy Nodes window, complete the following steps:

1. Select **View --> Number of Taxonomy Nodes**. The Number of Taxonomy Nodes window appears.
2. Use the Number of Taxonomy Nodes window to obtain the following types of counts (the list below correlates to the numbers in the figure above):

a. The number of taxonomy nodes represents all of the subnodes for the selected node in the **Taxonomy** tab. In the example above, 41 appears to the right of the **Top** node.

b. The count of the children of the selected node that do not have subnodes is the second number that is displayed. In the example above, there are 27 children.

c. The number of subnodes that have a definition is the last count that is displayed. In the example above, **PERSONA** is highlighted in green because this node does not have a definition

3. Click **OK** to close this window.

2.8.4 The Concordance Windows That Are Available through the Testing Tab

There are two concordance windows that appear when you select a test operation with either of the available concordance operations.

To see the concordance matches in both windows, complete these steps:

1. After you load the testing documents for your project, click the **Testing** tab.
2. Select **Concordance for Selected Concept**.

3. Click **TEST**. The Concordance window appears.

4. See the terms that matched the selected concept inside the `<Match>....</Match>` tags.

5. Click **X** to close the Concordance window.

6. Select **Concordance for All Concepts**.

7. Click **TEST**. The Concordance window appears.

8. See the terms that matched the selected concept inside the tags for each concept. For example, see `<COUNTRY>....</COUNTRY>` that indicates a match on the COUNTRY concept.

9. Click **X** to close the Concordance window.

2.8.5 The Tree Find Window

Use the Tree Find window to locate a concept in a large taxonomy.

To find a concept, complete these steps:
1. Select the **Tree Find** icon on the standard toolbar.

2. Enter the name of the concept that you want to locate into the **Find** field. For example, enter **FACT**.

3. (Optional) Select the **Match case** box to locate a matching term in the specified case. For example, type **FACT**.

 Note: You can specify duplicate concept names, but only if their case is different.

4. Select **Find Next** to locate a match.
5. (Optional) Select **Replace** to access the Tree Replace window. For more information, see Section 2.8.6 *The Tree Replace Window* below.

6. Click **Cancel** to close this window.

2.8.6 The Tree Replace Window

Use the Tree Replace window to substitute a new name for the name that appears on one or more nodes in the **Taxonomy** tab.

To perform the replace operation, complete these steps:

1. Select **Edit --> Tree Replace** and the Tree Replace window appears.

2. Enter the text that you want to locate into the **Find** field.

3. Enter the text that you want to substitute for the located term into the **Replace With** field.

4. If you want to replace all of the original terms with the specified text, click **Replace All**.

Note: Use the **Replace All** button with care. This operation cannot be undone.

5. Click **Cancel** to close this window. For more information, see Section 2.8.5 *The Tree Find Window* on page 36.
2.8.7 The Text Find and Replace Windows

Use the Text Find and the Text Replace windows like you use the Tree Find and Replace windows, or these operations in other applications. In SAS Concept Creation, these operations work in the Definition, Testing, and Document tabs.

2.8.8 The Compile Concepts Tab

The Compile Concepts tab appears at the bottom of the interface when you select Build --> Compile Concepts. This tab provides status information about the build process.

Display 2-10 Compile Concepts Tab
2.8.9 The Concordance Windows

When you select either **Concordance for Selected Concepts** or **Concordance for All Concepts**, the Concordance window appears displaying the selected matches.

See the following examples:

Display 2-11 Concordance for Selected Concept

![Concordance for Selected Concept]

Display 2-12 Concordance for All Concepts

![Concordance for All Concepts]
2.8.10 The Syntax Check Window

Click **Syntax Check** and the **Concepts Syntax Check** tab appears at the bottom of the user interface. This tab displays the results of the grammar check for the selected definition.

Display 2-13 Syntax Check Tab
2.8.11 The Best Matches Window

Use the Best Matches window to see a list of the highest ranking concepts for your document. This window automatically appears when you select **All concepts** and click **TEST** in the Document window.

To access the Best Matches window, complete these steps:

1. Access a testing document in the **Document** tab.

2. Select **All concepts**.

3. Click **TEST**. The Best Matches window appears. See the example provided below.

4. Click **X** to close this window.
2.8.12 The Concept Priorities Window

The Concepts Priorities window displays the priority settings for concepts. Priority determines the matching concept when one input document matches two or more concepts and no other determiner makes one concept a better match than another.

By default, this setting is set to 10. Increase this specification to make one concept rank higher than another when both are matched.

To access the Concept Priorities window, use these steps:

1. Specify a priority setting in the Data window for each concept that you want to rank. For example, type 12 into the **Priority** field for one concept and 15 into the **Priority** field for another concept.
2. Select **Concept --> Priorities**. The Concept Priorities window appears.

3. See a ranked list of concepts according to the specified priorities. (By default, each **Priority** specification is set to 10.)

4. Click **OK** to close this window.

Hint: The Concept Priorities window does not specify matches. This window displays only the priorities for each of the concepts in the taxonomy.
2.8.13 SAS Concept Creation Status Window Example

If you name and save a new project before you add a language, a SAS Concept Creation status window appears when you access this project.

Display 2-14 SAS Concept Creation Status Window

Click OK to close this window. Add a language to your project.

2.9 The Drop-down Taxonomy Node Operations

2.9.1 The Project Name Node Operations

Right-click on the first node that appears after you name your project. This is the name of the project.

Display 2-15 Add Language and Expand Fully Operations

Add Language

specify a language for this branch of your taxonomy. The Select a Language window appears with a drop-down list of the languages that you purchased. For more information, see Section 2.8.1 The Select a Language Window on page 31.
Expand Fully
see all of the nodes in this taxonomy.

2.9.2 The Language Node Operations

Right-click on the language node in your taxonomy in order to access the drop-down operations.

Display 2-16 Language Node Drop-down Operations

Use the following operations to change your taxonomy structure:

Delete Language
remove the language node for this taxonomy.

Enable Concepts
add the **Concepts** node and beneath it, add additional nodes.

Expand Fully
access the full taxonomy of nodes.
2.9.3 The Concepts Node Operations

Right-click on the Concepts node in order to access some of the taxonomy operations.

Display 2-17 Concepts Node Operations

Select from the following operations:

- **Remove Concepts**
 delete this node from the taxonomy when you choose this operation.

 Warning: When you select this operation, all of the child nodes below the language node are deleted with the Concepts node.

- **Expand Fully**
 click to fully expand the selected branch of the taxonomy.
2.9.4 The Individual Concept Node Operations

Right-click on a concept node and a list of operations appears in the drop-down menu:

Display 2-18 Individual Concept Operation

Select from the following operations for concepts. The **Cut**, **Copy**, and **Paste** operations are self-explanatory:

- **Add Concept**
 add a child concept to the selected parent node.
- **Delete Concept**
 remove the selected concept.
- **Rename Concept**
 change the name of the concept.
- **Paste Single Node**
 paste one copied node as a child of the selected concept.
- **Expand Fully**
 access the selected branch of your taxonomy.
Chapter: 3
Creating Projects

- Overview of Creating Projects
- Start SAS Concept Creation
- Create a New Project
- Saving the Project
- Access an Existing Project
- Choosing Project Settings
- Navigating through the Taxonomy
- Specify the .li File in SAS Text Miner

3.1 Overview of Creating Projects

Build a .li file within the framework of a project. Each of the concepts in the project are displayed in a taxonomy structure. The taxonomy is the tree-like structure that alphabetically organizes the concept nodes.

You write the definitions that define these concepts and test them using the Testing and Document tabs in order to ensure that these rules perform as expected. The concepts that you develop are built as a .li file that is used by the Text Parsing node of SAS Text Miner. SAS Text Miner applies these concepts as custom entities in real time.
3.2 Start SAS Concept Creation

To start SAS Concept Creation for SAS Text Miner (SAS Concept Creation), complete these steps:

1. Select **Start --> Programs --> SAS Concept Creation** and the untitled user interface appears.

2. See Section 3.3 *Create a New Project* below. To access an existing project, see Section 3.5 *Access an Existing Project* on page 57.
3.3 Create a New Project

Use this section to develop a new project the first time you use SAS Concept Creation. When you create a project, you define the concepts that are used as custom entities in SAS Text Miner.

To create a new project, complete these steps:

2. Enter the name of the new project into the Project Name field. For example, type NewProject.

3. (Optional) Click to locate a directory and load this directory location into the Project Location field. The default location for a 32-bit machine running an English version of Windows is:

 c:\Program Files\SAS\SAS Concept Creation\Projects.

 For a 64-bit machine, the default folder might be different. For example, the folder might be entitled Program Files (x86).

4. Click OK to save this project to the selected location.
5. The newly named project node appears in the **Taxonomy** tab. For example, see the **NewProject** node below:

![Image of NewProject node](image)

Hints: After you create a new project, set your project-wide settings. You can also choose to set your project-wide settings at a later stage in project development. For more information, see Section 3.6 *Choosing Project Settings* on page 59. Remember to save your project frequently throughout development. For more information, see Section 3.4 *Saving the Project* on page 56.

6. Right-click on the project icon and select **Add Language** from the drop-down list that appears.

![Image of Add Language option](image)
7. The Select a Language window appears. Click \(\text{ } \) to the right of the blank field to select a language with an encoding for this language.

Languages that are represented in both Latin-1 and UTF-8, such as western European languages, have two entries in the drop-down list. All other languages use the multibyte character set encoding because UTF-8 can represent every character encoding in the Unicode character set.

Notes: If UTF-8 encoding is used, make sure that all of the testing and input documents are UTF-8 encoded. Also ensure that your computer has the proper language fonts installed.

8. Click **OK**. The **Taxonomy** tab displays the new project node and the language node.

9. Right-click the language icon that appears in the **Taxonomy** tab. For example, right-click on **English-UTF8**.
10. Select **Enable Concepts** from the drop-down menu that appears.

11. Right-click on the **Top** node that appears, below the **Concepts** node, and select **Add Concept**.
12. (For UTF-8 languages, only) The Enter Names window appears. See Section 2.8.2 The Enter Names Window for UTF-8 Languages on page 33.

![Enter Names Window](image)

If you add a concept in a language that is not UTF-8 enabled, the node is added to the taxonomy tree. See the window that can be used to enter the name of the node to the right of this node.

In either case, the node that appears looks similar to the example below. However, the second name is not included for nodes that appear for languages that are not UTF-8 encoded.

![Taxonomy Tree](image)

13. Select **File --> Save**. For more information, see Section 3.4 Saving the Project on page 56.

15. Write your concept definitions. For more information, see Section Writing Concept Definitions on page 65.
3.4 Saving the Project

3.4.1 Overview of the Save Operation

Use the Save operation to preserve the changes that you make to your project. By default, the project is saved before each test operation. However, it is important to manually save your project to preserve important changes or to create duplicate projects.

3.4.2 Manually Save an Existing Project

Manually save a project to keep different stages, or versions, of the project during development. The name of the project that appears in the title bar is the same name of the project folder that the application automatically creates. See the following example:

```
c:\Program Files\SAS\SAS Concept Creation\NewProject.tk2.
```

To save your project, select **File --> Save Project**.

3.4.3 Save a Duplicate Project

You can save your project as a duplicate project using another name. Use this operation when you want to preserve specific stages or versions of the project. To create a duplicate project, complete these steps.
1. Select **File --> Save Project As**. The Save Duplicate Project window appears.

![Save Duplicate Project window](image)

2. Enter the name of the duplicate project into the **Project Name** field. For example, type *NewProj2*.

3. (Optional) Click to the right of the **Project Location** field to access the Select Directory window. Alternatively, leave the default project name and path that is automatically entered for you.

4. Click **OK**. The renamed project appears in the **Taxonomy** tab.

3.5 Access an Existing Project

After you create a project in SAS Concept Creation, you can access this project for further development or for reference purposes.

To access an existing project, complete these steps:
1. Select **File --> Open Project** and the Open window appears.

![Open Window](image)

2. Click to navigate through the program files and the **Projects** folder on your hard drive until you locate the **Sample.tk2** file.

Hint: The files for your projects are saved in a Windows folder that has the project name. For example, the files for the NewProject project are stored in the following directory:

```
c:\Program Files\SAS\SAS Concept Creation\NewProject.tk2.
```
3. Double-click the Sample project to access this project.

3.6 Choosing Project Settings

3.6.1 Overview of Project Settings

Use the Project Settings windows to specify matching, concordance, and other operations. These specifications apply only to the selected project. Many of these operations, such as those specified in the LITI tab affect how matching is applied to input documents.

3.6.2 Choose How Matches Are Returned

Use the LITI tab to specify how matches are returned when there are overlapping, identical, or duplicate matches.

To use the LITI window, complete these steps:
1. Select **Project --> Settings** and the Project Settings dialog box appears.

![Project Settings dialog box](image)

2. Choose one selection under the **Overlapping Concept Matches** heading that determines how SAS Concept Creation treats overlapping matches. Overlapping matches are strings where part, or all, of the string matches more than one concept.

 a. Leave the default selection **All matches** selected and SAS Concept Creation returns all of the terms that match any of the definitions in this project

 b. Select **Longest** to return the longest match for the definition.

 c. Select **Best** to return only the match with the highest priority setting.

 Note: If all of the tested concepts have the same priority setting, only the longest matches are returned.

3. If you select either the **Longest** or **Best Matches, Return all identical matches** is available. Select this check box and SAS Concept Creation returns all of the identical longest or best matches.

 If you specify either a **PREDICATE** or a **SEQUENCE** rule, choose this operation to return only the first instance of a match. For more information, see...
Section 4.7.2 *The Predicate Sequence Example* on page 107 and Section 4.7.3 *The Predicate Examples* on page 109.

4. Click **OK**.

3.6.3 Choose the Concordance Operations

Set the project-wide settings for the concordance operation. This operation displays the matched terms in input documents according to the specifications that you set here. Specify these settings in the **Concordance** tab.

Display 3-1 Concordance Default Settings

To specify settings in the **Concordance** tab, complete these steps:

1. Set all of the settings that are relevant at this time. For more information, see Section 2.7.4 *The Concordance Tab* on page 29.

2. Click **OK**.

3. Select **Build --> Compile Concepts**.

4. Select **File --> Save**.

5. Begin testing the concepts.
3.6.4 Choose Miscellaneous Operations

The **Misc** tab contains project-wide settings that affect the application and enable you to specify the paragraph separators that are found in input texts.

To specify settings in the **Misc** tab, complete these steps:

1. Click the **Misc** tab.

![Project Settings Window](image)

2. If you are not using SAS Text Miner 5.1, click ▼ and select either 4.2 or 4.2M1.

3. Enter the paragraph separators used in your input documents into the **Paragraph Separator** field. For example, type `<p>`.

4. Enter the default field to search in XML documents into **XML Default Field**. For example, type `<body>`.

5. Enter the tags to overlook when searching XML documents into **XML Tags to Ignore**. For example, type `<to>`.

6. Click **OK**.
3.7 Navigating through the Taxonomy

After you create concepts, the **Taxonomy** tab displays a hierarchical view of the individual concepts that comprise your taxonomy. You can use standard Windows controls to navigate through, and to manipulate, these taxonomy nodes. See the following definition example:

Display 3-2 Concepts Displayed in the Taxonomy Tab

![Display 3-2 Concepts Displayed in the Taxonomy Tab](image)

Top is the permanent name for the first node in the concept hierarchy in the **Taxonomy** tab. Every concept below Top, such as ALIGNED_CONCEPT or PERSONA, is a child of the Top node. These concepts, in turn, can also be the parents of other subcategories or children. For example, ORGANIZATION_S is the parent of the child categories NFL_KEYWORD and the child of CONCEPT_RULE.

The **PERCOMP** concept has a **next** to it. This sign indicates that **PERCOMP** has one or more subcategories that are now displayed.
3.8 Specify the .li File in SAS Text Miner

After you create a project, SAS Concept Creation outputs a .li file. To use the .li file that SAS Concept Creation generated, set these properties in the Text Parsing node of SAS Text Miner:

1. Set the Find Entities property to All or Custom.
2. Enter the path to the .li file in the Custom Entities field.

The entities that are created in SAS Concept Creation are defined as custom entities in SAS Text Miner.
4
Writing Concept Definitions

- Overview of Definitions
- Before You Write Your Definitions
- The Rule Types
- The Building Blocks
- The Operators
- Some Rule Examples
- Locating Facts
- The Coreference Operators
- XML Fields in Rules
- Writing Multiple Rules for One Definition
- Troubleshooting Your Rules

4.1 Overview of Definitions

Use SAS Concept Creation (SAS Concept Creation) to develop the concepts that are used as custom entities in SAS Text Miner:

- Write a simple rule that matches one term specified in a list of entries.
- Locate a match for a unique concept where each individually specified term in the concept appears in one of the rules that together define this concept.
- Match a concept if it appears within the specified context, only.
- Locate multiple partial matches and return them as full concept matches. These matches can occur only if there is a match on the fully defined concept within the input document.
- Write restrictive rules to prevent matches from occurring within specified contexts.
- Disambiguate matches. Avoid possible matches on concepts that are specified using identical terms with different meanings.
- Specify part-of-speech tags to locate concepts.
- Use Boolean operators and various types of operators to increase the matching precision of your rule.
- Specify case-sensitive rule matches in the Data window.
- Use the stemming operator to return all of the forms of a word. Alternatively, choose to return only the noun or verb forms of the word.
- Specify coreference operators for pronoun resolution. In other words, when a pronoun or another word refers to the canonical form for a term, return the canonical form.
- Use the PRIORITY setting to specify that one rule is weighted more than another and to prevent the return of false positives for coreference matches. (In other words, you can rank one rule higher than another rule within the same definition.)
- Match predicates by specifying multiple arguments to extract a fact.
- Identify the semantic relations between concepts by using predicate rules with logical operators.
- Specify XML fields to limit matches to these fields.
- You can write comments into your rules.
4.2 Before You Write Your Definitions

Consider the following information before you write your concept definitions:

- **Concepts** is another word for the term *custom entities* that is used in SAS Text Miner. SAS Text Miner identifies standard entities such as Percent, Phone, Time, and so on. In order to identify custom entities, SAS Text Miner uses the concepts that you define in SAS Concept Creation.

- The terms *rule* and *definition* are used interchangeably. Properly speaking, definitions apply to all of the rules for one concept.

- Rule types, for example `CLASSIFIER` and `C_CONCEPT`, are written using uppercase letters.

- By default, SAS Concept Creation performs case-sensitive matching.

- By default, the **Priority** setting in the Data window is set to 10. You can also specify a `PRIORITY` setting that overrides this setting within some rules.

- By default, matches can occur in any part of an input document. When the `PARA` or various `SENT` operators are specified, a match is returned if the matches occur in one paragraph, sentence, or the specified number of sentences.

- The settings in the Project Settings - LITI dialog box can affect match returns.
4.3 The Rule Types

There are many types of definitions. You can also specify more than one rule for each of your definitions. A match on the concept occurs if there is a match on any one of these rules.

CLASSIFIER

Specify lists of terms where each classifier rule consists of the word CLASSIFIER followed by a string. For more information, see Section 4.6.1 The Classifier Rules on page 83.

CONCEPT

Reference one or more concepts and use the _cap term to specify that a match only occurs on a word that begins with an uppercase letter. When more than one concept is referenced, a relationship is specified between the matching terms. You can also use CONCEPT rules to locate, or to discover, related information. For more information, see Section 4.6.2 The Sequence of Classifier Entries on page 84.

C_CONCEPT

Specify the order for the match components in an input document using these definitions. For more information, see Section 4.6.3 Context Matching on page 85.

NO_BREAK

Prevent partial matches on a rule that is specified within this definition. Use this rule to determine that an entire phrase is treated as a single word. For more information, see Section 4.6.5 Eliminating Partial Matches on page 88.

REMOVE_ITEM

Eliminate a false match in input documents where one word is a unique identifier for two concepts. This rule ensures that the correct context for the match is considered. For more information, see Section 4.6.6 Disambiguating Concepts on page 89.

REGEX

Match information that follows a preset pattern. For more information, see Section 4.6.10 The Regular Expressions in a Definition on page 97 and Appendix A.
Specify Boolean operators to increase precision (relevancy of the matches) and recall (return all matching texts). For more information, see Section 4.6.11 The Sentence Operator in a Definition on page 98.

SEQUENCE
Extract facts from input documents if the facts appear in the order specified. For more information, see Section 4.7.2 The Predicate Sequence Example on page 107.

PREDICATE_RULE
Specify the arguments that define your facts. Facts are related pieces of information in a text that are often located and matched as phrases. For more information, see Section 4.7.3 The Predicate Examples on page 109.

4.4 The Building Blocks

4.4.1 Overview of the Building Blocks
SAS provides n-gram sequence features that are often used in natural Language Processing (NLP). These sequences specify the context that is necessary for the specified concept to match. Before you write your rules, consider the building blocks that are explained in this section.

4.4.2 Case-Insensitive Matching
By default, SAS Concept Creation applies rules to input documents in a case-sensitive manner. You can specify case-insensitive matching when you click Case Insensitive Matching in the Data tab. This setting applies to the entire definition of the selected concept, only.

4.4.3 Entering Comments into Rules
Any character, or characters, following the pound sign (#) are considered to be comments. For a literal # to match, it should be escaped as \\#.
4.4.4 The Tokens

Add tokens to your definitions:

- words, including noise words such as and, the, and a
- numbers including date and time
- newline mark
- URLs

Specify an undetermined token using the _w term. When you specify this term, SAS Concept Creation returns a match on any word that occurs in this position in the document. If, on the other hand, there is an exact token that you want this concept to match, you can specify this word in any concept rule. When tokens are specified in CONCEPT_RULES and PREDICATE_RULES, these tokens are set off with quotation marks (" "). For more information, see Section 4.4.6 The _w Term on page 70.

4.4.5 The _c Marker

Use the context marker (_c) to specify that a match is returned if the keyword is located within the specified context. For example, you can match any COMPANY concept that is immediately followed by the term New York:

_C_CONCEPT:_c{COMPANY} New York

You can also use this marker to locate and return known and unknown words. See the following two examples:

_C_CONCEPT:COMPANY _c{New York}
_C_CONCEPT:COMPANY _c{_cap}

4.4.6 The _w Term

Use the word term (_w) to specify that a match can occur on a word. For example, you can match any type of business. This is true if _w immediately follows a reference to the COMPANYTYPE concept:

_C_CONCEPT:_c{COMPANYTYPE} _w

This example could also return a match on law firm.
4.4.7 The _cap Term

Use the _cap term in ways that are similar to the _w term. However, _cap only returns matches on words that begin with an uppercase letter. Use _cap to locate an unknown term that begins with an uppercase letter, or to match a single upper case letter. Alternatively, specify this term multiple times. When you repeatedly specify _cap, you can locate all of the unknown, consecutive occurrences of words that begin with an uppercase letter. This term can be used with all of the rule types except for the CLASSIFIER and REGEX rules. You can also replace _w with _cap in the example provided for Section 4.4.6 The _w Term above. In this case, the word Firm, or another word beginning with an uppercase letter, is a match.

4.4.8 The > Symbol

Documents often reference a unique, full string only once. After that these references might be made by one word from the original string. Use the greater than (>) symbol with either the C_CONCEPT, or CONCEPT_RULE, or a coreference operator (_ref). For more information about coreference, see Section 4.8.3 How to Use the _ref Operator with the > Symbol on page 115. Every occurrence of the bracketed term is a match if the entire rule is matched at least once in the input text.

Specify the greater than symbol within the C_CONCEPT rule using the _c{ }> syntax. For example, use this symbol to specify that every instance of the last name Pelosi is returned as a match after the entire term Ms. Nancy Pelosi is located. See the following example where TITLE and FIRST refer to classifier concepts with a list of titles and first names, respectively:

\[\text{C_CONCEPT:TITLE FIRST } _c{ _\text{cap} } > \]
4.4.9 The Quotation Marks

Use quotation marks (“”) to enclose tokens and concepts when writing a CONCEPT_RULE, REMOVE_ITEM, or PREDICATE_RULE. This example returns a match on Mount Washington if the term Mount, and a match on the concept NAME, appear within seven words of a match on the STATE concept:

CONCEPT_RULE:(DIST_7, “c{Mount NAME}”, “STATE”)

4.4.10 The Parentheses, Square Braces, and Curly Braces

Use parentheses (()), square braces ([[]]), and curly braces ({{}}) as appropriate. These symbols qualify the matches for all of the definitions except the CLASSIFIER and CONCEPT types.

Use parentheses (()) to group the elements that comprise CONCEPT_RULE, REMOVE_ITEM, SEQUENCE, and PREDICATE_RULE definitions. For example, use parentheses with arguments and logical operators. Parentheses are also used with the AND, OR, SENT, DIST_n, ORDDIST_n, and ALIGNED Boolean operators. These operators are followed by a comma (,) and a space.

Use square braces ([[]]) to group REGEX rule elements with the Export operation. For more information, see Section 4.4.15 The Export Feature on page 74.

Use curly braces to delimit the information that is returned as a match. Curly braces ({{}}) are used with or without parentheses (()), depending on the type of definition that you write. For more information, see Section 4.7.2 The Predicate Sequence Example on page 107 and the following example:

CONCEPT_RULE: (SENT, “c{FIRST, _cap}”, “TITLE”, “COMPANY”)

4.4.11 The Commas

Commas (,) always follow definition elements:

- Boolean operators are enclosed in parentheses (()) and a space follows the comma (,) after this string.
- Quotation marks ("“) enclose concept names and a comma follows the second quotation mark.
- Separate the arguments used to construct facts with commas.
- Commas follow logical operators in a PREDICATE_RULE.

4.4.12 The Colons

Use a colon (:) in the following cases:
- Type a colon after specifying the concept rule type. For example, use a colon with these rules CONCEPT, CLASSIFIER, and CONCEPT_RULE.
- Use a colon when specifying terms to export to CLASSIFIER rules. For more information, see Section 4.6.7 Exporting Classifiers on page 91.
- Use colons between arguments for a SEQUENCE or PREDICATE_RULE concept. For more information, see Section 4.7.2 The Predicate Sequence Example on page 107 and Section 4.7.3 The Predicate Examples on page 109.
- Type a colon before a part-of-speech tag. For example, type :Prep and :sep. For more information, see Section 4.6.9 The Part-of-Speech Tags in a Definition on page 96.

4.4.13 The Spaces

When you write CONCEPT, CONCEPT_RULE, or C_CONCEPT definitions, type at least one space before each of the following items, tokens, concepts, part-of-speech tags, _w terms, and _cap terms. Also type a space before the _c marker if it is preceded by a token, comma (,), or the name of a concept. See the following example:

CONCEPT_RULE: (ORDDIST_9, "_c{_cap} :sep _cap :sep and _cap", "ORGTYPE")
4.4.14 The Part-of-Speech Tags

Specify part-of-speech tags when you don’t know the exact word that you are seeking. For example, :Prep to represent preposition and :sep to specify a separator character. A separator character is any punctuation mark. These part-of-speech tags are preceded by a colon (:) and a space. In addition, a space also precedes each of these tags. See the following example:

```
CONCEPT_RULE:(SENT, "_c{VACATION :Prep _cap :sep LOCATION}", "vacation")
```

For a complete list of part-of-speech tags, see Appendix B.

Note: Use the part-of-speech tags that are listed in Appendix B. Do not use the part-of-speech tags that are used with SAS Text Miner. The part-of-speech tags that are specified in your definitions are mapped to those in SAS Text Miner at the time of application.

4.4.15 The Export Feature

Export a matched term to one or more concepts. Use the Export= operation to define a term that matches a classifier concept. Also use the coreference operator (_ref) with the export symbol to eliminate false positives. You can specify this operation within the concept definition. Alternatively, declare an acronym as part of the definition for the concept where the selected term is exported. See the following example:

```
FULLNAME: CLASSIFIER: [export=eLN:Clinton]: Bill Clinton
LASTNAME: eLN
```

The term Clinton is exported to the LASTNAME concept. When you write the export operation into a classifier rule, all instances of partial matches such as Clinton are returned. For this reason, the export feature functions in ways that are similar to the effects of placing the greater than symbol (>) at the end of a rule. For more information, see Section 4.6.7 Exporting Classifiers on page 91.
4.4.16 The Regular Expressions

Match known patterns by using regular expressions to specify a range of letters or numbers inside square braces ([]). For example, place `a-z` or `0-9` inside square braces. This specification matches any word beginning with an ASCII character whose value is between `a` and `z`, or numbers between `0` and `9` inclusive. You can also add a plus (+) sign after the last square brace. See the following example:

```
REGEX: [a-z]+  
```

When you add the plus sign, all instances of terms beginning with a lowercase letter from the English alphabet match all occurrences of a word in the input document. You can continue to build this definition by specifying a context for the word occurrence.

You can also add either the `%` symbol or write out `percent`, after these bracketed numbers. This feature enables you to locate percentage matches in your documents. See the following example:

```
REGEX: [0-9]+%  
REGEX: [0-9]+ percent
```

This regular expression specifies that only numbers followed by the percentage sign match. In this example, either 99%, or 50 percent, are matches.

For more information, see Appendix A Regex Syntax and Part-of-Speech.

4.4.17 The Priorities and Project Settings

4.4.17.A Overview of Priorities

Priorities determine the concepts that are matched when priorities are applied to input documents by SAS Content Categorization Server. Matching is displayed in the Document pane and is applied after the concepts are uploaded to SAS Content Categorization Server as binary files.

For example, you might have a document that contains matches for both concept A and concept B. To prioritize a match on concept A, set the `Priority` setting in the Data tab for concept A to a higher number than that of concept B. Alternatively, you could specify `PRIORITY=n` in one or more rules in your definitions.
The **PRIORITY** rule specification that is set higher than **10**, overrides the **Priority** setting in the **Data** tab. By default, the **Priority** setting in the **Data** tab is set to **10**. For this reason, a **Priority** setting in a rule ranks overlapping rule matches in one concept definition as well as matches on different concept definitions. For more information, see Section 4.6.8 *Setting Priorities for Overlapping Matches* on page 94 and Section 4.8.7 *Rank Coreference Definitions and Eliminate False Positives* on page 119.

See the following example where **35** overrides the default **Priority** setting of **10** in the Data window:

```
C_CONCEPT: PRIORITY=35: _c(CITY COUNTRY)
```

4.4.17.B Choose Project Settings

Use the **LITI** tab in the Project Settings window to choose the types of matches that you want to return. These settings are particularly important when you specify priorities and when multiple matches occur within one input document.

To specify Project Settings, complete these steps:

1. Select **Project --> Settings** and the Project Settings window appears.

 ![Project Settings Window](image)

2. Select **All matches** to return matches on all of the matching rules in an input document.
3. Select **Longest** to return only the match with the most characters.
4. Select **Best** to return only the best match.
5. Select **Return all identical matches** when you want to locate each instance of a rule match.

6. If you specify either a **PREDICATE** or a **SEQUENCE** rule, you can select **Remove duplicate facts** to return the first instance of a match, only.

Priorities also affect concept matching. For more information and examples, see Section 4.6.14 *The ORDDIST Operator in a Definition* on page 104 and Section 4.8.7 *Rank Coreference Definitions and Eliminate False Positives* on page 119.
4.4.17.C Seeing the Priorities for the Taxonomy

When you specify individual priority settings for one or more concepts in the Data window, you can see these results in the Concept Priorities window. Use this window to determine how ranking is applied internally by SAS Concept Creation when a document matches two or more concepts.

This window provides an overview of the priority settings so that you know what concepts are prioritized when an input document matches two or more concepts. The Concept Priorities window does not display the test results.

To use the Concept Priorities window, complete these steps:

1. Select **Concept --> Priorities**. The Concept Priorities window appears.

2. See a ranked list of concepts according to the priorities that you specified in the Data window. (If you did not specify any priorities, this window does not display any concepts.)

3. Click **OK**.
4.5 The Operators

4.5.1 The Boolean Operators

To locate related information with greater precision, specify Boolean, or logical operators, with some types of rules.

Table 4-1: Boolean Operators

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIGNED</td>
<td>Disambiguate between matches on two concept rules. Disambiguation enables SAS Concept Creation to determine the correct match based on context. When terms are disambiguated, only one match is returned.</td>
</tr>
<tr>
<td>AND</td>
<td>Specify that a match can occur only when both arguments are present, somewhere within the entire document.</td>
</tr>
<tr>
<td>OR</td>
<td>Specify that if one, but not both, of the concepts or tokens is located a match is returned.</td>
</tr>
<tr>
<td>DIST n</td>
<td>Specify the number of words between matches on rule terms. The first match takes the starting position 1, while the last match falls at or before the specified number of words.</td>
</tr>
<tr>
<td>ORDDIST n</td>
<td>Specify the maximum word count between arguments. Otherwise this operator functions like the DIST operator above.</td>
</tr>
<tr>
<td>SENT</td>
<td>Specify a sentence delimiter. For example, ., ?, or !. A match is returned when all of the specified components are located in the sentence where the first match occurs.</td>
</tr>
<tr>
<td>SENT n</td>
<td>Specify a sentence delimiter that returns matches on multiple sentences.</td>
</tr>
<tr>
<td>SENTSTART n</td>
<td>Specify that matches are returned within n words from the start of the sentence.</td>
</tr>
<tr>
<td>SENTEND n</td>
<td>Specify that matches are returned within n words from the end of the sentence.</td>
</tr>
</tbody>
</table>

Specify a comma (,) and a space after a Boolean operator and enclose it in parentheses (()). For example, write (SENT, “NAME”).
4.5.1.A The ALIGNED Operator

Use the ALIGNED operator to refer to a term that matches two concepts within one rule. The presence of this operator enables SAS Concept Creation to determine what concept is an exact match for this term.

For example, the following rule specifies that if a term matches both the LOC and PERSON concepts, only a match for the PERSON concept is returned. Matches for the LOC concept, such as Washington, are returned as a match on the PERSON concept:

```
REMOVE_ITEM:ALIGNED, {"_c{LOC}"", "PERSON"}
```

4.5.1.B The AND Operator

Specify the AND operator for two or more arguments. A match only occurs if both arguments are present. For example, the following rule limits matches to Bills in documents where the word football also occurs:

```
CONCEPT_RULE:(AND, "_c({Bills}"", "football")
```

4.5.1.C The OR Operator

Specify the OR operator for two or more matched rule components. A match occurs for an input document if at least one of these components is present. For example, the following rule matches if either the token Barack or Obama is present in the text:

```
CONCEPT_RULE:(OR, "_c{Barack}"", "_c{Obama}"")
```

4.5.1.D The DIST_n Operator

Specify the maximum distance, in words, between located terms in order for a match to be returned for the selected concept. For example, if you want to specify that a match on the FULLNAME concept that appears within eight words of Harvard University is a match, write the following definition:

```
CONCEPT_RULE:(DIST_8, "_c{FULLNAME}"", "Harvard University")
```
4.5.1.E The ORDDIST_n Operator

Specify the order and distance between the terms or concepts that you want the selected concept to match. This operation locates and returns a match even when the usual contextual clues provided by adjacent matches are missing. For example, a match can be located when name and position do not follow one another. The following example returns a match on the POSITION concept when it is followed by the word Obama. This is true only if the term Obama is located within 12 words from a match on the POSITION concept.

CONCEPT_RULE:(ORDIST_12, "_c{POSITION}", "Obama")

4.5.1.F The SENT Operator

Locate matches in the same sentence. For example, write a definition that locates a match for the term Amazon when the token river also occurs within the same sentence:

CONCEPT_RULE:(SENT, "_c{Amazon}", "river")

4.5.1.G The SENT_n Operator

Locate matches that occur in the specified number of sentences. For example, write a definition that locates matches for the PER concept and the term he within two sentences:

PER concept: CLASSIFIER:Obama

CONCEPT_RULE:(SENT_2, "_c{PER}", "he")

4.5.1.H The SENTSTART_n Operator

Locate matches that occur within the specified number of words from the beginning of the sentence. For example, write a definition that locates matches for the term Democratic that occur within five words from the start of the sentence:

CONCEPT_RULE:(SENTSTART_5, "Democratic")
4.5.1.1 The SENTEND_n Operator

Locate matches that occur within the specified number of words from the end of the sentence. For example, write a definition that locates matches on a term in the PER concept if these matches occur within five words from the end of a sentence. The following example shows how the SENT_n, SENTSTART_n, and SENTEND_n qualifiers work together with a contextual operator and a classifier concept:

PER concept: CLASSIFIER:Obama

CONCEPT_RULE: (SENT_2, (SENTSTART_5, "Democratic"),
(SENTEND_5, "_c{PER}")

4.5.2 The Stemming Operator

When you add an @ symbol as a suffix to a word, you enable the expansion of the word into all of its forms. For example, if you append an @ sign to the word book, matches on books, booking, bookings, and so on, could be returned:

CONCEPT:book@

You can also append the @ sign followed by the letter N or the letter V to stem the word into all of its noun or verb forms, respectively. See the example below:

CONCEPT_RULE: (SENT, "_c{book@N}", "train@V")

Note: The @ symbol cannot be used in CLASSIFIER and REGEX definitions.

4.5.3 The PARA Operator

When you add the paragraph (PARA) operator, you specify that matches are located only within one paragraph. Determine the paragraph boundaries by typing one or more separator characters into the Paragraph Separator field in the Project Settings - Misc tab. When you specify more than one type of paragraph separator, use a comma (,) to identify each string as a paragraph separator. For example, you can type the following three strings to specify three different paragraph separators: \n\n,\t,<P>.
You can then write one of the following rules to specify that matches can be located only in the text bounded by one or more of these separators:

\[
\text{CONCEPT_RULE: (PARA, "_c\{SAS\}", (\text{OR, "statistics\", "TM"}))}
\]
\[
\text{CONCEPT_RULE: (PARA, "_c\{TM\}", (\text{OR, "Enterprise Miner"}))}
\]

4.5.4 The Operators for Coreference Resolution

Coreference resolution enables you to match pronouns and other words to the canonical forms that these terms reference. (This is also known as anaphora resolution.) When you use coreference resolution, you can specify the canonical form of the referencing word. For example, specify Barack, Obama, and President as referring terms for the canonical form Barack Obama. Alternatively, choose to make President Barack Obama the canonical form for these terms.

For more information about coreference operators, see Section 4.8 The Coreference Operators on page 114.

4.6 Some Rule Examples

4.6.1 The Classifier Rules

Specify a CLASSIFIER rule to match one string, or dictionary entry. These rules specify a string to match in an incoming document. Unlike classifier concepts, each CLASSIFIER line is one CLASSIFIER rule.

In this example, the FIRSTNAME concept consists of four CLASSIFIER rules.

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRSTNAME</td>
<td>CLASSIFIER:Sasha</td>
</tr>
<tr>
<td></td>
<td>CLASSIFIER:Malia</td>
</tr>
<tr>
<td></td>
<td>CLASSIFIER:Michelle</td>
</tr>
<tr>
<td></td>
<td>CLASSIFIER:Barack</td>
</tr>
</tbody>
</table>
This FIRSTNAME concept matches any of the names to the right of the CLASSIFIER specifications in incoming texts. For example, any occurrence of Sasha, Malia, Michelle, or Barack, is a match.

Figure 4-1 FIRSTNAME Matches in an Input Document

Note:
You can also specify a returned information string after a comma (,). In this case the returned information is the value for the matched concept. For more information, see *SAS Content Categorization Studio: User’s Guide*.

4.6.2 The Sequence of Classifier Entries

Write a CONCEPT rule to identify related information, whether these relationships are known beforehand. For example, you might want to identify all of the lakes in the state of Michigan, but not know the names of these lakes when you write the rule. The CONCEPT definition specifies the ordering of CLASSIFIER concepts. A match occurs when matching CLASSIFIER strings are located in the specified order in an input document.

In this example, the FULLNAME concept defines a relationship between the FIRSTNAME and LASTNAME concepts.

Example 4-2: Matching a Sequence of Dictionary Entries

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRSTNAME</td>
<td>CLASSIFIER:Ruby, CLASSIFIER:Nancy, CLASSIFIER:Barack</td>
</tr>
</tbody>
</table>
LASTNAME CLASSIFIER:William
CLASSIFIER:Pelosi
CLASSIFIER:Obama

FULLNAME
CONCEPT: FIRSTNAME LASTNAME

The FULLNAME concept uses the lists of terms that are specified by the
CLASSIFIER definitions in the FIRSTNAME and LASTNAME concepts. A
relationship between matches on these two concepts is specified by the
FULLNAME concept. For example, the terms Nancy Pelosi and Barack
Obama match in an input document for both the FIRSTNAME and the
LASTNAME concepts. These matches are also a match for the FULLNAME
concept rule.

![Figure 4-2 FULLNAME Concept Matches in an Input Document](image)

4.6.3 Context Matching

Write a C_CONCEPT rule to match text in an input document based on the
context of the matches. You can also use tokens with c_CONCEPT rules.

In this example, the c_CONCEPT rule specifies a relationship between three
CLASSIFIER concept rules and the token said.

Example 4-3: Matching within Context

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRSTNAME</td>
<td>CLASSIFIER:Barack</td>
</tr>
<tr>
<td>LASTNAME</td>
<td>CLASSIFIER:Obama</td>
</tr>
<tr>
<td>TITLE</td>
<td>CLASSIFIER:President</td>
</tr>
<tr>
<td>PERSON</td>
<td>C_CONCEPT:TITLE _c{FIRSTNAME LASTNAME} said</td>
</tr>
</tbody>
</table>
The PERSON concept locates matches for the FIRSTNAME and LASTNAME concepts when these matches occur in the context (_c) specified by the curly braces ({}). To return a match on the rule, the preceding matches that occur are preceded by a match on the TITLE concept and followed by the token said. In this example, Barack Obama matches on the PERSON concept.

Figure 4-3 A C_CONCEPT Match in an Input Document

4.6.4 Match within Context

Write a C_CONCEPT definition to locate and match a word that you do not know until a match on this definition is located. However, you do know the context where these matches occur. For example, you might want to locate, and return each duplicate instance of New Hampshire lake in an input text.

In this example, the C_CONCEPT definition specifies a relationship between two matching concepts and a word beginning with an uppercase letter.

Example 4-4: Using a Reference for a Match

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATERBODY</td>
<td>CLASSIFIER:Lake</td>
</tr>
<tr>
<td>STATE</td>
<td>CLASSIFIER:New Hampshire</td>
</tr>
<tr>
<td>LAKES C_CONCEPT:STATE WATERBODY _c(_cap)></td>
<td></td>
</tr>
</tbody>
</table>

The LAKES concept specifies the context for the matched terms:

- When a match on the STATE concept is followed by a match on the WATERBODY concept, a partial match is located. For example, New Hampshire Lake is a partial match for this rule.
- _c(_cap) specifies that the matches above also appear in the context of a word that begins with an uppercase letter. In this example, a match occurs on the word Winnipesaukee.
By default, all of the matches in an input document are returned. When the greater than (>) symbol is specified, every instance of the matched term in the document is returned as a match regardless of the context. In this example, two instances of Winnipesaukee are matched. The second match occurs because the greater than (>) symbol is specified.

Figure 4-4 C_CONCEPT Matches in an Input Document
4.6.5 Eliminating Partial Matches

Specify a **NO_BREAK** rule to prevent partial matches on phrases specified in another **CLASSIFIER** definition. This rule stipulates that a match can occur only if the entire string is located in an input document.

In this example, the PERSON concept specifies the **NO_BREAK** rule.

Example 4-5: Excluding Spaces

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>CLASSIFIER:President</td>
</tr>
<tr>
<td>FIRST</td>
<td>CLASSIFIER:Bill</td>
</tr>
<tr>
<td>CMPND</td>
<td>CLASSIFIER:Clinton Memorial Library</td>
</tr>
<tr>
<td>PERSON</td>
<td>C_CONCEPT:TITLE FIRST _c{_cap} NO_BREAK:_c{CMPND}</td>
</tr>
</tbody>
</table>

When you add the **NO_BREAK** rule to the PERSON concept definition, the token Clinton is not matched when it occurs in the phrase Clinton Memorial Library. However, the token Clinton is matched if it occurs in a string that is not specified in the CMPND rule. The **NO_BREAK** rule only applies to the CMPND rule.

Figure 4-5 NO_BREAK Rule Match in an Input Document

```
LITTLE ROCK (AP) -- Federal archivists at the Clinton Memorial Library are blocking the release of hundreds of pages of White House papers on questions that the former president approved, including documents on fugitive commodities trader Marc Rich.

The archivists' decision, based on guidance provided by former President Bill Clinton, that restricts the disclosure of advice he received from aides, prevents public scrutiny of documents that would shed light on how he decided which pardons to approve from among hundreds of requests.

Officials with the presidential campaign of Sen. Barack Obama, D-Ill., criticized Hillary Clinton this week for not doing more to see that records from her husband's administration are made public. "She's been reluctant to disclose information," Obama's chief strategist, David Axelrod, told reporters in a conference call in which he specifically cited the slow release of records from the Clinton Library. "Is she not willing to be open with (voters) on those issues now, why wouldn't she be open as president?"
```
4.6.6 Disambiguating Concepts

REMOVE_ITEM definitions differentiate between matches according to their context. This process of differentiation is called disambiguation. SAS Concept Creation enables you to specify this rule type when you refer to other concepts by writing a REMOVE_ITEM rule. Use this operation to eliminate a match on one rule, while returning a match on another rule.

In this example, the FOOTBALL concept definition includes the REMOVE_ITEM rule to prevent Giants football documents from matching the Giants baseball concept.

Example 4-6: Excluding Phrases

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASEBALL</td>
<td>CLASSIFIER:Giants</td>
</tr>
<tr>
<td>FOOTBALL</td>
<td>CLASSIFIER:Giants</td>
</tr>
<tr>
<td></td>
<td>REMOVE_ITEM:(ALIGNED, "_c{FOOTBALL}", "BASEBALLTEAM")</td>
</tr>
<tr>
<td>BASEBALLTEAM</td>
<td>C_CONCEPT:_c{BASEBALL} baseball team</td>
</tr>
</tbody>
</table>

Matches on the word *Giants* are returned for the BASEBALLTEAM concept when the token *Giants* is located in the specified context, Giants baseball team. In this case, this match is not a match for the FOOTBALL concept. The REMOVE_ITEM rule specifies that any match on both the BASEBALLTEAM and the FOOTBALL concepts only return matches for the BASEBALLTEAM concept.
Figure 4-6 Disambiguated Matches in Input Documents

The San Francisco Giants baseball team based in San Francisco, California, that currently play in the National League West Division. One of the oldest of the MLB teams, the Giants hold the honor of having won the most games of any team in the history of baseball[1]. The Giants have the most inductees in the Baseball Hall of Fame. The Giants played in New York through the 1957 season, after which they moved west to California to become the San Francisco Giants.
4.6.7 Exporting Classifiers

The **CONCEPT** rule enables you to export previously unspecified classifier terms to another concept using an acronym that is specified in a concept rule. For example, specify `eLN` for last name. Alternatively, you can type the full name of the concept such as `LASTNAME`.

To write a rule using an acronym, specify this acronym in the destination rule. After an acronym is specified in a **CONCEPT** rule, other rules can specify this acronym to list the exported term.

The **CLASSIFIER** rule that specifies the export feature enables you to match incomplete terms in ways that are similar to that of the greater than symbol. For more information, see Section 4.4.8 *The > Symbol* on page 71. However, you can use only the export operation with **CLASSIFIER** rules.

In the following example, the FULLNAME concept specifies a **CLASSIFIER** rule that exports matches on Sarkozy to the PERSON concept that has a **CONCEPT** rule specifying `eLN`. This rule also specifies its own matching string and the context for matches.

Example 4-7: Exporting Classifiers Example 1

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULLNAME</td>
<td>CLASSIFIER:[export=TITLE:president of France; eLN:Sarkozy]:Nicolas Sarkozy</td>
</tr>
<tr>
<td>PERSON</td>
<td>CONCEPT:eLN</td>
</tr>
</tbody>
</table>

The following matches occur in an input text that has the words *Nicolas Sarkozy* and *President of France* present somewhere in the same document:

- *President of France* is exported to, and matches, the TITLE concept.
- *Sarkozy* matches the PERSON concept. This match occurs because the acronym `eLN` is specified in the PERSON concept.
- *Nicolas Sarkozy* is returned as the match for the FULLNAME concept.
The export feature works on an internal, per-document basis. In this example, the terms President of France and Sarkozy only match the TITLE and PERSON concepts if Nicolas Sarkozy is present in the input document. The exported terms do not appear in the concept definitions when these terms are exported. The concepts do not have to exist in the taxonomy in order for the export rule to work.

The COMPANY concept specifies that a match on GM is exported to the ORGANIZATION concept.

Example 4-8: Exporting Classifiers Example 2

```plaintext
COMPANY CLASSIFIER: [export=ORGANIZATION: GM]:
General Motors
```

If an input text contains the string General Motors, the document matches the COMPANY concept. If this document also contains the word GM, the token GM is recognized as a match on the ORGANIZATION concept. However, if the word GM appears in a document without the term General Motors, GM is not returned as a match to the ORGANIZATION concept.
Figure 4-8 Export Rule Matches in Input Documents
4.6.8 Setting Priorities for Overlapping Matches

SAS Concept Creation enables you to override the Priority setting in the Data window for the selected concept. This feature works with CONCEPT_RULE definitions and coreference rules when you write a PRIORITY specification into a rule. For more information about coreference, see Section 4.8.7 Rank Coreference Definitions and Eliminate False Positives on page 119.

To use this feature, select Best Matches in the LITI tab of the Project Settings window.

By default, the Priority is set to 10 in the Data window. You can also increase the Priority setting in the Data window for all of the rules in one definition, or specify a PRIORITY in a definition. When you specify a PRIORITY in a rule, this setting overrides the Priority setting in the Data window for this rule only. The PRIORITY specification in a rule applies to the rule, and not to the entire definition. For this reason, any matches on this rule are prioritized over matches on any other rules in this definition, or in any other definitions.

These specifications are used to increase the relative rankings between concepts. Priorities are also used to prevent matches on more than one concept. You can also use this setting to prevent matches on terms that are used in different contexts. For example, if Roche is specified in the PERSON concept and also in the CORPORATE concept, priorities can be used to determine the appropriate match.

The HARBORVIEW concept has the highest PRIORITY setting. Documents that match this concept, and any of the other concepts shown, are matched to the HARBORVIEW concept.

Example 4-9: Setting Priorities

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>CLASSIFIER:New York</td>
</tr>
<tr>
<td>CITY</td>
<td>CLASSIFIER:City</td>
</tr>
<tr>
<td>HARBOR</td>
<td>CLASSIFIER:Harbor</td>
</tr>
<tr>
<td>CITYVIEW</td>
<td>C_CONCEPT:PRIORITY=20:_c{LOCATION CITY HARBOR}</td>
</tr>
<tr>
<td>HARBORVIEW</td>
<td>C_CONCEPT:PRIORITY=30:_c{LOCATION CITY _cap}</td>
</tr>
<tr>
<td>CITYLOCATION</td>
<td>C_CONCEPT:PRIORITY=25:_c{LOCATION CITY}</td>
</tr>
</tbody>
</table>
The following document is returned as a match to the HARBORVIEW concept. This is true even though *New York City Harbor* also matches the CITYVIEW concept and part of this term matches CITYLOCATION.

New York City Harbor provides a scenic view of the city at sunset.

Figure 4-9 A Prioritized Match in an Input Document
4.6.9 The Part-of-Speech Tags in a Definition

SAS Concept Creation enables you to use part-of-speech tags to locate matches. These tags are useful when you want to locate a wide range of matches without specifying a list of dictionary entries. Part-of-speech tags are particularly useful when you know the syntax, but not the wording of, the exact matches that you are seeking.

Note: Use the part-of-speech tags that are listed in Appendix B. Do not use the part-of-speech tags that are used with SAS Text Miner. The part-of-speech tags that are specified in your definitions are mapped to those in SAS Text Miner at the time of application.

A space is required before the colon (:) that precedes the part-of-speech tag. Specify a lowercase `s` in the `sep` part-of-speech tag, only.

Example 4-10: Using Part-of-Speech Tags

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE</td>
<td>CLASSIFIER: New York</td>
</tr>
<tr>
<td>TITLE</td>
<td>CLASSIFIER: Senator</td>
</tr>
<tr>
<td>SENATOR</td>
<td>C_CONCEPT: TITLE _c(_cap) :Prep</td>
</tr>
<tr>
<td></td>
<td>STATE :sep</td>
</tr>
</tbody>
</table>

In this example, Schumer is returned as a match for the SENATOR concept. This is true when a preposition (Prep) precedes a match on the CITY CLASSIFIER concept and a separator (sep) character follows this concept. See the following example:

According to Senator Schumer of New York, the following information is correct.

Figure 4-10 C_CONCEPT Rule with Part-of-speech Tag Match in an Input Document
4.6.10 The Regular Expressions in a Definition

Specify regular expressions to locate matches based on known patterns. For example, telephone numbers, street, and e-mail addresses are all defined using recognizable patterns. When you write regular expressions, you specify a range of letters or numbers inside square braces ([]) to form a regular expression rule. For example, type `a-z` or `0-9`. This syntax matches any ASCII character whose value is between `a` and `z` or between `0` and `9` inclusive.

If you add a plus (+) sign after the last brace, all lowercase letters are matched. For example, you could write `REGEX:[a-z]+`.

You can also add either the `%` symbol or write out the word `percent`. If you perform either of these operations after you add the plus (+) symbol, all of the instances of percentages in the input document are returned.

In the following example, the `NUMBER` concept has two `REGEX` rules. The two specifications for percent ensure wider definition coverage.

Example 4-11: Specifying Regular Expressions

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER</td>
<td><code>REGEX:[0-9]+%</code></td>
</tr>
<tr>
<td>NUMBER</td>
<td><code>REGEX:[0-9]+ percent</code></td>
</tr>
</tbody>
</table>

This regular expression definition specifies that numbers followed by either percentage sign match. For example, matches on both 99%, and 50 percent are both returned.

Figure 4-11 REGEX Rule Matches in an Input Document

![Image showing REGEX rule matches in an input document]

Notes: For more information, see Appendix A Regex Syntax and Part-of-Speech.
You can also specify a returned information string after a comma (,). In this case, the returned information is the value for the matched concept.

4.6.11 The Sentence Operator in a Definition

By default, SAS Concept Creation returns matches within the entire text of an input document. Limit matches to one sentence by writing the `SENT` operator into a `CONCEPT_RULE`.

In the following example, the VACATIONLOCATION concept specifies that a match is returned only when all of the specified elements are located in the context of a sentence.

Example 4-12: Specifying a Sentence Operator

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACATION</td>
<td>CLASSIFIER:Disney World</td>
</tr>
<tr>
<td>LOCATION</td>
<td>CLASSIFIER:Florida</td>
</tr>
<tr>
<td>VACATIONLOCATION</td>
<td>CONCEPT_RULE: (SENT, "_c{VACATION :Prep _cap :sep LOCATION}", "vacation")</td>
</tr>
</tbody>
</table>

The VACATIONLOCATION definition uses the `CONCEPT_RULE` to identify a match, when all of the specified components occur within one sentence. These matches occur when a preposition follows a VACATION concept match, a word that begins with an uppercase letter, a separator character, and a match on the LOCATION concept. If this match is followed by the token `vacation`, a match is returned for the VACATIONLOCATION concept.
Figure 4-12 CLASSIFIER and CONCEPT_RULE Matches In input documents

![Diagram showing classification and concept rule matches in input documents.](Image)
4.6.12 The Paragraph Operator in a Definition

By default, SAS Concept Creation looks for matches within the entire text of an input document. Limit matches to one paragraph by writing the `PARA` operator into the `CONCEPT_RULE`.

Before you specify your concept definitions, specify the paragraph separator that is used in your documents. For example, specify `<p>` for `.html` documents. If you are using multiple types of documents, list the paragraph separator for each type.

To specify the paragraph separator, complete these steps:

1. Select **Project --> Settings**. The Project Settings window appears.

2. Type the paragraph separators for your input documents into the **Paragraph Separator** field. For example, type `

, 		,<P>.

3. Click **OK**.

After you specify your paragraph separators, you can write the rules for each concept.
The \texttt{PARA} operator specifies that a match is returned only when all of the specified elements are located in the context of a paragraph. Each paragraph is delineated by one of these paragraph markers.

Example 4-13: Specifying Paragraph Operators

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPANYPRODS</td>
<td>\texttt{CONCEPT_RULE:(PARA, "c{data}"}, (OR, "date", "engines"))</td>
</tr>
<tr>
<td></td>
<td>\texttt{CONCEPT_RULE:(PARA, "c{twitter}"}, (OR, "feeds"))</td>
</tr>
</tbody>
</table>

The COMPANYPRODS definition uses two \texttt{CONCEPT_RULE} definitions to identify matches within two different paragraphs:

In the first case, a match occurs when \textit{data} and either \textit{date} or \textit{engines} appear in the same paragraph.

In the second case, a match occurs when either \textit{twitter} or \textit{feeds} occur within the same paragraph.

Figure 4-13 CONCEPT_RULE and Paragraph Matches
4.6.13 The DIST Operator in a Definition

Specify the maximum number of words between matches, instead of using the default behavior to search the entire document. The distance \(\text{DIST}_n \) operator for CONCEPT_RULE enables you to specify the maximum number of words that can occur between matches on the first and the last term. However, this operator does not specify the ordering of the matches.

The AFRICANEWS definition specifies that a match is returned if there are no more than 11 words between a match on the LASTNAME and LOCATION concepts.

Example 4-14: Specifying the DIST Operator

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASTNAME</td>
<td>CLASSIFIER:Zuma</td>
</tr>
<tr>
<td>POSITION</td>
<td>CLASSIFIER:president</td>
</tr>
<tr>
<td>LOCATION</td>
<td>CLASSIFIER:South Africa</td>
</tr>
</tbody>
</table>
| AFRICANEWS | CONCEPT_RULE:PRIORITY=15:(DIST_11,
| | "c\{LASTNAME\}", "POSITION"," LOCATION") |

The AFRICANEWS concept uses the DIST operator to specify a distance of 11 words between the location of a match on the LASTNAME concept and the LOCATION concept. This match is returned if there is also a match on the POSITION concept within these 11 words. In addition, this CONCEPT_RULE overrides the default Priority setting in the Data window. If there were other rules in this definition, these rules would keep the same priority setting specified in the Data window.
Figure 4-14 CONCEPT_RULE and CLASSIFIER Matches in Input Documents
4.6.14 The ORDDIST Operator in a Definition

The ORDDIST_n operator is similar to the DIST operator. However, the ORDDIST operator specifies the order and distance requirements that are necessary to return a match on the CONCEPT RULE definition.

The CONCEPT RULE for each LAWFIRMS concept places the ending curly brace (}) in a different location to return three different results from the same input document.

Example 4-15: Exporting Classifiers

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCW</td>
<td>REGEX:[a-z]+</td>
</tr>
<tr>
<td>ORGTYPE</td>
<td>CLASSIFIER:firm</td>
</tr>
<tr>
<td></td>
<td>CLASSIFIER:firms</td>
</tr>
<tr>
<td>LAWFIRMS1</td>
<td>CONCEPT_RULE:(ORDDIST_15, “_c{_cap} :sep _cap :sep and _cap”, “LCW”, “ORGTYPE”)</td>
</tr>
</tbody>
</table>

This CONCEPT RULE states that the following instances return a match if the matches occur in the specified order and within a distance of 15 words. A word begins with an uppercase letter and is followed by a separator character and an uppercase letter. This match is followed by a separator character, the token and, and another word beginning with an uppercase letter. The match is not returned unless the LCW REGEX rule is also matched and a match on the ORGTYPE concept also occurs within 15 words.

When the closing curly brace (}) is moved for the LAWFIRMS2 and LAWFIRMS3 concepts, the following matches are returned.
You can also change the default **Priority** setting of 10 in the Data window for any of the three concept definitions shown above.

Display 4-1 Project Settings - LITI Settings

Use the Project Settings to affect how matches are returned:

- Select **All matches** and all of the matches for LAWFIRMS1, LAWFIRMS2, and LAWFIRMS3 above are returned. In this case,
because the greater than (>) symbol does not end any of the CONCEPT_RULE definitions, only one match is returned for each concept.

- Select **Longest** and a match on LAWFIRMS3, only, is returned.

- Select **Best** and a match LAWFIRMS3 is returned. This is true unless you specify a higher priority in either the Data window or within a concept definition.

See the example shown below that applies to both the **Longest** and **Best** selections:

Figure 4-16 Best Matches Screen

- Select **Return all identical matches**, if either **Longest** or **Best** is matched, and all of the instances with the same priority or length are returned.

- The **Remove duplicate facts** operation does not apply. No facts can be specified for CONCEPT_RULE definitions.
4.7 Locating Facts

4.7.1 Overview of Facts

Facts, or predicates, refer to terms that match at least two concepts. Facts consist of at least two arguments. For example, *Harry Truman was president of the United States* is a fact based on three arguments. These arguments are defined by the following concepts NAME, TITLE, and COUNTRY. The following matches *Harry Truman*, *president*, and *United States* are returned to these concepts. By specifying this type of rule, you also locate similar matches in input documents without rewriting your rules.

Both *SEQUENCE* and *PREDICATE RULES* extract facts. *SEQUENCE* rules specify the order of the matches. *PREDICATE RULES* use Boolean operators, but do not specify the ordering of any matches. For more information, see Section 4.7.2 *The Predicate Sequence Example* on page 107 and Section 4.7.3 *The Predicate Examples* on page 109.

4.7.2 The Predicate Sequence Example

Identify previously unknown relationships, otherwise known as facts or events, in input documents. Predicate sequence, or *SEQUENCE*, rules extract the meaningful relationships between matched concepts and tokens. For example, identify the names and positions that various managers hold within a company. Locate this information even when these relationships are unknown to you, or when the concepts do not directly follow one another.

Predicates are also defined as facts or events. The terms are interchangeable. Facts are always defined by at least two concepts or tokens and one or more parts of speech. The term *sequence* is used to specify the necessary ordering of the concepts and semantic terms that define these facts.

When you specify a predicate sequence definition, you define not only the concepts, but also the arguments that are used with these concepts. Use this rule to also specify the sequence of these entities and any appropriate parts of speech.
Example 4-16: Writing a Predicate Sequence Definition

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRUG_COMPANY</td>
<td>CLASSIFIER:Wyeth</td>
</tr>
<tr>
<td>DRUG_MANUFACTURER</td>
<td>SEQUENCE:{(drug,manufacturer): _drug{ _cap } _w _w _manufacturer { DRUG_COMPANY } _w _w treatment}</td>
</tr>
</tbody>
</table>

This **SEQUENCE** rule takes two arguments, **drug** and **manufacturer**. To locate the **_drug** predicate, locate a word that begins with an uppercase letter that is followed by two tokens. To match the **_drug** predicate, locate the **DRUG_COMPANY** concept followed by two tokens and the word **treatment**. However, only the matches within and between the beginning and ending curly braces (**{}**) are returned as a match for this concept.

For example, the fact *BeneFIX produced by Wyeth* is returned as a match to the **DRUG_MANUFACTURER** **SEQUENCE** concept along with the matches on the arguments for this fact. You can see the fact matches in the Document window for this testing document. You can also click on one of the returned facts to access a SAS Concept Creation status screen. This screen lists the matching arguments for the selected fact.

Figure 4-17 Argument Matches in an Input Document
4.7.3 The Predicate Examples

Like SEQUENCE rules, PREDICATE RULES locate facts and their supporting arguments. Unlike SEQUENCE rules, PREDICATE RULES do not specify the matching order. Instead, PREDICATE RULES use Boolean operators to increase the matching precision within the document. For more information, see Section 4.5 The Operators on page 79.

Like the preceding SEQUENCE rule, this PREDICATE RULE defines two arguments, drug and manufacturer. However, the DRUG_MANUFACTURER PREDICATE RULE uses the DIST operator. This operator specifies that a match is returned when the DrugName concept is located within 20 words of a match on the DRUG_COMPANY concept.

Example 4-17: Viewing a PREDICATE RULE

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrugName</td>
<td>CLASSIFIER: Enbrel</td>
</tr>
<tr>
<td>DRUG_COMPANY</td>
<td>CLASSIFIER: Amgen</td>
</tr>
<tr>
<td></td>
<td>CLASSIFIER: Wyeth</td>
</tr>
<tr>
<td>DRUG_MANUFACTURER</td>
<td>PREDICATE_RULE:</td>
</tr>
<tr>
<td></td>
<td>(drug, manufacturer):</td>
</tr>
<tr>
<td></td>
<td>(DIST_20, "_drug{ DrugName }",</td>
</tr>
<tr>
<td></td>
<td>"_manufacturer{ DRUG_COMPANY }",</td>
</tr>
<tr>
<td></td>
<td>"make")</td>
</tr>
</tbody>
</table>

This PREDICATE RULE defines two arguments, drug and manufacturer. Inside the parentheses that follow each argument is the concept that identifies a match. The DIST operator specifies that matches on the DrugName concept can occur within 20 words of a match on the DRUG_COMPANY concept. In addition, a match on the DRUG_MANUFACTURER concept only occurs when the token make is located. Although no other tokens are specified for this PREDICATE RULE, all of the words located between matches on the concepts DrugName and DRUG_COMPANY are returned as a matching phrase.

However, because a PREDICATE RULE is specified and not a SEQUENCE rule, these matches can occur in any order.

For PREDICATE RULES, like other definitions, multiple matches can occur in one document, and multiple facts can be returned.
The results shown above are returned when the default setting, **All matches**, is selected under the **Overlapping Concept Matches** heading in the Project Settings - LITI dialog box.

Click ➤ and in the Document window to see each of the following matches:

Amgen and Wyeth, the drug companies that make Enbrel

This fact matches the word *Wyeth* as a token. It is not a match on the *DrugName* concept.

Wyeth, the drug companies that make Enbrel

This is the shortest of the two matches that begin with a match on *Wyeth* in the *DRUG_COMPANY* concept and end with *Enbrel* as a match on the *DrugName* concept. Also see the following bulleted point.

Wyeth, the drug companies that make Enbrel, wrote a letter to doctors in March to tell them about Enbrel

This is the longest of the two matches that begin with a match on *Wyeth* in the *DRUG_COMPANY* concept and end with *Enbrel* as a match on the *DrugName* concept. In this case, the first instance of *Enbrel* is matched as a token and not as a match on the *DrugName* concept. Also see the bulleted point above.

This match is returned when you select **Longest** under the **Overlapping Concept Matches** heading in the Project Settings - LITI dialog box.

These results are also returned when you select **Best**. This statement is true unless you set a **Priority** specification in the **Definition** tab or overwrite the default setting of 10 in the Data window for this concept.
To return all of the instances of the longest fact matches, select **Return all identical matches** in the Project Settings - LITI dialog box. This operation can only be selected if you have also selected either **Longest** or **Best** under the **Overlapping Concept Matches** heading.
Figure 4-20 Several Instances of a Match in an Input Document
- In the figure below, **Remove duplicate facts** is added to the selections in the figure above. New text is added to the testing document to illustrate the functionality of these interrelated settings. Each instance of a match that is the longest for any of the overlapping matches, but not a duplicate fact, is returned as a match to the selected concept.

Figure 4-21 Longest, Unique Matches in an Input Document

All three of these facts are highlighted, and initially appear as a single match to the **PREDICATE_RULE** definition for the DRUG_MANUFACTURER concept. However, there are two sets of arguments, because there are two matches on the DRUG_COMPANY concept and one match on the DrugName concept. It is these matches that define the beginning and end of each fact.

Figure 4-22 Facts and Arguments in an Input Document
4.8 The Coreference Operators

4.8.1 Overview of Coreference

Use coreference operators to write rules that return the canonical form of a word along with the referring term. Coreference operators are often used with pronouns, or other words that are called referring terms. (This is also known as anaphora resolution.) The canonical form of a word can be any term that you choose. For example, return either Barack Obama or President Barack Obama as a match for each instance of the referring term Barack in an input document. Another alternative is to choose to return President Barack Obama as the canonical form for each match on the pronoun he.

When the tested document is displayed in the Document tab, both the canonical word form and the matching term are highlighted.

Use the coreference operator (_ref) with a CONCEPT, C_CONCEPT, or a CONCEPT_RULE rule. If you want to use a coreference qualifier in a CLASSIFIER rule, use _coref instead of _ref.

Note: The Overlapping Concept Matches selections in the LITI tab of the Project Settings window do not affect matches made by the export, forward, and preceding operators.

4.8.2 How to Use the Coreference Operator

Use the coreference operator (_ref) to link a matched string with its canonical form in an input document.

C_CONCEPT:{Jim Goodnight} said _ref{he}

In the example above, the canonical form Jim Goodnight is returned each time the matching term, he is located. This is true when the phrase Jim Goodnight said he is located in the text.

The _c operator is used in a C_CONCEPT rule that specifies the canonical form for the coreference specified by the _ref operator.
Example 4-18: C_CONCEPT Rule with the _ref Operator

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNOUNGROUP</td>
<td>CLASSIFIER:D
emocratic leaders</td>
</tr>
<tr>
<td>PERSON</td>
<td>C_CONCEPT: c{PLNOUNGROUP} said _ref{they}</td>
</tr>
</tbody>
</table>

When this definition is matched in an input document, a match on the referring term that follows the _ref operator returns the canonical form. The canonical form is specified in the bracketed term that follows the context operator (_c). This form is identified in the PLNOUNGROUP concept. In this example, the word that they references its specified canonical form Democratic leaders.

Figure 4-23 _ref Match in an Input Document

In this example, Democratic leaders and they are returned as matches in this input document. However, if the document contained other instances of the word they, these instances are not matched. You can see these matches in the Document window for this testing document.

4.8.3 How to Use the _ref Operator with the > Symbol

The greater than symbol (>) locates multiple instances of a match specified by the bracketed ({ }) coreference operator (_ref) in an input document. For example, you might want to return the canonical form for each matched instance of a first name. In this case, you could specify a rule that identifies any references to Jim as a reference to Jim Goodnight CEO of SAS Institute. For more information, see Section 4.4.8 The > Symbol on page 71.
4.8.4 How to Use the _ref Operator with the Forward or Backward Symbols

4.8.4.A Limiting Matches to Those That Follow or Precede a Coreference Match

Use the forward (_F) and the preceding (_P) symbols to restrict coreference matches in an input document. When you specify these operators, only the matches that follow or precede the match for the rule, respectively, are returned.

Use these symbols when you want to return all of the matches instead of the one match that follows the rule (coref operator alone). Unlike the greater than (>) symbol, all of the returned matches can occur only before or after the coreference rule match.

4.8.4.B Matching with the Forward Symbol

Use the forward symbol (_F) to return all of the matches that follow a coreference rule match.

The example below shows a concept with a concept rule with a forward symbol. The rule specifies that all of the instances of matches on the coreference term that follow the coreference match are returned as matches. (Any matches that precede the match on the coreference term are not returned.)

Example 4-19: Two C_CONCEPT Rules with the _F Symbol

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSON</td>
<td>CLASSIFIER: Eliza Dolittle</td>
</tr>
<tr>
<td>TITLE</td>
<td>CLASSIFIER: sales director</td>
</tr>
<tr>
<td>PERSONCOREF</td>
<td>C_CONCEPT: _c{PERSON} as _ref{TITLE}_F</td>
</tr>
</tbody>
</table>

In this example, a match on the term Eliza Dolittle as sales director matches. Instances of the term sales director that follow are also returned as matches.
4.8.4.C Matching with the Preceding Symbol

Use the preceding symbol (_P) to return matches on all instances of a coreference match that occur before the coreference rule match.

The example above shows a concept with a rule that specifies a preceding symbol. All instances of matches on the TITLE concept that are immediately followed by a match on the PERSON concept are returned as matches. (Any matches that follow the match on the coreference term are not returned.)

Example 4-20: Two C_CONCEPT Rules with the _P Symbol

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERSON</td>
<td>CLASSIFIER:Obama</td>
</tr>
<tr>
<td>TITLE</td>
<td>CLASSIFIER:President</td>
</tr>
<tr>
<td>PERSONCOREF</td>
<td>C_CONCEPT:_ref(TITLE)_P _c{PERSON}</td>
</tr>
</tbody>
</table>

In the example above, all instances of a match on the TITLE concept that precede a match on the TITLE and PERSON concepts are matched in an input document.
4.8.5 Coreference in a Classifier Definition Example

You can use the coreference operator (\texttt{coref}) to link a match in a coreference definition to its canonical form. For example, you might want to return \textit{Barack Obama} for a match on any instance of the word \textit{president} in an input document. The \texttt{coref} qualifier is used with classifier definitions, only.

The example above shows a classifier definition that links matches on the \texttt{coref} qualifier to its canonical form.

\begin{verbatim}
Example 4-21: A Classifier Concept with a Coreference Qualifier

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULLNAME</td>
<td>CLASSIFIER: [coref=Clinton,William Clinton;TITLE:President]:Bill Clinton</td>
</tr>
</tbody>
</table>
\end{verbatim}

In the example above, if the canonical term \textit{Bill Clinton} is matched once in an input document, all instances of matches on the \texttt{coref} qualifier terms also return matches. In this example, \textit{Clinton}, \textit{William Clinton}, and \textit{President} all return matches. The canonical form for each matched term is \textit{Bill Clinton}.

4.8.6 Assigning New Concept Names to Coreference Matches

You can assign a new concept name for a match on a term specified by the \texttt{_ref} operator. In this case, any instances of this match are output in SAS Content Categorization Server as a match on this new concept. You can also write a rule that specifies that a match is assigned to an existing concept. For example, you could assign matches on the names of an organization to an existing CLASSIFIER definition. In both cases, any matches on the complete definition are returned in the specified canonical form.

Specify a new, or an existing, concept name in square brackets (\texttt{[]}) that are preceded by the \texttt{_ref} operator. For example, specify \texttt{_ref [COMPANY]}.

In the example above, if a sequence of two or more words that begins with an uppercase letter is followed by \textit{Inc.}, a match is returned for the ORGREF concept. A sequence of two words that begin with uppercase characters is returned as a match for the concept ORGNAME. The canonical form is returned as a match for the ORGREF concept.
Example 4-22: Assigning a New Concept Name to a Coreference Match

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORGNAME</td>
<td>CLASSIFIER:SAS Institute Inc.</td>
</tr>
<tr>
<td>ORGREF</td>
<td>CONCEPT: _ref[ORGNAME] } (_ref (_cap)> _cap}> Inc.</td>
</tr>
</tbody>
</table>

In the example above, a match on the ORGNAME concept is returned when there is a match on the remainder of the ORGREF rule. For example:

Figure 4-26 Match Returned to Another Concept

4.8.7 Rank Coreference Definitions and Eliminate False Positives

You can use the PRIORITY specification to make matches on one coreference rule rank higher than other rules. Specify a priority to rank matches on the concept that uses coreference higher than other matched concepts.

You can choose to specify a priority for a concept match that uses the _ref operator with the export symbol. You can also use the PRIORITY specification to eliminate false positives. For more information about priorities, see Section 4.6.8 Setting Priorities for Overlapping Matches on page 94.

In this example, if Samuel A. Alito Jr. is present once in the document, every match on Alito returns his full name. The canonical form is Samuel A. Alito Jr. and the referring term is Alito.

Example 4-23: C_CONCEPT Rule with the Export Symbol

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST</td>
<td>CLASSIFIER: Samuel</td>
</tr>
</tbody>
</table>
In the example above, all instances of *Alito* are matched in an input document when all of the following conditions are met. A match on a first name listed in the FIRST classifier concept is located. This match is followed by a match on an initial specified in the INITIAL concept. When a word beginning with an uppercase letter follows this match, it is the coreference that is matched by all instances that occur in the document. Finally, a match on the PERSUFFIX concept is located.

In the example shown below, all instances of *Alito* are returned as a match. The PERSON concept also has a priority setting of 30. This means that matches on the PERSON concept rank higher than the matches that are also returned to the FIRST and INITIAL definitions.

Figure 4-27 _ref and Export Symbol Matches
1. Specify default fields in the rules.
2. Specify field names in the rules.
3. Combine both operations.

By default, text is extracted from all of the fields before matching takes place. If you want to restrict matching to specific fields, you can specify these fields in the XML Default Field of the Misc tab in the Project Settings interface.

You can specify one XML field with the CLASSIFIER, CONCEPT, C_CONCEPT, SEQUENCE, NO_BREAK, and REGEX rules. Specify the field name at the beginning of the pattern to be matched. For example, specify the body field as the location where all matches occur.

Note: Matches are returned only if the matches are located within, and not across, fields.

4.9.2 The SEQUENCE Rule with an XML Field Example

When you write a SEQUENCE rule, all of the individual tokens or concepts are matched. These matches occur if all of the tokens and concepts are present within the specified field. SEQUENCE rules do not enable matching across fields.

The XML field is preceded by an underscore (_) and the concepts to be matched follow. In the SEQUENCE rule example above, there are three arguments. A match occurs when each of these arguments is matched in the body field of an input XML document.

Example 4-24: Assigning a New Concept Name to a Coreference Match

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORG</td>
<td>CLASSIFIER:SAS Institute, CLASSIFIER:Teragram</td>
</tr>
<tr>
<td>LOCATION</td>
<td>CLASSIFIER:North Carolina</td>
</tr>
<tr>
<td>ACQUISITIONS</td>
<td>SEQUENCE:(org1,org2,loc):_body: acquisition of _org1{ ORG } by _org2{ ORG } of _loc{LOCATION}</td>
</tr>
</tbody>
</table>
A match for the ACQUISITIONS concept occurs when the term *acquisition of* occurs followed by two matches on the ORG concept separated by the word *by*. This match is complete when it is followed by a match on the LOCATION concept and all of these matches occur in the body field.

Figure 4-28 Match Located in an XML Field

4.9.3 Matching More than One XML Field

If you choose to use a PREDICATE_RULE, CONCEPT_RULE, or a REMOVE_ITEM definition, you can specify a separate field for each argument.

Each XML field is preceded by an underscore (_). For example, `_title` and `_p`. The specified matches are enclosed in quotation marks (""). See the following example:

Example 4-25: Matching Two XML Fields

<table>
<thead>
<tr>
<th>Concept Name</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP</td>
<td>CLASSIFIER:Trio</td>
</tr>
<tr>
<td>ORGNAME</td>
<td>CLASSIFIER:ABC Inc.</td>
</tr>
<tr>
<td></td>
<td>CLASSIFIER:Sue Ann Kahn</td>
</tr>
<tr>
<td>COMPOSERS</td>
<td>PREDICATE_RULE: (inst1,org2):(AND, _title:"_inst1{ GROUP }",_p:"by _org2{ ORGNAME }")</td>
</tr>
</tbody>
</table>

A match for the COMPOSERS concept occurs when there is a match in the title field on the GROUP concept. The match is complete when there is also match on the p (paragraph) field on the word *by* followed by a match on the ORGNAME concept. (The field name is preceded by an underscore [_])
4.10 Writing Multiple Rules for One Definition

Write multiple rules for each concept. This feature increases the recall of your definitions by enabling you to locate more matches as well as matches based on different specifications.

For example, add the \texttt{SEQUENCE} rule shown in Example 4-16 on page 108 to the definition of the DRUG_MANUFACTURER concept to locate matches in documents that might not otherwise match.

4.11 Troubleshooting Your Rules

If you do not obtain the results that you expect, or if SAS Concept Creation returns syntax error messages, troubleshoot your rules.

To troubleshoot your rules, use the following list:

- \textbf{Case sensitivity}: Have you specified your rules to match the upper- and lowercase words that you want to match?

- \texttt{sep} part-of-speech: Did you remember to specify \texttt{sep} beginning with a lowercase \texttt{s}?

- \textbf{Project Settings}: Are these settings returning the best results?

- \textbf{Rule type}: Did you specify the correct rule type using all uppercase letters?

- \textbf{Spaces}: Did you remember to use spaces before the colon (:) that precedes part-of-speech tags?

- \textbf{Curly braces} (\{\}): Did you surround the term that you want to return with curly braces?

- \textbf{Square braces} ([\]): Did you surround the new, or other, concept to be matched with square braces when you wrote a coreference rule?

- \textbf{Syntax}: Have you checked the rule syntax using the \textbf{Syntax Check} button in the \textbf{Definition} tab before compiling your concepts? Is this syntax appropriate for the results that you are trying to return, or is there a better syntax or rule type?
Part 2: Testing

- Chapter 5: Assembling Testing Sets on page 127
- Chapter 6: Testing the Concept Definitions on page 143
Chapter: 5
Assembling Testing Sets

- Overview of Assembling Testing Sets
- Creating Testing Folders
- Collecting Test Files
- Import Test Files
- Delete Testing Files

5.1 Overview of Assembling Testing Sets

You gather groups of documents, or testing sets, for the purposes of testing the concept definitions that you develop in SAS Concept Creation for SAS Text Miner (SAS Concept Creation). These testing documents are used to see whether you are obtaining the results that you expect. Test your concepts before they are applied as custom entities by SAS Text Miner.

To set up a directory of testing documents, choose texts for each concept. These are the documents that you expect to match the definition for that concept. Place each set of these texts into a testing folder. Create one folder for each taxonomy node.

Testing documents help to determine whether, and why, a concept definition should be changed so that the rule correctly extracts results. For this reason, the test files that together comprise the testing set, or sets, of documents are integral to developing an accurate SAS Concept Creation project. The process of testing and refining rules can be used reiteratively until you obtain a required set of definitions.

After you test the testing directory, set up a central repository that is one folder of testing documents. Place documents that are similar to the real world texts that you plan to input to SAS Text Miner into this folder. These documents are not matched to individual concepts. For this reason, the central repository is a large group of documents that test the entire taxonomy. This folder can also
contain test documents that should fail but might not. For example, if you want to match *capital cities*, you might include texts that have the word *capital* meaning uppercase letter in your failing folder.

Before you test your concept definitions, use the directions in this chapter to develop each of the types of testing directories that you want to use. An overview of the process detailed in this chapter is provided below:

1. Create the directory of testing folders for individual concepts that matches the taxonomy.
2. Collect 5 - 10 documents that you expect to match each concept.
3. Place these testing documents into the folders that you created.
4. Set the paths to these files.

You can also automate some of these steps. For example, you can create a top level testing folder and use the **Create Folders** check box and the **Propagate** button in the Data window. These operations simultaneously create testing subdirectories and set the paths to these directories. For more information, see Section 5.2.1 *Create a Testing Directory While You Set Paths* below. Read this chapter before you decide how to create your testing folders.

5.2 Creating Testing Folders

5.2.1 Create a Testing Directory While You Set Paths

Use SAS Concept Creation to automatically develop the testing directory while setting the testing paths to these folders. This operation saves time and ensures that an exact replication of the taxonomy displayed in the Taxonomy window is copied for the testing documents.

Hint: If you rename a concept, you might also want to change the name of the testing folder.

To define the testing taxonomy while simultaneously setting the testing paths, complete these steps:
1. Access the folder for your project and create a new file for the testing documents. Name this folder. For example, type TestingDocs into the name space for this directory.

2. Double-click the testing folder and create a new folder named Top to match the Top folder in the Taxonomy window. This folder is used to automatically propagate the testing paths to each of the concepts and their children in your taxonomy.
3. Select the **Top** folder in the Taxonomy window.

Note: If you click another node, SAS Concept Creation creates only subdirectories for the selected concept node.

4. Select **Create Folders** under the **Propagate Options** heading in the Data window.
5. Click to the right of the Testing Path field and the Select a Directory window appears.

6. Select the Top directory where SAS Concept Creation creates the testing taxonomy.

7. Click OK.

8. Click Propagate in the Data tab. A SAS Concept Creation confirmation window appears.

9. Click OK.
A directory structure that is identical to the taxonomy is created inside the Top folder.
10. Click some of the nodes in the Taxonomy window to see that each Testing Path field displays the path to the matching testing directory. See the following example:

Unless each folder in the testing directory is populated with your testing documents, you cannot test your concepts. You can also choose to manually add additional documents to your testing folders.
5.2.2 Create and Set a Path to the Central Repository

A central repository of testing documents contains a set of texts that are not selected to match individual concepts. For this reason, when you test the central repository, you gain a realistic approximation of the results that you might obtain for real-world documents.

Use a central repository of testing documents for the following purposes:

- This testing operation is typically the final testing stage and should replicate real-world results.
- These documents can be used to populate the testing taxonomy.
- This test operation can be a temporary substitute for a testing directory structure.

To create and set a path to the central repository, complete these steps:

1. Create a single folder that is the central repository in the project directory on your hard drive. For example, create Central_Repository.
2. Select the Top folder in the Taxonomy window.

3. Select Identical Path under the Propagate Options heading in the Data window.

4. Click to the right of the Testing Path field and the Select a Directory window appears.

5. Select the central repository. For example, select Central_Repository.
6. Click **OK**.

7. Click **Propagate** in the **Data** tab. A SAS Concept Creation confirmation window appears.

![SAS Concept Creation Window](image)

8. Click **OK**. See the documents loaded into the **Testing** window.

![Testing Window](image)

9. (Optional) Click some of the concept nodes and you can see that each node displays the same path to the central repository in the Data window.

You can also choose to manually add additional documents to the central repository.
5.2.3 Manually Create a Testing Folder and Set a Path for a Newly Created Concept

If you add one or more concepts to the taxonomy, after you set up the testing directory, you can add a matching testing folder to the testing taxonomy. Manually set the path to this folder.

To add a test folder and set the path, complete these steps:

1. Access the testing directory. Create and name a new folder for the concept that you added to the taxonomy.

2. Enter the path to this folder into the **Testing Path** field of the Data window. Do not select either of the check boxes under **Propagate Options**.

3. Click **Propagate**. A SAS Concept Creation confirmation window appears.

4. Click **OK**.

5.3 Collecting Test Files

After you create repositories and set the paths to these directories, assemble different sets of testing documents. Choose texts that should be matched to the specific concepts that comprise your overall taxonomy structure.

The SAS Concept Creation testing process uses the testing taxonomy to determine the precision and recall of your concept extractor. Precision measures the relevancy of the matched documents, while recall measures whether all of the texts that should be returned are matched. For these reasons, each concept definition should be broad enough to include all of the texts that
you expect to match. These rules should also exclude any documents that do not belong to the selected concept.

Use the following steps to assemble the different types of texts required to test your taxonomy. In each case, choose documents of the types that are input to SAS Text Miner. For example, select .html, .xml, .sgml, .pdf, and .txt documents.

To assemble documents for individual concepts and for the central repository, complete these steps:

1. Select 10 or more documents that are matches for each concept in your taxonomy. These texts should have varying degrees of complexity levels for the definitions that you plan to match.

2. Copy and paste each group of documents into the testing folder named for the concept that they are expected to match. For more information, see Section 6.3 Batch Testing on page 146.

3. Collect a group of documents that include texts that are similar to the types of documents that are used when this application is applied in real time.

4. Copy and paste this group of texts into the central repository that you created. When you choose to use a central repository, you can see whether your documents match more than one concept and if so, why. For more information, see Section 6.5 Test a Central Repository on page 157.
5.4 Import Test Files

You can add additional testing files to the Testing window for a selected concept when you use the import test files operation. Use this operation with the central repository or any other testing folder.

Note: Before you use the steps below, make sure that the Testing window is populated with some files.

To import test files, complete these steps:

1. Select any concept and click the **Testing** tab. The **Test File** window displays the testing files that are found in the matched testing folder.
2. Select **Testing --> Import Test Files** and the Open window appears.

![Open window](image)

3. Use Windows commands to select the test document, or documents, to add to the test operation.
4. Click **Open**. The selected test file, or files, is copied to the testing directory and listed in the **Testing** window.

5. (Optional) Repeat Step 1 on page 139 through Step 4. above to add testing files to any other concepts.

6. Begin testing these files. For more information, see Section 6.3.2 *Option 1A: Batch Testing All of the Documents for One Concept* on page 147.
5.5 Delete Testing Files

To remove any of the testing files that you added to a testing folder, complete these steps:

1. Select a file in the Testing tab.

2. Select Testing --> Delete Selected Test File.

3. A SAS Concept Creation confirmation window appears.

4. Click Yes.
Chapter: 6
Testing the Concept Definitions

- Overview of Testing
- Using the Testing Window
- Batch Testing
- Testing with the Document Window
- Test a Central Repository
- Comparing Test Results
- Import Failing Documents
- Testing with the Concordance

6.1 Overview of Testing

Test the concept definitions that you develop in SAS Concept Creation for SAS Text Miner (SAS Concept Creation) before they are applied by SAS Text Miner. The testing process enables you to see how well your definitions perform and any necessary changes that are required before they are applied as custom entities in SAS Text Miner.

You can use different testing processes to examine the test results across the entire taxonomy, or choose to focus on matches within specific documents. Other testing processes include testing a single document against a selected concept or the entire taxonomy. You can also choose to create a folder of documents that should fail, but might not. For example, gardening documents should not include matches on the Tournament of Roses.
6.1.1 Windows

Use the following windows to test your concepts:

Testing

Batch test the testing directory using the Testing window.

Document

Select the Document window to test and see the testing results for a single document. You can test one document against a single concept or against all of the concepts in your project.

Best Matches

When you test against all of the concepts in your taxonomy, the Best Matches window appears.

6.2 Using the Testing Window

6.2.1 The Testing Window Messages

Before you use the Testing window, you should understand the types of information that appear. For information about the components of the Testing window, see Section 2.6.3 The Testing Tab on page 18.

Display 6-1 Testing Window
The following types of messages are displayed in the **Testing** tab:

Path to the testing set of documents

This path appears below the **TEST** button and above the **Test File** heading. For example, you might see a path similar to this path:

```
C:\Program Files\SAS\SAS Concept Creation\Projects\Demo\LITI_Demo\docs
```

Test File

See the list of test files that are tested in this window. The test files without a path belong to the testing folder that is matched to the selected concept. If a test file is followed by a path, it is an out-of-concept test file. These test files are imported using the **Test all files everywhere** or the **Testing --> Import Test Files** operation.

Missing folders and files

No testing folder

If there is no testing folder that matches the selected concept in the testing taxonomy, a message such as **This directory does not exist** is displayed. Set the path to the testing directory using Section 5.2.1 *Create a Testing Directory While You Set Paths* on page 128.

Testing folder is empty

If the testing folder is empty, the message **No files found** appears. Copy test files into the testing directory.

Result

The number of matching terms in the document appears.
6.3 Batch Testing

6.3.1 Overview of Batch Testing

A batch of testing documents is defined as the group of texts that you assemble to test. Before you begin to gather and test these documents, you should define at least some of the concepts in your taxonomy.

When you test multiple concepts using batches of testing documents, you gain information about the precision and recall of each definition. However, if testing documents that are not expected to match a concept do match, one of these rules might be too broad. If, on the other hand, the texts selected for the specified concept fail to match, the rule could be too narrow.

Batch testing, or testing one group of documents at a time, is only one of the testing operations available in SAS Concept Creation. Use a combination of these operations to develop a step-by-step, customized testing process that meets the specific requirements of your organization:

- Batch test your documents using the following operations in the Testing window:

 Test files for this concept

 Test all of the files that you selected for each concept against its definition. The test files that you assembled should pass the membership requirements for this concept. For more information, see Section 6.3.2 *Option 1A: Batch Testing All of the Documents for One Concept* on page 147.

 Test all files everywhere

 Use all of the documents in the testing directory. This means that you test all of the documents matched to each of the concepts in the taxonomy at one time, and against one concept. For more information, see Section 6.3.3 *Option 1B: Batch Testing the Testing Taxonomy or Out-of-Concept Files* on page 148.

- Use the Document window to see the matching results for one document. For more information, see Section 6.4 *Testing with the Document Window* on page 150.

- Test all of the documents in the central repository. This folder contains documents that should, and should not, match the selected concept. In
In this case, you obtain test results that might be closer to the real project application. For more information, see Section 6.5 Test a Central Repository on page 157.

- Import failing test files at any time during the testing process. Failing test files are defined as documents that could pass, but should fail. For example, documents that mention President George W. Bush should not match definitions for concepts such as Gardening bushes. For more information, see Section 6.7 Import Failing Documents on page 159.

In summation, the batch testing operation provides an overview of the precision and recall of the concept definitions. This is true whether you test against a single taxonomy node or the entire taxonomy.

6.3.2 Option 1A: Batch Testing All of the Documents for One Concept

To batch test a testing set of documents against the concept that they are selected to match, complete these steps:

1. Create a testing taxonomy for your testing documents and set your testing paths. For more information, see Section 5.2.1 Create a Testing Directory While You Set Paths on page 128.

2. Select and assemble your testing documents. For more information, see Section 5.3 Collecting Test Files on page 137.

3. Select a concept to test in the Taxonomy window. For example, double-click on TITLE.
4. Click the **Testing** tab where the list of testing documents for this concept is displayed under the **Test File** heading. (In order to ensure the accuracy of your test file location, the path to the testing directory appears above the **Test File** heading.)

5. Select **Test files for this concept**.

6. Click **TEST**. The testing results appear in the Testing window.

6.3.3 Option 1B: Batch Testing the Testing Taxonomy or Out-of-Concept Files

Batch test the entire testing taxonomy to see how test files selected for other concepts in the taxonomy perform. Analyze these test results to decide whether to make changes to your definitions.

To test all of the files in the testing directory, complete these steps:

1. Use Step 1 on page 147 through Step 4 on page 148.
2. Select **Test all files everywhere**.
3. Click **TEST**.
4. See the number of matching terms under the **Results** heading.

The testing files fall into one of two types:

In-concept files

These are the testing files that you assembled as optimal matches for the selected concept. When these names are displayed in the Testing window, no paths to these files are displayed. Instead the path to this testing folder is shown above the **Test File** heading and below the **TEST** button.

Out-of-concept files

Members of other testing folders are displayed with their full paths.

5. (Optional) To reverse the testing document ordering, click the **Test File** heading.

6. Compare the testing results for both types of files.
6.4 Testing with the Document Window

6.4.1 Overview of Document Window Operations

After you batch test a folder of testing documents against the concept that these texts were selected to match, test one document. This operation provides more detailed data by enabling you to see the matching terms for the selected concept within the document. In contrast, when you test all of your documents in the Testing window, you see a list of passing and failing texts.

You can also test this text against all of the concepts in the taxonomy. In either case, you see what terms matched in the Document window. Use the match highlighting to see what changes should be made to the definitions.

Test Web documents using the Document window as a browser. When you select this operation, you can remove the markup tags. Select Document --> Remove Tags to see the text without any markup language.
6.4.2 Test Using the Document Window

To test a document in the Document window, complete these steps:

2. By default, you see the test results for the Selected concept displayed in the document. Use the matching terms, highlighted in red, to see the terms that made this document a passing text for the selected concept.

3. See the total number of matches displayed for this document. For example, see 20 Matches.

4. Click the \(\rightarrow \) and \(\leftarrow \) to jump through each of the matches in the window.

Hint: If you do not see the results that you expect, check your project settings. For more information, see Section 2.7.2 *The LITI Tab* on page 26.
6.4.3 Testing a Web Page in the Document Window

Use the Document window to view Web pages. Also use this window to access operations that are specific to a Web browser such as viewing and testing Web pages, removing markup tags, and so on. Select **Browser View** to access these operations.

Display 6-2 Web Page in Browser View

Note: Web pages are tested in their source format.

The browser operations are described in Table 2-3 on page 24.

To test a Web page as a text document, complete these steps:
1. Select a concept in the Taxonomy window. For example, select COMPKEY.

2. Click the Document tab.

3. Select Browser View.

4. Enter the URL of the Web page that you want to test into the Test File field.

5. Click TEST. The results of the testing operation appear in the source document.

6. (Optional) Select Document --> Remove Tags to delete the markup tags such as </p> in the source document. (If you perform this operation, click TEST to see the tags reinstated.)
6.4.4 Using Windows Commands

You can use the delete and replace text commands in order to change the text in your documents. Use these operations to see how changes affect matching in the input documents.

To remove text from your testing document, complete these steps:

2. Highlight the text that you want to delete and press the Delete key on your keyboard.

3. (Optional) Enter any words that you want to add to the document.

4. Click TEST to see whether you obtain the results that you require.

Note: The Document window is not a text editor. For this reason, any changes that you make are not permanent. The original document remains intact both
5. When you leave the Document window and try to test another document, a SAS Concept Creation confirmation window appears.

6. Click **Yes**, unless you want to continue to test document in the Document window.

6.4.5 Copy and Paste a Test File

You can copy and paste a test file directly into the Document window. Use this operation to test a text without including it in the test file folder.

To copy and paste a test file, complete these steps:

1. Access the Document window.
2. Access another document that you want to test in **Notepad**.
3. Highlight the text that you want to test.
4. Copy this text, or the whole document. Use Ctrl V to paste the text into the Document window.
5. Click **TEST** to test the document.

6.4.6 Using Clear Test Document

When you select the **Document --> Clear Test Document** operation, the document that currently appears in the Document window is removed from the Document window. However, this text is not deleted from the list that appears in the Testing window or from the testing folder.
6.4.7 Refreshing the Taxonomy Tree

Refresh your taxonomy tree when you want to retest your document by deleting all of the numbers that indicate the matches that appear in the Taxonomy window. These messages appear after you test a text using the All concepts radio buttons in the Document tab.

Display 6-3 An Example of Match Counts

To delete the PASS and FAIL messages in the Taxonomy window, click the Refresh Tree button, or access a new document in the Document window.

6.4.8 Changing the Font Size of a Tested Document

You can choose to increase or decrease the size of the text that is displayed in the Document window. These operations can make it easier to see the matching terms within their context.

To increase the font size, select Testing --> Increase Font Size.

To decrease the font size, select Testing --> Decrease Font Size.
6.4.9 Removing Markup Tags

To see an HTML, or an XML, document as a text without any markup tags, select Document --> Remove Tags. The testing document in the Document window is displayed as a text document without any markup language.

6.5 Test a Central Repository

The central repository is a collection of testing documents that are not selected to match any specific concepts.

To test the central repository, complete these steps:

1. Use the steps in Section 5.2.2 Create and Set a Path to the Central Repository on page 134.
2. Select a concept in the Taxonomy window and click the Testing tab.
3. Click TEST to see the test results.
4. See the results and compare them to those that you obtained testing the selected documents for this concept.

Hints: The testing path is the same for each of the concepts in the taxonomy.
The list of testing documents is also identical.

6.6 Comparing Test Results

The testing results that are displayed in the Testing window for both in-concept and out-of-concept files enable you to compare the test results. These results provide a more comprehensive view of the appropriateness of your definitions. For example, if one of the passing documents for the FIRST concept matched the FULLNAME concept, you should determine why this unexpected behavior occurred. Analyze the FIRST definition for the purposes of understanding why this document matched. Also examine the LAST rule and the matched document. One, or both, of these definitions might be too broad.

If you double-click the tested document, the text appears in the Document window. Examine the matched terms in this window to gain a better understanding of why this document matched the FIRST rule. For more information, see Section 6.4 *Testing with the Document Window* on page 150.

Conduct additional testing to evaluate the performance of other documents. Further testing could identify whether you should take one or more of the following actions:

- Narrow a concept rule. For example, remove the term *Basketball* from the Sports concept rule.
- Broaden the concept rule. For example, add one or more of the terms that are used to define the PERSON concept rule to the ORGANIZATION rule.
- Eliminate one, or more, of these concepts from your taxonomy.
- Add additional concepts to your taxonomy structure. For example, add a child node below the ORGANIZATION concept that is *PUBLIC*.
Note: When you perform any of these operations, test your results after each step in the process.

6.7 Import Failing Documents

During testing, you might discover that certain test documents should not be matched to a specific concept. For example, landscaping texts that contain the word *bush* should not match the LAST concept that contains a rule for president names.

Figure 6-1 Failing Document Example

In the example provided above, the passing document entitled *How to Plant Burning Bush*, contains the word *bush* in the context of a plant. This is an example of a document that you do not want to pass the test for the LAST concept where one of the classifier rules specifies the word *bush*.

As you test and define concept definitions, copy documents that should fail, but are not, into a Fail directory. You can test this directory as a final step in the testing process to confirm the accuracy of your definitions.

To test documents in the Fail directory, complete these steps:
1. Click the **Testing** tab.

2. Select **Testing --> Import Failing Test Files**. The Open window appears.
3. Select a file. For example, choose 8.xml.

4. Click Open. The failing testing document appears in the Testing window preceded by its path.

5. Click TEST to see whether this file fails, or whether you need to make further rule adjustments. See the example provided in Figure 6-1 on page 159.

6.8 Testing with the Concordance

6.8.1 An Overview of the Concordance

The concordance feature enables you to see a list of the matched terms highlighted in red, in one or all, of the input documents. You can choose to use the concordance operations that are available in both the Testing and the Document windows.

Use the concordance operations that are available in the Testing window to see the concordance matches that are returned for all of the documents listed in this window. Use the concordance operations that are available in the Document window to see matches displayed within the text of the document.

6.8.2 The Concordance for the Testing Window

Select one of the following operations in the Testing window in order to see the different types of concordance matches:

Concordance for Selected concept

see all of the matches for the selected concept in the Taxonomy window.

Concordance for All concepts

see all of the matches for all of the concepts in this project.

The results are displayed according to the selections that you specify. These selections include the operations specified in the **Project Settings - Concepts** window. For more information, see Section 6.8.3.B *Determine How the Concordance Is Displayed* on page 163. Also see Section 2.8.4 *The Concordance Windows That Are Available through the Testing Tab* on page 35.
See the following examples:

Display 6-2 Concordance for Selected Concept

Display 6-3 Concordance for All Concepts

6.8.3 The Concordance for the Document Window

6.8.3.A An Overview of the Concordance for the Document Window

Select the Concordance check box and make one of the following selections in the Document window in order to see the different types of concordance matches:

Selected concept

see all of the matches for the selected concept.

All concepts

see all of the matches for all of the concepts in this project.
The results are displayed according to the selections that you specify. These selections include the operations specified in the Project Settings - Concepts window.

6.8.3.B Determine How the Concordance Is Displayed

To set up the display for the concordance, complete the following steps:

1. Select Project --> Settings.
2. Click the Concordance tab.

3. Under For each match show, select your settings.
4. Select a Sort by operation.
5. Determine how to Test multiple files:
6. Select Insert text markers to display text markers in the concordance view of the Document tab when you test a single file against multiple concepts. The match text fields display the concept that is the best match for the matched term that is returned. One example of these tags is <CONCEPT1>...</CONCEPT1>.
6.8.3.C See the Concordance Terms for a Selected Concept

Use the concordance to see a list of the terms in the input document that match only the selected concept.

To see a list of matching terms for a selected concept, complete these steps:

1. Test the testing documents for a selected concept in the **Testing** tab.
2. Double-click a tested document and it appears in the **Document** tab.
3. By default, **Selected Concept** is selected. If not, choose **Selected Concept**.
4. Select **Concordance**.
5. Click **TEST**.
6. See the matching terms highlighted in red. The highlighted terms, and whether a matched concept is displayed, depend on the selection that you choose in the Project Settings - Concordance window.

6.8.3.D Use the Best Matches Window for All Concepts

When you choose to see all of the matching terms in an input document for your taxonomy, you can also see these results in the Best Matches window. To see a list of matching terms for all of the concepts in the taxonomy, complete these steps:

1. Access a test document in the Document tab. For more information, see Section 6.4.2 Test Using the Document Window on page 151.

2. Select Concordance.

3. Click TEST.

4. See the matching terms highlighted in red and preceded by the name of the matched concept.
5. See the matches for all concepts in the taxonomy in the Best Matches window.

The Best Matches window ranks the matching concepts according to the total number of matches that occur for this all concepts. These totals are listed from the highest to the lowest numbers under the **Matches** heading. For more information, see Section 2.8.11 *The Best Matches Window* on page 42.

6.8.3.E See the Concordance Terms for All Concepts

You can choose to see all of the matching terms in an input document for all of your concepts. When you select this operation, you can also see the results in the Best Matches window.

To see a list of matching terms for all of the taxonomy nodes, complete these steps:

1. Access a test document in the **Document** tab. For more information, see Section 6.4.2 *Test Using the Document Window* on page 151.

2. Select **All concepts**.

3. Select **Concordance**.

4. Click **TEST**.
5. See the results in both the concordance and Best Matches window. For more information, see Section 2.8.11 The Best Matches Window on page 42.
Appendixes

- Appendix A: Regex Syntax and Part-of-Speech on page 171
- Appendix B: Glossary on page 181
- Appendix C: Recommended Reading on page 185
Appendix: A
Regex Syntax and Part-of-Speech

- Regular Expressions
- Part-of-Speech Table

A.1 Regular Expressions

A.1.1 Rules and Restrictions

The following rules and restrictions apply to regular expressions:

- Any single character a (ASCII 1 through 255, subject to escaping restrictions in 14 below) is a regular expression, and it matches precisely that character.

- A character class is a regular expression. One or more characters inside square brackets ([]), match any of the characters specified inside of the square brackets. For example, [abc] matches abc. A range inside a character class such as a-z matches any ASCII character whose value is between a through z, inclusive. Any character, including special characters, can appear in a character class. However, \ (backslash), - (hyphen), [and] (open and closed brackets) are preceded by a backslash. If you want to return a literal match on these characters, see Section A.1 Regular Expressions on page 509.

- A negated character class is a regular expression. One or more characters are inside square brackets, with ^ (caret) being the first character to indicate negation. For example, [^abc] matches any character except a, b, or c. (If you want to return a literal match on a caret, precede the caret with a backslash.)
Also see the table below for more information about the rules and restrictions for regular expressions.

Table A-1: More Rules and Restrictions

<table>
<thead>
<tr>
<th>If Statement</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>If a and b are regular expressions</td>
<td>then so is (a \cdot b) that matches whatever a matches followed by whatever b matches (concatenation)</td>
</tr>
<tr>
<td></td>
<td>then so is (a</td>
</tr>
<tr>
<td>If a is a regular expression</td>
<td>then so is ((?:a)) that simply serves as a grouping mechanism without remembering what it was grouping. For example ((?:ababb)</td>
</tr>
<tr>
<td></td>
<td>then so is (a^*) that matches 0 or more occurrences of whatever a matches</td>
</tr>
<tr>
<td></td>
<td>then so is (a^+) that matches 1 or more occurrences of whatever a matches</td>
</tr>
<tr>
<td></td>
<td>then so is (a?) that matches 0 or 1 occurrences of whatever a matches</td>
</tr>
<tr>
<td></td>
<td>then so is (a{n,m}) that matches at least (n) but no more than (m) concatenated occurrences of whatever a matches</td>
</tr>
<tr>
<td></td>
<td>then so is (a{n,}) that matches at least (n) concatenated occurrences of whatever a matches</td>
</tr>
<tr>
<td></td>
<td>then so is (a(n)) that matches exactly (n) concatenated occurrences of whatever a matches</td>
</tr>
</tbody>
</table>
A.1.2 Special Characters

The table below lists, and gives extended meaning to, special characters that are used with regular expressions.

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>\a</td>
<td>Alarm (beep)</td>
</tr>
<tr>
<td>\n</td>
<td>Newline</td>
</tr>
<tr>
<td>\r</td>
<td>Carriage return</td>
</tr>
<tr>
<td>\t</td>
<td>Tab</td>
</tr>
<tr>
<td>\f</td>
<td>Form feed</td>
</tr>
<tr>
<td>\e</td>
<td>Escape</td>
</tr>
<tr>
<td>\d</td>
<td>Digit (same as [0-9])</td>
</tr>
<tr>
<td>\D</td>
<td>Not a digit (same as[^0-9])</td>
</tr>
<tr>
<td>\w</td>
<td>Word character (same as [a-zA-Z_0-9])</td>
</tr>
<tr>
<td>\W</td>
<td>Non-word character (same as[^a-zA-Z_0-9])</td>
</tr>
<tr>
<td>\s</td>
<td>Whitespace character (same as[^\t\n\r\f])</td>
</tr>
<tr>
<td>\S</td>
<td>Non-whitespace character (same as[^\t\n\r\f])</td>
</tr>
<tr>
<td>.</td>
<td>Wildcard (matches any character)</td>
</tr>
<tr>
<td>\xh</td>
<td>Hexadecimal number, where h is a hexadecimal character</td>
</tr>
<tr>
<td>\xhh</td>
<td>Hexadecimal number, where hh is a hexadecimal character</td>
</tr>
<tr>
<td>\0o</td>
<td>Octal number, where o is an octal digit</td>
</tr>
<tr>
<td>\00o</td>
<td>Octal number, where 00 is an octal digit</td>
</tr>
</tbody>
</table>
A.1.3 Special Cases

There are several special cases for regular expressions. These cases include:

\[.\](\.)?*,+\-,\.,\]

for metacharacters such as these to have literal meaning, these metacharacters need to be escaped with a backslash (\). If inside a character class, however, only those metacharacters that are explicitly mentioned need escaping.

No support is provided for the following:

- backward references
- () as a remembering grouping mechanism.
- ^ as the beginning-of-line zero-width assertion
- $ as the end-of-line zero-width assertion

Note: Unlike Perl regular expressions, the ^ and $ markers are implicitly assumed.

A.2 Part-of-Speech Table

The table below provides a list of the part-of-speech tags that you can use to write rules. Also see the descriptions and examples included in this table. For more information about how these parts of speech are used to write rules, see Section 4.4.14 *The Part-of-Speech Tags* on page 74. Also see the language book for each language that you purchased.

Note: Use the part-of-speech tags that are listed here. Do not use the part-of-speech tags that are used with SAS Text Miner. The part-of-speech tags that are specified
in your definitions are mapped to those in SAS Text
Miner at the time of application.

Table A-3: Part-of-Speech Morphological Features

<table>
<thead>
<tr>
<th>Code</th>
<th>Part-of-Speech</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adjective</td>
<td>The sky is azure.</td>
</tr>
<tr>
<td>ABBREV</td>
<td>abbreviation</td>
<td>etc.</td>
</tr>
<tr>
<td>Acomp</td>
<td>comparative adjective</td>
<td>The green bag is heavier than the red one.</td>
</tr>
<tr>
<td>Adv</td>
<td>adverb</td>
<td>He is easily the best candidate.</td>
</tr>
<tr>
<td>Asup</td>
<td>superlative adjective</td>
<td>He cooked the best dish.</td>
</tr>
<tr>
<td>C</td>
<td>conjunction</td>
<td>Say nothing of former informers and spies.</td>
</tr>
<tr>
<td>date</td>
<td>valid date formats</td>
<td>04JAN2001</td>
</tr>
<tr>
<td></td>
<td>YYYY-MM-DD</td>
<td>04jan2001</td>
</tr>
<tr>
<td></td>
<td>YYYYMMDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YY-MM-DD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YYYYMDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YYYY-MM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YYYYYMMs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>YY-MM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard US Date Formats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM-DD-YYYY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM/DD/YYYY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM-DD-YY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MM/DD/YY</td>
<td></td>
</tr>
<tr>
<td>Det</td>
<td>determinant</td>
<td>Nothing can be further from the truth.</td>
</tr>
<tr>
<td>digit</td>
<td>numeric symbols, including floating point decimals</td>
<td>5, 2.14, or 5,254</td>
</tr>
</tbody>
</table>
Table A-3: Part-of-Speech Morphological Features (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Part-of-Speech</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>French word</td>
<td>We went to see the chateaux.</td>
</tr>
<tr>
<td>inc</td>
<td>unknown word to the part-of-speech</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tagger</td>
<td></td>
</tr>
<tr>
<td>Int</td>
<td>interjection</td>
<td>Yum!</td>
</tr>
<tr>
<td>Md</td>
<td>modal verb</td>
<td>This might be the best idea.</td>
</tr>
<tr>
<td>Md'n't</td>
<td>modal verb negated</td>
<td>I won't elaborate on this any further.</td>
</tr>
<tr>
<td>N</td>
<td>noun</td>
<td>The e-mail went to the spam folder.</td>
</tr>
<tr>
<td>Npl</td>
<td>plural noun</td>
<td>The geese are leaving for the South.</td>
</tr>
<tr>
<td>Num</td>
<td>number</td>
<td>She just turned seventeen years old.</td>
</tr>
<tr>
<td>PN</td>
<td>proper noun</td>
<td>We are going to England for vacation.</td>
</tr>
<tr>
<td>PossDet</td>
<td>possessive determinant</td>
<td>It is her choice.</td>
</tr>
<tr>
<td>PossPro</td>
<td>possessive pronoun</td>
<td>The choice is hers alone.</td>
</tr>
<tr>
<td>PreDet</td>
<td>pre determinant</td>
<td>All the king's soldiers could not put him together again.</td>
</tr>
<tr>
<td>Prefix</td>
<td>prefix</td>
<td>The multi-millionaire Soros is going to help us out.</td>
</tr>
<tr>
<td>Prep</td>
<td>preposition</td>
<td>Let's go to grandma's house.</td>
</tr>
<tr>
<td>Pro</td>
<td>pronoun</td>
<td>Give me one of each.</td>
</tr>
<tr>
<td>ProMD</td>
<td>pronoun contracted with modal</td>
<td>If it weren't for him, we'd still be here.</td>
</tr>
<tr>
<td>ProV</td>
<td>pronoun contracted with a verb</td>
<td>we're</td>
</tr>
<tr>
<td>Ptl</td>
<td>particle</td>
<td>I would go across if I could.</td>
</tr>
</tbody>
</table>
Table A-3: Part-of-Speech Morphological Features (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Part-of-Speech</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>RelPro</td>
<td>relative pronoun</td>
<td>I want the coin that represents King Kong.</td>
</tr>
<tr>
<td>sep</td>
<td>separator character</td>
<td>; , :, , , .</td>
</tr>
<tr>
<td>time</td>
<td>time formats</td>
<td>12:56:32</td>
</tr>
<tr>
<td></td>
<td>23:59:59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:59:59.9942</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235959.9942</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:59:59Z</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:59:59.9942Z</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235959.9942Z</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:59:59+HH:MM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:59:59-HH:MM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235959+HHMM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:59:59.9942Z</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235959.9942Z</td>
<td></td>
</tr>
</tbody>
</table>
Table A-3: Part-of-Speech Morphological Features (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Part-of-Speech</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Standard US and British Time Formats</td>
<td>9:00PM</td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15A.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.15a.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10AM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10A.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10a.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15P.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.15p.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10P.M.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10pm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10p.m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>url</td>
<td>urls</td>
<td>www.sas.com/success/</td>
</tr>
<tr>
<td>V</td>
<td>verb</td>
<td>You should verbalize your wishes.</td>
</tr>
<tr>
<td>V3sg</td>
<td>verb, 3rd person singular</td>
<td>The boy amuses himself throwing rocks.</td>
</tr>
<tr>
<td>V3sgn't</td>
<td>verb, 3rd person singular negated</td>
<td>This isn’t funny.</td>
</tr>
<tr>
<td>Ving</td>
<td>present participle</td>
<td>Why is the hen crossing the street?</td>
</tr>
<tr>
<td>Vn’t</td>
<td>negated verb</td>
<td>“it don’t mean a thing…”</td>
</tr>
</tbody>
</table>
Table A-3: Part-of-Speech Morphological Features (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Part-of-Speech</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vpp</td>
<td>past participle</td>
<td>Those tapes were released.</td>
</tr>
<tr>
<td>Vpt</td>
<td>verb, past tense</td>
<td>The president hated broccoli.</td>
</tr>
<tr>
<td>Vptn’t</td>
<td>verb, past tense negated</td>
<td>If it weren't for him, we'd still be here.</td>
</tr>
<tr>
<td>WAdv</td>
<td>w adverb</td>
<td>Why do you say that?</td>
</tr>
<tr>
<td>WDet</td>
<td>w determinant</td>
<td>What is he saying?</td>
</tr>
<tr>
<td>WPossPro</td>
<td>w possessive pronoun</td>
<td>Whose hat is this?</td>
</tr>
<tr>
<td>WPro</td>
<td>w pronoun</td>
<td>Whom did you meet?</td>
</tr>
</tbody>
</table>
Appendix: B

Glossary

_c
specifies the context for the matches.

_cap
specifies that a word beginning with an uppercase letter is a match.

argument
is defined by two or more concepts that are related to each other. When these matches are identified, arguments are returned. See fact.

canonical form
specifies the full name, or form, of the term. For example, SAS Institute Inc. is the canonical form of SAS.

CLASSIFIER
specifies the terms to be matched.

CONCEPT
locate entities, or ideas, in input documents.

concordance
displays a list of the matching terms located in a document with the text surrounding them. Specify the number of characters or words that are returned when a match on a concept occurs.

coreference
refers to pronoun resolution. A pronoun is matched to the antecedent that it refers to. Coreference is also known as anaphora resolution.

definition
defines a concept, whether it consists of one or more rules. Definition is used interchangeably with the word rule. See rule.
event
is used interchangeably with fact. See fact.

Fact
refers to two or more concepts or tokens that are specified in one sequence or predicate_rule definition. See sequence and predicate_rule below.

precision
is a measurement of the relevancy of the matched documents. In other words, the concept definition excludes possible matches that do not reflect the subject matter of the concept. For example, texts referring to rock collections are not matched for the concept Rock and Roll.

predicate_rule
returns matches when an operator is specified with arguments. Unlike the sequence definition, the matches do not need to occur in the order specified by the definition.

sequence
returns facts when matches occur within the specified context.

priority
ranks concepts. By default, priority is set to 10 in the Data window.

recall
a measurement of how well the definition matches all of the relevant texts.

referring term
a term that refers to a canonical form.

regex
specifies regular expression syntax.

rule
defines the concept. There can be many rules for each concept definition. This term is used interchangeably with definition, but properly speaking, one definition can contain many rules. See definition.

sequence
returns Facts when matches occur within the specified ordering.
string
refers to a group of words or characters that you specify for a rule.

token
a synonym for a word. *Token* is not a synonym for the word *string* that can refer to several words or characters. *Token* refers to one word, only.
Appendix: C
Recommended Reading

The following books are recommended as companion guides:

- *Getting Started with SAS Text Miner*: Learn how to use SAS Text Miner.
- *Installation and Upgrade Instructions for SAS Text Miner*: Install SAS Text Miner before you create a project using SAS Concept Creation for SAS Text Miner.
- Use the language books for each language purchased to see the comprehensive list of part-of-speech tags that are available.
- SAS offers instructor-led training and self-paced e-learning courses to help you get started with the SAS add-in, learn how the SAS add-in works with the other products in the SAS Enterprise Intelligence Platform, and learn how to run stored processes in the SAS add-in. For more information about the courses available, see support.sas.com/training.

For a complete list of SAS publications, see the current SAS Publishing Catalog. To order the most current publications or to receive a free copy of the catalog, contact a SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs

* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.
Index

% usage .. 75
+ usage .. 75
> usage .. 75
 context operator ... 115
 usage .. 71, 87, 115
_c defined ... 68
 usage .. 70, 86
_cap defined ... 68
 usage .. 71
_coref classifier rule .. 114
_F usage .. 116
_p usage .. 117
_ref export symbol ... 119
 new concept ... 118
 usage .. 114, 115
_w usage .. 70
{} usage .. 108

A

Abort Compiling Concepts
 Build menu .. 9
Add Concept
 Concept menu ... 10
 usage .. 33, 48
Add Language
 Project menu ... 9
<table>
<thead>
<tr>
<th>Concept</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIGNED</td>
<td>79</td>
</tr>
<tr>
<td>defined</td>
<td>79</td>
</tr>
<tr>
<td>usage</td>
<td>80</td>
</tr>
<tr>
<td>All Concepts</td>
<td>21</td>
</tr>
<tr>
<td>define</td>
<td>21</td>
</tr>
<tr>
<td>defined</td>
<td>25</td>
</tr>
<tr>
<td>All matches</td>
<td></td>
</tr>
<tr>
<td>Data window</td>
<td>105</td>
</tr>
<tr>
<td>usage</td>
<td>60, 110</td>
</tr>
<tr>
<td>AND</td>
<td>79</td>
</tr>
<tr>
<td>defined</td>
<td>79</td>
</tr>
<tr>
<td>usage</td>
<td>80</td>
</tr>
<tr>
<td>argument</td>
<td></td>
</tr>
<tr>
<td>defined</td>
<td>107</td>
</tr>
<tr>
<td>fact</td>
<td>113</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Concept</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back button</td>
<td>12</td>
</tr>
<tr>
<td>Browser</td>
<td>12</td>
</tr>
<tr>
<td>Web view</td>
<td>25</td>
</tr>
<tr>
<td>batch testing</td>
<td></td>
</tr>
<tr>
<td>benefits</td>
<td>147</td>
</tr>
<tr>
<td>defined</td>
<td>146</td>
</tr>
<tr>
<td>Best</td>
<td>106</td>
</tr>
<tr>
<td>Data window</td>
<td></td>
</tr>
<tr>
<td>usage</td>
<td>60</td>
</tr>
<tr>
<td>Best Matches window</td>
<td>144</td>
</tr>
<tr>
<td>Document window</td>
<td></td>
</tr>
<tr>
<td>usage</td>
<td>42</td>
</tr>
<tr>
<td>Browser</td>
<td></td>
</tr>
<tr>
<td>Back button</td>
<td>12</td>
</tr>
<tr>
<td>Forward button</td>
<td>12</td>
</tr>
<tr>
<td>Home button</td>
<td>12</td>
</tr>
<tr>
<td>Refresh button</td>
<td>12</td>
</tr>
<tr>
<td>Stop button</td>
<td>12</td>
</tr>
<tr>
<td>Browser View</td>
<td></td>
</tr>
<tr>
<td>defined</td>
<td>25</td>
</tr>
<tr>
<td>Testing menu</td>
<td>12</td>
</tr>
<tr>
<td>usage</td>
<td>23, 152</td>
</tr>
</tbody>
</table>
Build menu
 Abort Compiling Concepts ... 9
 Compile Concepts ... 9

C

C_CONCEPT
 _ref operator ... 114
 defined ... 68
 spaces ... 73
canonical form
 coreference .. 114
Case Insensitive Matching field
 defined .. 20
Case Sensitive Matching field
 defined .. 20
case-insensitive
 matching ... 69
case-sensitive
 matching ... 67
central repository
 defined ... 146
 testing .. 146
CLASSIFIER
 coref .. 118
 defined ... 68, 83
classifier rule
 _coref .. 114
Clear Test Document
 Testing menu .. 11
colons
 usage .. 73
commas
 usage .. 72
Compatibility Date
 Misc window .. 28
Compile Concepts
 Build menu .. 9
 Compile Concepts tab
 usage .. 39
Completed field
defined .. 20
CONCEPT
defined ... 68, 84, 91
spaces .. 73
collection definition
precision .. 137
recall .. 137
collection matching
preference .. 67
Concept menu
Add Concept ... 10
Create Directory Tree ... 11
Delete All Selected Concepts ... 10
Delete Concept .. 10
Priorities .. 11
Rename Concept ... 10
collection node
drop-down selections ... 48
Concept Syntax Check window
usage ... 41
CONCEPT_RULE
defined ... 68, 98, 100, 102, 104, 111
spaces .. 73
Concepts node
drop-down menu ... 47
concordance view
TEST button .. 23
Concordance window
Insert text markers .. 30
Project Settings .. 26, 29, 61
Show Filename .. 30
Show Full Path .. 30
Test multiple files ... 30, 163
usage .. 22
concordance window ... 30
access .. 18, 22
For each match show ... 29
Hide Filenames .. 30
Insert text markers ... 163
match displays .. 29
Sort by .. 30
<table>
<thead>
<tr>
<th>Action</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy All Selections</td>
<td>Edit menu</td>
</tr>
<tr>
<td>coref</td>
<td>coref</td>
</tr>
<tr>
<td>CLASSIFIER</td>
<td>coref</td>
</tr>
<tr>
<td>coreference</td>
<td>coref</td>
</tr>
<tr>
<td>canonical form</td>
<td>coref</td>
</tr>
<tr>
<td>operators</td>
<td>coref</td>
</tr>
<tr>
<td>Create Directory Tree</td>
<td>Create Directory Tree</td>
</tr>
<tr>
<td>Create Folders option</td>
<td>Create Folders option</td>
</tr>
<tr>
<td>defined</td>
<td>Create Folders option</td>
</tr>
<tr>
<td>curly braces</td>
<td>curly braces</td>
</tr>
<tr>
<td>usage</td>
<td>curly braces</td>
</tr>
<tr>
<td>Cut All Selections</td>
<td>Edit menu</td>
</tr>
<tr>
<td>D</td>
<td>Data tab</td>
</tr>
<tr>
<td>Data tab concepts</td>
<td>Data tab</td>
</tr>
<tr>
<td>Data window Priority field</td>
<td>Data window Priority field</td>
</tr>
<tr>
<td>Decrease Font Size</td>
<td>Decrease Font Size</td>
</tr>
<tr>
<td>definition</td>
<td>Decrease Font Size</td>
</tr>
<tr>
<td>analyze</td>
<td>Decrease Font Size</td>
</tr>
<tr>
<td>Definition tab</td>
<td>Definition tab</td>
</tr>
<tr>
<td>defined</td>
<td>Definition tab</td>
</tr>
<tr>
<td>Delete All Selected Concepts</td>
<td>Delete All Selected Concepts</td>
</tr>
<tr>
<td>Concept menu</td>
<td>Delete All Selected Concepts</td>
</tr>
<tr>
<td>Delete Concept</td>
<td>Delete Concept</td>
</tr>
<tr>
<td>Concept menu</td>
<td>Delete Concept</td>
</tr>
<tr>
<td>Delete Language</td>
<td>Delete Language</td>
</tr>
<tr>
<td>Project menu</td>
<td>Delete Language</td>
</tr>
<tr>
<td>Delete Selected Test File</td>
<td>Delete Selected Test File</td>
</tr>
<tr>
<td>Testing menu</td>
<td>Delete Selected Test File</td>
</tr>
<tr>
<td>Decrease Font Size</td>
<td>definition</td>
</tr>
<tr>
<td>analyze</td>
<td>definition</td>
</tr>
<tr>
<td>Decrease Font Size</td>
<td>analyze</td>
</tr>
<tr>
<td>Definition tab</td>
<td>analyze</td>
</tr>
<tr>
<td>Delete All Selected Concepts</td>
<td>definition</td>
</tr>
<tr>
<td>Delete Concept</td>
<td>definition</td>
</tr>
<tr>
<td>Delete Language</td>
<td>Delete Language</td>
</tr>
<tr>
<td>Project menu</td>
<td>Delete Language</td>
</tr>
<tr>
<td>Delete Selected Test File</td>
<td>Delete Selected Test File</td>
</tr>
<tr>
<td>Testing menu</td>
<td>Delete Selected Test File</td>
</tr>
</tbody>
</table>

SAS Concept Creation for SAS Text Miner: User’s Guide 191
<table>
<thead>
<tr>
<th>Dictionary Entries</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part-of-Speech Tags</td>
<td>96</td>
</tr>
<tr>
<td>Disambiguation</td>
<td>89</td>
</tr>
<tr>
<td>DIST</td>
<td>79</td>
</tr>
<tr>
<td>Usage</td>
<td>80, 102, 104</td>
</tr>
<tr>
<td>Document</td>
<td>67</td>
</tr>
<tr>
<td>PARA</td>
<td>67</td>
</tr>
<tr>
<td>SENT</td>
<td>67</td>
</tr>
<tr>
<td>Document Tab</td>
<td>6, 16</td>
</tr>
<tr>
<td>Document Window</td>
<td>110</td>
</tr>
<tr>
<td>Fact</td>
<td>21, 24, 144</td>
</tr>
<tr>
<td>Usage</td>
<td>23</td>
</tr>
<tr>
<td>Duplicate Instances</td>
<td>86</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Edit Menu Options</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy All Selections</td>
<td>8</td>
</tr>
<tr>
<td>Cut All Selections</td>
<td>8</td>
</tr>
<tr>
<td>Find in All Rules</td>
<td>9</td>
</tr>
<tr>
<td>Paste</td>
<td>8</td>
</tr>
<tr>
<td>Paste Single Node</td>
<td>8</td>
</tr>
<tr>
<td>Paste Symbolic Link</td>
<td>8</td>
</tr>
<tr>
<td>Text Find</td>
<td>8</td>
</tr>
<tr>
<td>Text Replace</td>
<td>8</td>
</tr>
<tr>
<td>Tree Find</td>
<td>8</td>
</tr>
<tr>
<td>Tree Replace</td>
<td>8</td>
</tr>
<tr>
<td>Enable Concepts</td>
<td>10</td>
</tr>
<tr>
<td>Project Menu</td>
<td>46</td>
</tr>
<tr>
<td>Enter Display Name</td>
<td>34</td>
</tr>
<tr>
<td>Enter Names Window</td>
<td>34</td>
</tr>
<tr>
<td>Enter Name for Internal Data Files</td>
<td>33</td>
</tr>
</tbody>
</table>
Enter Display Name ... 34
Enter name for internal data files .. 34
usage .. 33
Use same name for both fields ... 33
existing project
access .. 50
Exit option
File menu .. 7
Expand Full
usage .. 46
Expand Fully
usage .. 46, 47, 48
Expand Fully option
usage .. 48
export feature
usage .. 91, 92
export symbol
_ref .. 119
exported terms
not in rule ... 92

F

Fact
defined .. 107
Document window ... 110
multiple .. 109
fact ... 109
argument .. 113
defined .. 107
PREDICATE_RULE .. 109
view matches ... 108
failing documents
defined .. 147
File menu
New Project ... 7
Open Project .. 7
Save Project .. 7
Save Project As ... 7
Find field
Tree Find window ... 37
Find in All Rules
 Edit menu ... 9
Find Next button
 Tree Find window ... 37
For each match show
 concordance window .. 29
Forward button
 Browser .. 12
defined ... 25

G

Go button
 defined .. 24

H

Hide Filenames
 concordance window .. 30
Home button
 Browser .. 12
defined .. 25

I

icons
 Standard toolbar .. 13
Identical Path Name option
 defined .. 20
Import Failing Test Files
 Testing menu ... 11
Import Test Files
 Testing menu ... 11
Import Test Files option
 usage .. 139
In-concept files
 usage .. 149
Increase Font Size
 Testing menu ... 12
Insert text markers

Concordance window ... 30
concordance window .. 163

interface

view .. 5

L

language fonts

UTF-8 encoding ... 53
language node
drop-down menu .. 46
LITI window

Project Settings .. 26
Ln
defined .. 17
Load Text
defined .. 17
location
matches occur .. 121
logical operators
table .. 79
Longest

Data window ... 106
usage ... 26, 60, 110

M

main window

components .. 6
Match case option

Tree Find window ... 37
Menu bar
defined .. 6
Misc tab

Project Settings .. 121
XML Tags to Ignore .. 28
Misc window

Compatibility Date ... 28
Paragraph Separator .. 28
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>document</td>
<td>67</td>
</tr>
<tr>
<td>paragraph field</td>
<td>122</td>
</tr>
<tr>
<td>Misc window</td>
<td>28</td>
</tr>
<tr>
<td>usage</td>
<td>72</td>
</tr>
<tr>
<td>partial match</td>
<td>95</td>
</tr>
<tr>
<td>part-of-speech tags</td>
<td>174</td>
</tr>
<tr>
<td>requirements</td>
<td>96</td>
</tr>
<tr>
<td>Paste</td>
<td>8</td>
</tr>
<tr>
<td>Paste Single Node</td>
<td>8</td>
</tr>
<tr>
<td>Paste Symbolic Link</td>
<td>48</td>
</tr>
<tr>
<td>percent</td>
<td>97</td>
</tr>
<tr>
<td>usage</td>
<td>75</td>
</tr>
<tr>
<td>precision</td>
<td>137</td>
</tr>
<tr>
<td>concept definition</td>
<td></td>
</tr>
<tr>
<td>PREDICATE_RULE</td>
<td>69, 109</td>
</tr>
<tr>
<td>fact</td>
<td>109</td>
</tr>
<tr>
<td>Prep</td>
<td>96</td>
</tr>
<tr>
<td>Priorities</td>
<td>11</td>
</tr>
<tr>
<td>priority</td>
<td>94</td>
</tr>
<tr>
<td>rank</td>
<td>120</td>
</tr>
<tr>
<td>usage</td>
<td>75</td>
</tr>
<tr>
<td>Priority field</td>
<td>75, 76, 105</td>
</tr>
<tr>
<td>defined</td>
<td>20</td>
</tr>
<tr>
<td>definition</td>
<td>94</td>
</tr>
</tbody>
</table>
PRIORITY specification
 usage ... 119
Program and Project title bar
 defined .. 6
Project menu
 Add Language ... 9
 Delete Language .. 10
 Enable Concepts ... 10
 Remove Concepts ... 10
 Settings .. 10
project name node
 drop-down menu ... 45
Project Settings
 Concordance window .. 26, 29, 61
 LITI window .. 26
 Misc tab .. 121
 Misc window ... 26
 Priority field ... 94
 REMOVE_ITEM .. 27
Project Settings - LITI tab
 rule matches ... 67
Project Settings windows
 usage .. 25
Propagate Button
 usage .. 20
Propagate Options
 defined ... 20

Q

quotation marks
 usage .. 72

R

rank
 priority .. 120
recall
 concept definition .. 137
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh button</td>
<td>12</td>
</tr>
<tr>
<td>defined</td>
<td>25</td>
</tr>
<tr>
<td>Refresh Tree</td>
<td>9</td>
</tr>
<tr>
<td>View menu</td>
<td></td>
</tr>
<tr>
<td>Refresh Tree button</td>
<td>156</td>
</tr>
<tr>
<td>usage</td>
<td></td>
</tr>
<tr>
<td>REGEX</td>
<td>68, 97</td>
</tr>
<tr>
<td>defined</td>
<td></td>
</tr>
<tr>
<td>percent</td>
<td>97</td>
</tr>
<tr>
<td>usage</td>
<td>104</td>
</tr>
<tr>
<td>regular expressions</td>
<td>75</td>
</tr>
<tr>
<td>usage</td>
<td></td>
</tr>
<tr>
<td>relative rankings</td>
<td>94</td>
</tr>
<tr>
<td>increase</td>
<td></td>
</tr>
<tr>
<td>Remove Concepts</td>
<td>10</td>
</tr>
<tr>
<td>Project menu</td>
<td></td>
</tr>
<tr>
<td>usage</td>
<td>47</td>
</tr>
<tr>
<td>Remove duplicate facts</td>
<td>106, 113</td>
</tr>
<tr>
<td>usage</td>
<td></td>
</tr>
<tr>
<td>Remove Tags</td>
<td>12</td>
</tr>
<tr>
<td>Testing menu</td>
<td></td>
</tr>
<tr>
<td>Remove Tags option</td>
<td>25</td>
</tr>
<tr>
<td>defined</td>
<td></td>
</tr>
<tr>
<td>REMOVE_ITEM</td>
<td>68, 89</td>
</tr>
<tr>
<td>defined</td>
<td></td>
</tr>
<tr>
<td>Project Settings</td>
<td>27</td>
</tr>
<tr>
<td>Rename Concept</td>
<td>10</td>
</tr>
<tr>
<td>Concept menu</td>
<td></td>
</tr>
<tr>
<td>usage</td>
<td>48</td>
</tr>
<tr>
<td>Replace button</td>
<td>38</td>
</tr>
<tr>
<td>Tree Find window</td>
<td></td>
</tr>
<tr>
<td>Return all identical matches</td>
<td>106</td>
</tr>
<tr>
<td>Data window</td>
<td></td>
</tr>
<tr>
<td>usage</td>
<td>27, 60, 111</td>
</tr>
<tr>
<td>rule matches</td>
<td>67</td>
</tr>
<tr>
<td>Priority Settings</td>
<td></td>
</tr>
<tr>
<td>rules</td>
<td>67</td>
</tr>
<tr>
<td>defined</td>
<td></td>
</tr>
</tbody>
</table>
S

Save Project
 File menu .. 7
Save Project As
 File menu .. 7
Save Test Document
 Testing menu ... 11
Select a Language window
 usage ..31 , 45
Selected concept
 define .. 21
 defined .. 25
 test against ... 25
SENT
 defined .. 79
 document ... 67
 usage ... 81
SENT_n
 defined .. 79
 usage ... 81
SENTEND_n
 defined .. 79
 usage ... 82
SENTSTART_n
 usage ... 81
sep
 defined .. 96
 usage ... 123
SEQUENCE
 defined .. 69, 107
 usage ... 123
Settings
 Project menu ... 10
Show Filename
 Concordance window ... 30
Show Full Path
 Concordance window ... 30
Sort by
 Concordance window ... 30
square braces
 usage ... 72
Standard toolbar
 icons ...13
standard toolbar
 defined ..6
Start
 menu ..5
Status Bar
 usage ..13
status window
 defined ...24
Stop button
 Browser ...12
 defined ...24, 25
subnodes
 count ..35
Syntax Check button
 defined ...17

T

Taxonomy as Text
 View menu ..9
Taxonomy tab
 defined ...6
taxonomy window
 navigation within ...63
TEST button
 defined ...24
Test Disabled field
 defined ...20
Test File column
 heading ..149
Test File field
 defined ...24
Test File window
 usage ...139
Test files for this concept
 select ..148
Test multiple files
 Concordance window .. 30 , 163
<table>
<thead>
<tr>
<th>Testing menu</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browser</td>
<td>12</td>
</tr>
<tr>
<td>Clear Test Document</td>
<td>11</td>
</tr>
<tr>
<td>Decrease Font Size</td>
<td>12</td>
</tr>
<tr>
<td>Delete Selected Test File</td>
<td>11</td>
</tr>
<tr>
<td>Import Failing Test Files</td>
<td>11</td>
</tr>
<tr>
<td>Import Test Files</td>
<td>11</td>
</tr>
<tr>
<td>Increase Font Size</td>
<td>12</td>
</tr>
<tr>
<td>Open Test Document</td>
<td>11</td>
</tr>
<tr>
<td>Remove Tags</td>
<td>12</td>
</tr>
<tr>
<td>Save Test Document</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing Path field</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>testing process</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>customize</td>
<td>146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>testing set</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTF-8 encoding</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing tab</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined</td>
<td>6, 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing window</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>testing results</td>
<td>158</td>
</tr>
<tr>
<td>usage</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text Find</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit menu</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text Replace</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit menu</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>token</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>defined</td>
<td>70</td>
</tr>
<tr>
<td>usage</td>
<td>98, 104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tree Find</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit menu</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tree Find icon</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>usage</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tree Find window</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>access</td>
<td>37</td>
</tr>
<tr>
<td>Find field</td>
<td>37</td>
</tr>
<tr>
<td>Find Next button</td>
<td>37</td>
</tr>
<tr>
<td>Match case option</td>
<td>37</td>
</tr>
<tr>
<td>Replace button</td>
<td>38</td>
</tr>
<tr>
<td>usage</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tree Replace</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edit menu</td>
<td>8</td>
</tr>
</tbody>
</table>
Tree Replace window
 usage ...38

U

Use same name for both fields
 Enter Names window ..33
user interface
 display ..5
UTF-8 encoding
 language fonts ..53
 testing set ...53

V

View menu
 Number of Taxonomy Nodes ..9
 Refresh Tree ..9
 Taxonomy as Text ..9

W

Web browser
 Document window ...23

X

XML Tags to Ignore
 Misc tab ..28