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Overview: NLMIXED Procedure

Introduction

The NLMIXED procedure fits nonlinear mixed models—that is, models in which both fixed and random
effects enter nonlinearly. These models have a wide variety of applications, two of the most common being
pharmacokinetics and overdispersed binomial data. PROC NLMIXED enables you to specify a conditional
distribution for your data (given the random effects) having either a standard form (normal, binomial, Pois-
son) or a general distribution that you code using SAS programming statements.

PROC NLMIXED fits nonlinear mixed models by maximizing an approximation to the likelihood integrated
over the random effects. Different integral approximations are available, the principal ones being adaptive
Gaussian quadrature and a first-order Taylor series approximation. A variety of alternative optimization
techniques are available to carry out the maximization; the default is a dual quasi-Newton algorithm.

Successful convergence of the optimization problem results in parameter estimates along with their approx-
imate standard errors based on the second derivative matrix of the likelihood function. PROC NLMIXED
enables you to use the estimated model to construct predictions of arbitrary functions by using empirical
Bayes estimates of the random effects. You can also estimate arbitrary functions of the nonrandom parame-
ters, and PROC NLMIXED computes their approximate standard errors by using the delta method.

Literature on Nonlinear Mixed Models

Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997) provide good overviews as well as general
theoretical developments and examples of nonlinear mixed models. Pinheiro and Bates (1995) is a primary
reference for the theory and computational techniques of PROC NLMIXED. They describe and compare
several different integrated likelihood approximations and provide evidence that adaptive Gaussian quadra-
ture is one of the best methods. Davidian and Gallant (1993) also use Gaussian quadrature for nonlinear
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mixed models, although the smooth nonparametric density they advocate for the random effects is currently
not available in PROC NLMIXED.

Traditional approaches to fitting nonlinear mixed models involve Taylor series expansions, expanding
around either zero or the empirical best linear unbiased predictions of the random effects. The former
is the basis for the well-known first-order method of Beal and Sheiner (1982, 1988) and Sheiner and Beal
(1985), and it is optionally available in PROC NLMIXED. The latter is the basis for the estimation method
of Lindstrom and Bates (1990), and it is not available in PROC NLMIXED. However, the closely related
Laplacian approximation is an option; it is equivalent to adaptive Gaussian quadrature with only one quadra-
ture point. The Laplacian approximation and its relationship to the Lindstrom-Bates method are discussed
by Beal and Sheiner (1992), Wolfinger (1993), Vonesh (1992, 1996), Vonesh and Chinchilli (1997), and
Wolfinger and Lin (1997).

A parallel literature exists in the area of generalized linear mixed models, in which random effects appear as
a part of the linear predictor inside a link function. Taylor-series methods similar to those just described are
discussed in articles such as Harville and Mee (1984), Stiratelli, Laird, and Ware (1984), Gilmour, Anderson,
and Rae (1985), Goldstein (1991), Schall (1991), Engel and Keen (1992), Breslow and Clayton (1993),
Wolfinger and O’Connell (1993), and McGilchrist (1994), but such methods have not been implemented
in PROC NLMIXED because they can produce biased results in certain binary data situations (Rodriguez
and Goldman 1995, Lin and Breslow 1996). Instead, a numerical quadrature approach is available in PROC
NLMIXED, as discussed in Pierce and Sands (1975), Anderson and Aitkin (1985), Crouch and Spiegelman
(1990), Hedeker and Gibbons (1994), Longford (1994), McCulloch (1994), Liu and Pierce (1994), and
Diggle, Liang, and Zeger (1994).

Nonlinear mixed models have important applications in pharmacokinetics, and Roe (1997) provides a wide-
ranging comparison of many popular techniques. Yuh et al. (1994) provide an extensive bibliography on
nonlinear mixed models and their use in pharmacokinetics.

PROC NLMIXED Compared with Other SAS Procedures and Macros

The models fit by PROC NLMIXED can be viewed as generalizations of the random coefficient models fit
by the MIXED procedure. This generalization allows the random coefficients to enter the model nonlinearly,
whereas in PROC MIXED they enter linearly. With PROC MIXED you can perform both maximum likeli-
hood and restricted maximum likelihood (REML) estimation, whereas PROC NLMIXED implements only
maximum likelihood. This is because the analog to the REML method in PROC NLMIXED would involve
a high-dimensional integral over all of the fixed-effects parameters, and this integral is typically not avail-
able in closed form. Finally, PROC MIXED assumes the data to be normally distributed, whereas PROC
NLMIXED enables you to analyze data that are normal, binomial, or Poisson or that have any likelihood
programmable with SAS statements.

PROC NLMIXED does not implement the same estimation techniques available with the NLINMIX macro
or the default estimation method of the GLIMMIX procedure. These are based on the estimation methods of
Lindstrom and Bates (1990), Breslow and Clayton (1993), and Wolfinger and O’Connell (1993), and they
iteratively fit a set of generalized estimating equations (see Chapters 14 and 15 of Littell et al. 2006 and
Wolfinger 1997). In contrast, PROC NLMIXED directly maximizes an approximate integrated likelihood.
This remark also applies to the SAS/IML macros MIXNLIN (Vonesh and Chinchilli 1997) and NLMEM
(Galecki 1998).
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The GLIMMIX procedure also fits mixed models for nonnormal data with nonlinearity in the conditional
mean function. In contrast to the NLMIXED procedure, PROC GLIMMIX assumes that the model contains
a linear predictor that links covariates to the conditional mean of the response. The NLMIXED procedure
is designed to handle general conditional mean functions, whether they contain a linear component or not.
As mentioned earlier, the GLIMMIX procedure by default estimates parameters in generalized linear mixed
models by pseudo-likelihood techniques, whereas PROC NLMIXED by default performs maximum likeli-
hood estimation by adaptive Gauss-Hermite quadrature. This estimation method is also available with the
GLIMMIX procedure (METHOD=QUAD in the PROC GLIMMIX statement).

PROC NLMIXED has close ties with the NLP procedure in SAS/OR software. PROC NLMIXED uses
a subset of the optimization code underlying PROC NLP and has many of the same optimization-based
options. Also, the programming statement functionality used by PROC NLMIXED is the same as that used
by PROC NLP and the MODEL procedure in SAS/ETS software.

Getting Started: NLMIXED Procedure

Nonlinear Growth Curves with Gaussian Data

As an introductory example, consider the orange tree data of Draper and Smith (1981). These data consist
of seven measurements of the trunk circumference (in millimeters) on each of five orange trees. You can
input these data into a SAS data set as follows:

data tree;
input tree day y;

datalines;
1 118 30
1 484 58

. more lines ...

5 1582 177

4

Lindstrom and Bates (1990) and Pinheiro and Bates (1995) propose the following logistic nonlinear mixed
model for these data:

Vi = by +uir ‘e
Y 14 exp[—(dij —b2)/b3] 7
Here, y;; represents the jth measurement on the ithtree ( = 1,...,5; j = 1,...,7), d;; is the corre-

sponding day, b1, by, b3 are the fixed-effects parameters, u;; are the random-effect parameters assumed to
be iid N(0,02), and ¢; ; are the residual errors assumed to be iid N (0, 02) and independent of the u;;. This
model has a logistic form, and the random-effect parameters u;; enter the model linearly.

The statements to fit this nonlinear mixed model are as follows:
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proc nlmixed data=tree;

parms bl=190 b2=700 b3=350 s2u=1000 s2e=60;

num = bl+ul;

ex exp (- (day-b2) /b3) ;

den = 1 + ex;

model y ~ normal (num/den, s2e);

random ul ~ normal (0,s2u) subject=tree;
run;

The PROC NLMIXED statement invokes the procedure and inputs the tree data set. The PARMS statement
identifies the unknown parameters and their starting values. Here there are three fixed-effects parameters
(b1, b2, b3) and two variance components (S2u, s2e).

The next three statements are SAS programming statements specifying the logistic mixed model. A new
variable u1 is included to identify the random effect. These statements are evaluated for every observation
in the data set when the NLMIXED procedure computes the log likelihood function and its derivatives.

The MODEL statement defines the dependent variable and its conditional distribution given the random
effects. Here a normal (Gaussian) conditional distribution is specified with mean num/den and variance
s2e.

The RANDOM statement defines the single random effect to be u1, and specifies that it follow a normal
distribution with mean 0 and variance s2u. The SUBJECT= argument in the RANDOM statement defines
a variable indicating when the random effect obtains new realizations; in this case, it changes according to
the values of the tree variable. PROC NLMIXED assumes that the input data set is clustered according to
the levels of the tree variable; that is, all observations from the same tree occur sequentially in the input data
set.

The output from this analysis is as follows.

Figure 63.1 Model Specifications

The NLMIXED Procedure
Specifications
Data Set WORK. TREE
Dependent Variable y
Distribution for Dependent Variable Normal
Random Effects ul
Distribution for Random Effects Normal
Subject Variable tree
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian
Quadrature

The “Specifications” table lists basic information about the nonlinear mixed model you have specified (Fig-
ure 63.1). Included are the input data set, the dependent and subject variables, the random effects, the
relevant distributions, and the type of optimization. The “Dimensions” table lists various counts related to
the model, including the number of observations, subjects, and parameters (Figure 63.2). These quantities
are useful for checking that you have specified your data set and model correctly. Also listed is the number
of quadrature points that PROC NLMIXED has selected based on the evaluation of the log likelihood at the
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starting values of the parameters. Here, only one quadrature point is necessary because the random-effect
parameters u;; enter the model linearly. (The Gauss-Hermite quadrature with a single quadrature point
results in the Laplace approximation of the log likelihood.)

Figure 63.2 Dimensions Table for Growth Curve Model

Dimensions
Observations Used 35
Observations Not Used 0
Total Observations 35
Subjects 5
Max Obs Per Subject 7
Parameters 5
Quadrature Points 1

Figure 63.3 Starting Values of Parameter Estimates and Negative Log Likelihood

Parameters
bl b2 b3 s2u s2e NegLogLike
190 700 350 1000 60 132.491787

The “Parameters” table lists the parameters to be estimated, their starting values, and the negative log like-
lihood evaluated at the starting values (Figure 63.3).

Figure 63.4 Iteration History for Growth Curve Model

Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope
1 4 131.686742 0.805045 0.010269 -0.633
2 6 131.64466 0.042082 0.014783 -0.0182
3 8 131.614077 0.030583 0.009809 -0.02796
4 10 131.572522 0.041555 0.001186 -0.01344
5 11 131.571895 0.000627 0.0002 -0.00121
6 13 131.571889 5.549E-6 0.000092 -7.68E-6
7 15 131.571888 1.096E-6 6.097E-6 -1.29E-6

NOTE: GCONV convergence criterion satisfied.

The “Iteration History” table records the history of the minimization of the negative log likelihood (Fig-
ure 63.4). For each iteration of the quasi-Newton optimization, values are listed for the number of function
calls, the value of the negative log likelihood, the difference from the previous iteration, the absolute value
of the largest gradient, and the slope of the search direction. The note at the bottom of the table indicates
that the algorithm has converged successfully according to the GCONV convergence criterion, a standard
criterion computed using a quadratic form in the gradient and the inverse Hessian.
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The final maximized value of the log likelihood as well as the information criterion of Akaike (AIC), its
small sample bias corrected version (AICC), and the Bayesian information criterion (BIC) in the “smaller
is better” form appear in the “Fit Statistics” table (Figure 63.5). These statistics can be used to compare
different nonlinear mixed models.

Figure 63.5 Fit Statistics for Growth Curve Model

Fit Statistics

-2 Log Likelihood 263.1
AIC (smaller is better) 273.1
AICC (smaller is better) 275.2
BIC (smaller is better) 271.2

Figure 63.6 Parameter Estimates at Convergence

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t]| Alpha Lower
bl 192.05 15.6473 4 12.27 0.0003 0.05 148.61
b2 727.90 35.2472 4 20.65 <.0001 0.05 630.04
b3 348.07 27.0790 4 12.85 0.0002 0.05 272.88
s2u 999.88 647 .44 4 1.54 0.1974 0.05 -797.70
s2e 61.5139 15.8831 4 3.87 0.0179 0.05 17.4153
Parameter Estimates
Parameter Upper Gradient
bl 235.50 1.154E-6
b2 825.76 5.289E-6
b3 423.25 -6.1E-6
s2u 2797.45 -3.84E-6
s2e 105.61 2.892E-6

The maximum likelihood estimates of the five parameters and their approximate standard errors computed
using the final Hessian matrix are displayed in the “Parameter Estimates” table (Figure 63.6). Approximate
t-values and Wald-type confidence limits are also provided, with degrees of freedom equal to the number of
subjects minus the number of random effects. You should interpret these statistics cautiously for variance
parameters like s2u and s2e. The final column in the output shows the gradient vector at the optimization
solution. Each element appears to be sufficiently small to indicate a stationary point.

Since the random-effect parameters u;; enter the model linearly, you can obtain equivalent results by using
the first-order method (specify METHOD=FIRO in the PROC NLMIXED statement).
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Logistic-Normal Model with Binomial Data

This example analyzes the data from Beitler and Landis (1985), which represent results from a multi-center
clinical trial investigating the effectiveness of two topical cream treatments (active drug, control) in curing an
infection. For each of eight clinics, the number of trials and favorable cures are recorded for each treatment.
The SAS data set is as follows.

data infection;
input clinic t x n;
datalines;

11 36

10 37

16 20

22 32

19

19

16

17

17

12

11

10

00O JdJJoo U undbdWWDMDDNDRR

oOroOrorHrokrorokroron®r
'—l

O R RPOROORERDNDNLD

g o 0o U

~.

Suppose n;; denotes the number of trials for the ith clinic and the jth treatment i = 1,...,8;j = 0,1),
and x;; denotes the corresponding number of favorable cures. Then a reasonable model for the preceding
data is the following logistic model with random effects:

Xij [u; ~ Binomial(n;;, pi;)
and

nij = log (—pl'/ ) = Po + B1tj + u;
1 — pij

The notation ; indicates the j th treatment, and the u; are assumed to be iid N(0, 02).

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=infection;
parms betal=-1 betal=1 s2u=2;

eta = betal0 + betalx*t + u;
expeta = exp(eta);
P = expeta/ (l+expeta);

model x ~ binomial (n,p);
random u ~ normal (0, s2u) subject=clinic;
predict eta out=eta;
estimate 'l/betal' 1l/betal;
run;
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The PROC NLMIXED statement invokes the procedure, and the PARMS statement defines the parameters
and their starting values. The next three statements define p;;, and the MODEL statement defines the
conditional distribution of x;; to be binomial. The RANDOM statement defines u to be the random effect
with subjects defined by the clinic variable.

The PREDICT statement constructs predictions for each observation in the input data set. For this example,
predictions of 7;; and approximate standard errors of prediction are output to a data set named eta. These
predictions include empirical Bayes estimates of the random effects u;.

The ESTIMATE statement requests an estimate of the reciprocal of §1.

The output for this model is as follows.

Figure 63.7 Model Information and Dimensions for Logistic-Normal Model

The NLMIXED Procedure
Specifications
Data Set WORK . INFECTION
Dependent Variable b3
Distribution for Dependent Variable Binomial
Random Effects u
Distribution for Random Effects Normal
Subject Variable clinic
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian
Quadrature
Dimensions
Observations Used 16
Observations Not Used 0
Total Observations 16
Subijects 8
Max Obs Per Subject 2
Parameters 3
Quadrature Points 5

The “Specifications” table provides basic information about the nonlinear mixed model (Figure 63.7). For
example, the distribution of the response variable, conditional on normally distributed random effects, is
binomial. The “Dimensions” table provides counts of various variables. You should check this table to
make sure the data set and model have been entered properly. PROC NLMIXED selects five quadrature
points to achieve the default accuracy in the likelihood calculations.

Figure 63.8 Starting Values of Parameter Estimates

Parameters
betal betal s2u NegLogLike

-1 1 2 37.5945925
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The “Parameters” table lists the starting point of the optimization and the negative log likelihood at the

starting values (Figure 63.8).

Figure 63.9 lteration History and Fit Statistics for Logistic-Normal Model

Iteration History
Iter Calls NegLogLike Diff MaxGrad Slope
1 2 37.3622692 0.232323 2.882077 -19.3762
2 3 37.1460375 0.216232 0.921926 -0.82852
3 5 37.0300936 0.115944 0.315897 -0.59175
4 6 37.0223017 0.007792 0.01906 -0.01615
5 7 37.0222472 0.000054 0.001743 -0.00011
6 9 37.0222466 6.57E-7 0.000091 -1.28E-6
7 11 37.0222466 5.38E-10 2.078E-6 -1.1E-9
NOTE: GCONV convergence criterion satisfied.
Fit Statistics
-2 Log Likelihood 74.0
AIC (smaller is better) 80.0
AICC (smaller is better) 82.0
BIC (smaller is better) 80.3

The “Iteration History” table indicates successful convergence in seven iterations (Figure 63.9). The “Fit

Statistics” table lists some useful statistics based on the maximized value of the log likelihood.

Figure 63.10 Parameter Estimates for Logistic-Normal Model

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t]| Alpha Lower
betal -1.1974 0.5561 7 -2.15 0.0683 0.05 -2.5123
betal 0.7385 0.3004 7 2.46 0.0436 0.05 0.02806
s2u 1.9591 1.1903 7 1.65 0.1438 0.05 -0.8554
Parameter Estimates
Parameter Upper Gradient
betal 0.1175 -3.1E-7
betal 1.4488 -2.08E-6
s2u 4.7736 —-2.48E-7

The “Parameter Estimates” table indicates marginal significance of the two fixed-effects parameters (Fig-
ure 63.10). The positive value of the estimate of 81 indicates that the treatment significantly increases the
chance of a favorable cure.
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Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t]|
1/betal 1.3542 0.5509 7 2.46 0.0436

Alpha Lower Upper

0.05 0.05146 2.6569

The “Additional Estimates” table displays results from the ESTIMATE statement (Figure 63.11). The es-
timate of 1/8; equals 1/0.7385 = 1.3542 and its standard error equals 0.3004/0.7385% = 0.5509 by the
delta method (Billingsley 1986, Cox 1998). Note that this particular approximation produces a ¢-statistic

identical to that for the estimate of 8.

Not shown is the eta data set, which contains the original 16 observations and predictions of the 7;;.

Syntax: NLMIXED Procedure

The following statements can be used with the NLMIXED procedure:

PROC NLMIXED < options> ;
ARRAY array specification ;
BOUNDS boundary constraints ;
BY variables ;
CONTRAST 'label’ expression < ,expression>< options> ;
ESTIMATE ’label’ expression < options> ;
ID names ;
MODEL model specification ;
PARMS parameters and starting values ;
PREDICT expression OUT=SAS-data-set < options > ;
RANDOM random effects specification ;
REPLICATE variable ;
Program statements ;

The following sections provide a detailed description of each of these statements.

PROC NLMIXED Statement

PROC NLMIXED < options > ;

This statement invokes the NLMIXED procedure. A large number of options are available in the PROC
NLMIXED statement, and Table 63.1 categorizes them according to function.
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Table 63.1 PROC NLMIXED Statement Options

Option Description

Basic Options

DATA= input data set

METHOD= integration method

Displayed Output Specifications

START gradient at starting values

HESS Hessian matrix

ITDETAILS iteration details

CORR correlation matrix

COovV covariance matrix

ECORR correlation matrix of additional estimates
ECOV covariance matrix of additional estimates
EDER derivatives of additional estimates
EMPIRICAL empirical (“sandwich”) estimator of covariance matrix
ALPHA= alpha for confidence limits

DF= degrees of freedom for p-values and confidence limits
Debugging Output

LIST model program, variables

LISTCODE compiled model program

LISTDEP model dependency listing

LISTDER model derivatives

XREF model cross references

FLOW model execution messages

TRACE detailed model execution messages

Quadrature Options

NOAD no adaptive centering
NOADSCALE no adaptive scaling
OouTQ= output data set

QFAC= search factor

QMAX= maximum points
QPOINTS= number of points
QSCALEFAC= scale factor

QTOL= tolerance

Empirical Bayes Options

EBSTEPS= number of Newton steps
EBSUBSTEPS=  number of substeps
EBSSFRAC= step-shortening fraction
EBSSTOL= step-shortening tolerance
EBTOL= convergence tolerance
EBOPT comprehensive optimization

EBZSTART zero starting values
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INHESSIAN<=>

RESTART=

OPTCHECK<=>

Table 63.1 continued
Option Description
Optimization Specifications
TECHNIQUE= minimization technique
UPDATE= update technique
LINESEARCH= line-search method
LSPRECISION= line-search precision
HESCAL= type of Hessian scaling

start for approximated Hessian
iteration number for update restart
check optimality in neighborhood

Derivatives Specifications

FD<=>

finite-difference derivatives

FDHESSIAN<=> finite-difference second derivatives

DIAHES

use only diagonal of Hessian

Constraint Specifications

LCEPSILON=
LCDEACT=

LCSINGULAR=

range for active constraints
LM tolerance for deactivating
tolerance for dependent constraints

Termination Criteria Specifications

MAXFUNC=
MAXITER=
MINITER=
MAXTIME=
ABSCONV=
ABSFCONV=
ABSGCONV=
ABSXCONV=
FCONV=
FCONV2=
GCONV=
XCONV=
FDIGITS=
FSIZE=
XSIZE=

maximum number of function calls
maximum number of iterations
minimum number of iterations
upper limit seconds of CPU time

absolute function convergence criterion
absolute function convergence criterion
absolute gradient convergence criterion
absolute parameter convergence criterion
relative function convergence criterion
relative function convergence criterion
relative gradient convergence criterion
relative parameter convergence criterion
number accurate digits in objective function

used in FCONYV, GCONY criterion
used in XCONYV criterion

Step Length Specifications

DAMPSTEP<=>

MAXSTEP=
INSTEP=

damped steps in line search
maximum trust-region radius
initial trust-region radius

Singularity Tolerances

SINGCHOL=
SINGHESS=

tolerance for Cholesky roots
tolerance for Hessian
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Table 63.1 continued

Option Description
SINGSWEEP= tolerance for sweep
SINGVAR= tolerance for variances

Covariance Matrix Tolerances

ASINGULAR= absolute singularity for inertia
MSINGULAR=  relative M singularity for inertia
VSINGULAR= relative V singularity for inertia

G4= threshold for Moore-Penrose inverse
COVSING= tolerance for singular COV matrix
CFACTOR= multiplication factor for COV matrix

These options are described in alphabetical order. For a description of the mathematical notation used in the
following sections, see the section “Modeling Assumptions and Notation” on page 5183.

ABSCONV=r

ABSTOL=r
specifies an absolute function convergence criterion. For minimization, termination requires
f(6 (k)) < r. The default value of r is the negative square root of the largest double-precision
value, which serves only as a protection against overflows.

ABSFCONV=r<[n] >

ABSFTOL=r<[n]>
specifies an absolute function convergence criterion. For all techniques except NMSIMP, termination
requires a small change of the function value in successive iterations:

|f@FD) — (0P <

The same formula is used for the NMSIMP technique, but (k) is defined as the vertex with the lowest
function value, and @ =1 is defined as the vertex with the highest function value in the simplex. The
default value is r = 0. The optional integer value n specifies the number of successive iterations for
which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r<[n]>

ABSGTOL=r<[n]>
specifies an absolute gradient convergence criterion. Termination requires the maximum absolute
gradient element to be small:

max |g;(0®))| < r
J

This criterion is not used by the NMSIMP technique. The default value is r = 1E—5. The optional
integer value n specifies the number of successive iterations for which the criterion must be satisfied
before the process can be terminated.
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ABSXCONV=r<[n]>

ABSXTOL=r<[n]>
specifies an absolute parameter convergence criterion. For all techniques except NMSIMP, termina-
tion requires a small Euclidean distance between successive parameter vectors,

6% 0% o= r

For the NMSIMP technique, termination requires either a small length a®) of the vertices of a restart
simplex,

a® <
or a small simplex size,
§K) <

where the simplex size 8% is defined as the L1 distance from the simplex vertex §(k) with the smallest
function value to the other n simplex points 6 l(k) +£ £

9 =3 10" @
6:#y

The default is r = 1E—8 for the NMSIMP technique and » = 0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before
the process can terminate.

ALPHA=¢
specifies the alpha level to be used in computing confidence limits. The default value is 0.05.

ASINGULAR=r

ASING=r
specifies an absolute singularity criterion for the computation of the inertia (number of positive, neg-
ative, and zero eigenvalues) of the Hessian and its projected forms. The default value is the square
root of the smallest positive double-precision value.

CFACTOR=f
specifies a multiplication factor f for the estimated covariance matrix of the parameter estimates.

cov
requests the approximate covariance matrix for the parameter estimates.

CORR
requests the approximate correlation matrix for the parameter estimates.

COVSING=r> 0
specifies a nonnegative threshold that determines whether the eigenvalues of a singular Hessian matrix
are considered to be zero.
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DAMPSTEP<=r>

DS<=r>

specifies that the initial step-size value a© for each line search (used by the QUANEW, CONGRA, or
NEWRAP technique) cannot be larger than r times the step-size value used in the former iteration. If
you specify the DAMPSTEP option without factor r, the default value is r = 2. The DAMPSTEP=r
option can prevent the line-search algorithm from repeatedly stepping into regions where some objec-
tive functions are difficult to compute or where they could lead to floating-point overflows during the
computation of objective functions and their derivatives. The DAMPSTEP=r option can save time-
costly function calls that result in very small step sizes «. For more details on setting the start values
of each line search, see the section “Restricting the Step Length” on page 5198.

DATA=SAS-data-set
specifies the input data set. Observations in this data set are used to compute the log likelihood
function that you specify with PROC NLMIXED statements.

NOTE: If you are using a RANDOM statement, the input data set must be clustered according to the
SUBJECT= variable. One easy way to accomplish this is to sort your data by the SUBJECT= variable
prior to calling PROC NLMIXED. PROC NLMIXED does not sort the input data set for you.

DF=d
specifies the degrees of freedom to be used in computing p values and confidence limits. The default
value is the number of subjects minus the number of random effects for random effects models, and
the number of observations otherwise.

DIAHES
specifies that only the diagonal of the Hessian is used.

EBOPT
requests that a more comprehensive optimization be carried out if the default empirical Bayes opti-
mization fails to converge.

EBSSFRAC=r> 0
specifies the step-shortening fraction to be used while computing empirical Bayes estimates of the
random effects. The default value is 0.8.

EBSSTOL=r> 0
specifies the objective function tolerance for determining the cessation of step-shortening while com-
puting empirical Bayes estimates of the random effects. The default value is r = 1E—S8.

EBSTEPS=n> 0
specifies the maximum number of Newton steps for computing empirical Bayes estimates of random
effects. The default value is n = 50.

EBSUBSTEPS=n> 0
specifies the maximum number of step-shortenings for computing empirical Bayes estimates of ran-
dom effects. The default value is n = 20.

EBTOL=r> 0
specifies the convergence tolerance for empirical Bayes estimation. The default value is r = €E4,
where € is the machine precision. This default value equals approximately 1E—12 on most machines.
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EBZSTART
requests that a zero be used as starting values during empirical Bayes estimation. By default, the
starting values are set equal to the estimates from the previous iteration (or zero for the first iteration).

ECOV
requests the approximate covariance matrix for all expressions specified in ESTIMATE statements.

ECORR
requests the approximate correlation matrix for all expressions specified in ESTIMATE statements.

EDER
requests the derivatives of all expressions specified in ESTIMATE statements with respect to each of
the model parameters.

EMPIRICAL
requests that the covariance matrix of the parameter estimates be computed as a likelihood-based em-
pirical (“sandwich”) estimator (White 1982). If f(0) = —log{m(0)} is the objective function for the
optimization and m (@) denotes the marginal log likelihood (see the section “Modeling Assumptions
and Notation” on page 5183 for notation and further definitions) the empirical estimator is computed
as

H(6)™! (Z g (0)gi (é)/) H(6)™!

i=1

where H is the second derivative matrix of f and g; is the first derivative of the contribution to f
by the ith subject. If you choose the EMPIRICAL option, this estimator of the covariance matrix of
the parameter estimates replaces the model-based estimator H(é)_1 in subsequent calculations. You
can output the subject-specific gradients g; to a SAS data set with the SUBGRADIENT option in the
PROC NLMIXED statement.

The EMPIRICAL option requires the presence of a RANDOM statement and is available for
METHOD=GAUSS and METHOD=ISAMP only.

FCONV=r<[n]>

FTOL=r<[n] >
specifies a relative function convergence criterion. For all techniques except NMSIMP, termination
requires a small relative change of the function value in successive iterations,

|S(0%) — (0% D)]
max(| f(0k—D)|, FSIZE) —

where FSIZE is defined by the FSIZE= option. The same formula is used for the NMSIMP technique,
but # ®) is defined as the vertex with the lowest function value, and # ®~1 is defined as the vertex
with the highest function value in the simplex. The default is r = lO_FDIGITS, where FDIGITS is
the value of the FDIGITS= option. The optional integer value n specifies the number of successive
iterations for which the criterion must be satisfied before the process can terminate.
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FCONV2=r<[n]>

FTOL2=r<[n]>
specifies another function convergence criterion. For all techniques except NMSIMP, termination
requires a small predicted reduction

df(k) s f(o(k)) — 16 (GO S(k))
of the objective function. The predicted reduction

dr @ = _glhrge) _ %S(k)/H(ms(k)

1
_ Ly
2

<r

g(k)

is computed by approximating the objective function f by the first two terms of the Taylor series and
substituting the Newton step:

sk — _[H(k)]—l g(k)

For the NMSIMP technique, termination requires a small standard deviation of the function values of
the n + 1 simplex vertices Ol(k), [=0,...,n,

\/ — [ -Few] <

i

where f (6 ®)y = # > f(e l(k)). If there are n,.; boundary constraints active at 0 ®) the mean
and standard deviation are computed only for the n + 1 — ng4¢; unconstrained vertices. The default
value is r = 1E—6 for the NMSIMP technique and r = 0 otherwise. The optional integer value
n specifies the number of successive iterations for which the criterion must be satisfied before the
process can terminate.

FD <= FORWARD | CENTRAL |r>
specifies that all derivatives be computed using finite difference approximations. The following spec-
ifications are permitted:

FD is equivalent to FD=100.
FD=CENTRAL uses central differences.
FD=FORWARD uses forward differences.

FD=r uses central differences for the initial and final evaluations of the gradient and
for the Hessian. During iteration, start with forward differences and switch to a
corresponding central-difference formula during the iteration process when one of
the following two criteria is satisfied:

e The absolute maximum gradient element is less than or equal to r times the
ABSGCONV= threshold.

e The normalized predicted function reduction (see the GTOL option) is less
than or equal to max(1E — 6, r x GTOL). The 1E—6 ensures that the switch
is done, even if you set the GTOL threshold to zero.
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Note that the FD and FDHESSIAN options cannot apply at the same time. The FDHESSIAN option is
ignored when only first-order derivatives are used. See the section “Finite-Difference Approximations
of Derivatives” on page 5194 for more information.

FDHESSIAN< =FORWARD | CENTRAL >
FDHES< =FORWARD | CENTRAL >

FDH< =FORWARD | CENTRAL >
specifies that second-order derivatives be computed using finite difference approximations based on
evaluations of the gradients.

FDHESSIAN=FORWARD uses forward differences.
FDHESSIAN=CENTRAL uses central differences.
FDHESSIAN uses forward differences for the Hessian except for the initial and final output.

Note that the FD and FDHESSIAN options cannot apply at the same time. See the section “Finite-
Difference Approximations of Derivatives” on page 5194 for more information.

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Fractional values
such as FDIGITS=4.7 are allowed. The default value is r = —log;q €, where € is the machine

precision. The value of r is used to compute the interval size h for the computation of finite-difference
approximations of the derivatives of the objective function and for the default value of the FCONV=
option.

FLOW
displays a message for each statement in the model program as it is executed. This debugging option
is very rarely needed and produces voluminous output.

FSIZE=r
specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The
default value is » = 0. For more details, see the FCONV= and GCONV= options.

G4=n> 0
specifies a dimension to determine the type of generalized inverse to use when the approximate co-
variance matrix of the parameter estimates is singular. The default value of n is 60. See the section
“Covariance Matrix” on page 5203 for more information.

GCONV=r<[n]>

GTOL=r<[n]>
specifies a relative gradient convergence criterion. For all techniques except CONGRA and NMSIMP,
termination requires that the normalized predicted function reduction is small,

g0 ®©)YHP] g6 ®) _
max(] /(6 %))|,FSIZE) ~ '

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable Hessian
estimate H is not available), the following criterion is used:

126%) 13 1s0®) I -
['2(0®) —g(@®D) |, max(| /(0 ®)], FSIZE) ~
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This criterion is not used by the NMSIMP technique.

The default value is r = 1E—8. The optional integer value n specifies the number of successive
iterations for which the criterion must be satisfied before the process can terminate.

HESCAL=0|1[2|3
HS=0/12|3

HESS

specifies the scaling version of the Hessian matrix used in NRRIDG, TRUREG, NEWRAP, or
DBLDOG optimization.

If HS is not equal to 0, the first iteration and each restart iteration sets the diagonal scaling matrix

DO = diag(d l.(O)):

dl.(o) = 4/ max(| 7Y |, €)

i,i

where H i(?) are the diagonal elements of the Hessian. In every other iteration, the diagonal scaling

matrix D) = diag (dl.(o)) is updated depending on the HS option:

HS=0 specifies that no scaling is done.

HS=1 specifies the Moré (1978) scaling update:
dl-(k+1) = max |:di(k), \/max(|Hi€];)|, 6)]

HS=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:
dl.(k+l) = max |:O.6 * di(k), \/max(|Hl.(’]§)|, e)]

HS=3 specifies that d; is reset in each iteration:

d*tD = Jmax((HP|, €)

i,i

In each scaling update, € is the relative machine precision. The default value is HS=0. Scaling of the
Hessian can be time-consuming in the case where general linear constraints are active.

requests the display of the final Hessian matrix after optimization. If you also specify the START
option, then the Hessian at the starting values is also printed.

INHESSIAN<=r>
INHESS<=r>

specifies how the initial estimate of the approximate Hessian is defined for the quasi-Newton tech-
niques QUANEW and DBLDOG. There are two alternatives:

e If you do not use the r specification, the initial estimate of the approximate Hessian is set to the
Hessian at 6 (.

e If you do use the r specification, the initial estimate of the approximate Hessian is set to the
multiple of the identity matrix, r1.



PROC NLMIXED Statement 4 5167

By default, if you do not specify the option INHESSIAN=r, the initial estimate of the approximate
Hessian is set to the multiple of the identity matrix rI, where the scalar r is computed from the
magnitude of the initial gradient.

INSTEP=r
reduces the length of the first trial step during the line search of the first iterations. For highly nonlinear
objective functions, such as the EXP function, the default initial radius of the trust-region algorithm
TRUREG or DBLDOG or the default step length of the line-search algorithms can result in arithmetic
overflows. If this occurs, you should specify decreasing values of 0 < r < 1 such as INSTEP=1E—1,
INSTEP=1E—2, INSTEP=1E—4, and so on, until the iteration starts successfully.

e For trust-region algorithms (TRUREG, DBLDOG), the INSTEP= option specifies a factor r > 0
for the initial radius A® of the trust region. The default initial trust-region radius is the length
of the scaled gradient. This step corresponds to the default radius factor of r = 1.

e For line-search algorithms (NEWRAP, CONGRA, QUANEW), the INSTEP= option specifies
an upper bound for the initial step length for the line search during the first five iterations. The
default initial step lengthis r = 1.

e For the Nelder-Mead simplex algorithm, using TECH=NMSIMP, the INSTEP=r option defines
the size of the start simplex.

For more details, see the section “Computational Problems” on page 5200.

ITDETAILS
requests a more complete iteration history, including the current values of the parameter estimates,
their gradients, and additional optimization statistics. For further details, see the section “Iterations”
on page 5206.

LCDEACT=r

LCD=r
specifies a threshold r for the Lagrange multiplier that determines whether an active inequality con-
straint remains active or can be deactivated. During minimization, an active inequality constraint can
be deactivated only if its Lagrange multiplier is less than the threshold value r < 0. The default value
is

r = —min(0.01, max(0.1 x ABSGCONYV, 0.001 x gmax(k)))

where ABSGCONV is the value of the absolute gradient criterion, and gmax®) is the maximum
absolute element of the (projected) gradient g®) or /g% (See the section “Active Set Methods™ for
a definition of Z.)

LCEPSILON=r > 0

LCEPS=r> 0

LCE=r> 0
specifies the range for active and violated boundary constraints. The default value is r = 1E—8.
During the optimization process, the introduction of rounding errors can force PROC NLMIXED
to increase the value of r by a factor of 10, 100, .... If this happens, it is indicated by a message
displayed in the log.



5168 4 Chapter 63: The NLMIXED Procedure

LCSINGULAR=r> 0
LCSING=r> 0

LCS=r> 0
specifies a criterion r, used in the update of the QR decomposition, that determines whether an active
constraint is linearly dependent on a set of other active constraints. The default value is r = 1E—8.
The larger r becomes, the more the active constraints are recognized as being linearly dependent. If
the value of r is larger than 0.1, it is reset to 0.1.

LINESEARCH=/

LIS=/

specifies the line-search method for the CONGRA, QUANEW, and NEWRAP optimization tech-

niques. See Fletcher (1987) for an introduction to line-search techniques. The value of i can be

1,...,8. For CONGRA, QUANEW and NEWRAP, the default value is i = 2.

LIS=1 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is similar to one
used by the Harwell subroutine library.

LIS=2 specifies a line-search method that needs more function than gradient calls for
quadratic and cubic interpolation and cubic extrapolation; this method is imple-
mented as shown in Fletcher (1987) and can be modified to an exact line search by
using the LSPRECISION= option.

LIS=3 specifies a line-search method that needs the same number of function and gradient
calls for cubic interpolation and cubic extrapolation; this method is implemented
as shown in Fletcher (1987) and can be modified to an exact line search by using
the LSPRECISION= option.

LIS=4 specifies a line-search method that needs the same number of function and gradient
calls for stepwise extrapolation and cubic interpolation.

LIS=5 specifies a line-search method that is a modified version of LIS=4.

LIS=6 specifies golden section line search (Polak 1971), which uses only function values
for linear approximation.

LIS=7 specifies bisection line search (Polak 1971), which uses only function values for
linear approximation.

LIS=8 specifies the Armijo line-search technique (Polak 1971), which uses only function
values for linear approximation.

LIST
displays the model program and variable lists. The LIST option is a debugging feature and is not
normally needed.

LISTCODE
displays the derivative tables and the compiled program code. The LISTCODE option is a debugging
feature and is not normally needed.

LISTDEP

produces a report that lists, for each variable in the program, the variables that depend on it and on
which it depends. The LISTDEP option is a debugging feature and is not normally needed.
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LISTDER
displays a table of derivatives. This table lists each nonzero derivative computed for the problem. The
LISTDER option is a debugging feature and is not normally needed.

LOGNOTE<=n>
writes periodic notes to the log that describe the current status of computations. It is designed for use
with analyses requiring extensive CPU resources. The optional integer value n specifies the desired
level of reporting detail. The default is n = 1. Choosing n = 2 adds information about the objective
function values at the end of each iteration. The most detail is obtained with n = 3, which also reports
the results of function evaluations within iterations.

LSPRECISION=r

LSP=r
specifies the degree of accuracy that should be obtained by the line-search algorithms LIS=2 and
LIS=3. Usually an imprecise line search is inexpensive and successful. For more difficult optimization
problems, a more precise and expensive line search might be necessary (Fletcher 1987). The second
line-search method (which is the default for the NEWRAP, QUANEW, and CONGRA techniques)
and the third line-search method approach exact line search for small LSPRECISION= values. If you
have numerical problems, you should try to decrease the LSPRECISION= value to obtain a more
precise line search. The default values are shown in the following table.

TECH= UPDATE= LSP default

QUANEW DBFGS, BFGS r =04
QUANEW DDFP, DFP r=0.06
CONGRA all r=0.1
NEWRAP no update r=09

For more details, see Fletcher (1987).

MAXFUNC-=/

MAXFU=i
specifies the maximum number i of function calls in the optimization process. The default values are
as follows:

TRUREG, NRRIDG, NEWRAP: 125
QUANEW, DBLDOG: 500
CONGRA: 1000

e NMSIMP: 3000

Note that the optimization can terminate only after completing a full iteration. Therefore, the number
of function calls that is actually performed can exceed the number that is specified by the MAX-
FUNC-= option.

MAXITER=/

MAXIT=/
specifies the maximum number i of iterations in the optimization process. The default values are as
follows:
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e TRUREG, NRRIDG, NEWRAP: 50
e QUANEW, DBLDOG: 200

e CONGRA: 400

e NMSIMP: 1000

These default values are also valid when i is specified as a missing value.

MAXSTEP=r<[n] >
specifies an upper bound for the step length of the line-search algorithms during the first » iterations.
By default, r is the largest double-precision value and # is the largest integer available. Setting this
option can improve the speed of convergence for the CONGRA, QUANEW, and NEWRAP tech-
niques.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The default value is
the largest floating-point double representation of your computer. Note that the time specified by the
MAXTIME-= option is checked only once at the end of each iteration. Therefore, the actual running
time can be much longer than that specified by the MAXTIME= option. The actual running time
includes the rest of the time needed to finish the iteration and the time needed to generate the output
of the results.

METHOD=value
specifies the method for approximating the integral of the likelihood over the random effects. Valid
values are as follows:

FIRO
specifies the first-order method of Beal and Sheiner (1982). When using METHOD=FIRO, you
must specify the NORMAL distribution in the MODEL statement and you must also specify a
RANDOM statement.

GAUSS
specifies adaptive Gauss-Hermite quadrature (Pinheiro and Bates 1995). You can prevent the
adaptation with the NOAD option or prevent adaptive scaling with the NOADSCALE option.
This is the default integration method.

HARDY
specifies Hardy quadrature based on an adaptive trapezoidal rule. This method is available only
for one-dimensional integrals; that is, you must specify only one random effect.

ISAMP

specifies adaptive importance sampling (Pinheiro and Bates 1995). You can prevent the adap-
tation with the NOAD option or prevent adaptive scaling with the NOADSCALE option. You
can use the SEED= option to specify a starting seed for the random number generation used in
the importance sampling. If you do not specify a seed, or if you specify a value less than or
equal to zero, the seed is generated from reading the time of day from the computer clock.
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MINITER=/

MINIT=/
specifies the minimum number of iterations. The default value is 0. If you request more iterations
than are actually needed for convergence to a stationary point, the optimization algorithms can behave
strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for
the required number of iterations.

MSINGULAR=r > 0

MSING=r> 0
specifies a relative singularity criterion for the computation of the inertia (number of positive, neg-
ative, and zero eigenvalues) of the Hessian and its projected forms. The default value is 1E—12 if
you do not specify the SINGHESS= option; otherwise, the default value is max(10e, (1E — 4) x
SINGHESS). See the section “Covariance Matrix” on page 5203 for more information.

NOAD
requests that the Gaussian quadrature be nonadaptive; that is, the quadrature points are centered at
zero for each of the random effects and the current random-effects variance matrix is used as the scale
matrix.

NOADSCALE
requests nonadaptive scaling for adaptive Gaussian quadrature; that is, the quadrature points are cen-
tered at the empirical Bayes estimates for the random effects, but the current random-effects variance
matrix is used as the scale matrix. By default, the observed Hessian from the current empirical Bayes
estimates is used as the scale matrix.

OPTCHECK<=r> 0>
computes the function values f(6;) of a grid of points #; in a ball of radius of r about 8 *. If you
specify the OPTCHECK option without factor r, the default value is » = 0.1 at the starting point and
r = 0.01 at the terminating point. If a point 6" is found with a better function value than f(6*), then
optimization is restarted at 6.

OUTQ=SAS-data-set
specifies an output data set containing the quadrature points used for numerical integration.

QFAC=r> 0
specifies the additive factor used to adaptively search for the number of quadrature points. For
METHOD=GAUSS, the search sequence is 1, 3, 5, 7, 9, 11, 11 + r, 11 + 2r, ..., where the de-
fault value of r is 10. For METHOD=ISAMP, the search sequence is 10, 10 + r, 10 + 2r, ..., where
the default value of r is 50.

QMAX=r> 0
specifies the maximum number of quadrature points permitted before the adaptive search is aborted.
The default values are 31 for adaptive Gaussian quadrature, 61 for nonadaptive Gaussian quadrature,
160 for adaptive importance sampling, and 310 for nonadaptive importance sampling.

QPOINTS=n> 0
specifies the number of quadrature points to be used during evaluation of integrals. For
METHOD=GAUSS, n equals the number of points used in each dimension of the random ef-
fects, resulting in a total of n” points, where r is the number of dimensions. For METHOD=ISAMP,
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n specifies the total number of quadrature points regardless of the dimension of the random effects.
By default, the number of quadrature points is selected adaptively, and this option disables the
adaptive search.

QSCALEFAC=r> 0
specifies a multiplier for the scale matrix used during quadrature calculations. The default value is
1.0.

QTOL=r> 0
specifies the tolerance used to adaptively select the number of quadrature points. When the relative
difference between two successive likelihood calculations is less than r, then the search terminates
and the lesser number of quadrature points is used during the subsequent optimization process. The
default value is 1E—4.

RESTART=/> 0

REST=i >0
specifies that the QUANEW or CONGRA algorithm is restarted with a steepest descent/ascent search
direction after, at most, i iterations. Default values are as follows:

e CONGRA: UPDATE=PB: restart is performed automatically, i is not used.
e CONGRA: UPDATE#PB: i = min(10n, 80), where n is the number of parameters.
o QUANEW: | is the largest integer available.

SEED=/
specifies the random number seed for METHOD=ISAMP. If you do not specify a seed, or if you
specify a value less than or equal to zero, the seed is generated from reading the time of day from the
computer clock. The value must be less than 231 — 1.

SINGCHOL=r> 0
specifies the singularity criterion r for Cholesky roots of the random-effects variance matrix and scale
matrix for adaptive Gaussian quadrature. The default value is 1E4 times the machine epsilon; this
product is approximately 1E—12 on most computers.

SINGHESS=r > 0
specifies the singularity criterion r for the inversion of the Hessian matrix. The default value is 1E—8.
See the ASINGULAR, MSINGULAR=, and VSINGULAR= options for more information.

SINGSWEEP=r > 0
specifies the singularity criterion r for inverting the variance matrix in the first-order method and the
empirical Bayes Hessian matrix. The default value is 1E4 times the machine epsilon; this product is
approximately 1E—12 on most computers.

SINGVAR=r > 0
specifies the singularity criterion r below which statistical variances are considered to equal zero.
The default value is 1E4 times the machine epsilon; this product is approximately 1IE—12 on most
computers.

START
requests that the gradient of the log likelihood at the starting values be displayed. If you also specify
the HESS option, then the starting Hessian is displayed as well.
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SUBGRADIENT=SAS-data-set

SUBGRAD=SAS-data-set
specifies a SAS data set to save in models with RANDOM statement the subject-specific gradients of
the integrated, marginal log-likelihood with respect to all parameters. The sum of the subject-specific
gradients equals the gradient reported in the “Parameter Estimates” table. The data set contains a
variable identifying the subjects.

In models without RANDOM statement the SUBGRADIENT= data set contains the observation-
wise gradient. The variable identifying the SUBJECT= is then replaced with the Observation. This
observation counter includes observations not used in the analysis and is reset in each BY-group.

Saving disaggregated gradient information with the SUBGRADIENT= option requires
METHOD=GAUSS or METHOD=ISAMP.

TECHNIQUE=value

TECH=value
specifies the optimization technique. Valid values are as follows:

e CONGRA
performs a conjugate-gradient optimization, which can be more precisely specified with the
UPDATE-= option and modified with the LINESEARCH= option. When you specify this option,
UPDATE=PB by default.

e DBLDOG
performs a version of double-dogleg optimization, which can be more precisely specified with
the UPDATE= option. When you specify this option, UPDATE=DBFGS by default.

e NMSIMP
performs a Nelder-Mead simplex optimization.
e NONE

does not perform any optimization. This option can be used as follows:

— to perform a grid search without optimization
— to compute estimates and predictions that cannot be obtained efficiently with any of the
optimization techniques

e NEWRAP
performs a Newton-Raphson optimization combining a line-search algorithm with ridging. The
line-search algorithm LIS=2 is the default method.

e NRRIDG
performs a Newton-Raphson optimization with ridging.
e QUANEW

performs a quasi-Newton optimization, which can be defined more precisely with the UPDATE=
option and modified with the LINESEARCH= option. This is the default estimation method.

e TRUREG
performs a trust region optimization.

TRACE
displays the result of each operation in each statement in the model program as it is executed. This
debugging option is very rarely needed, and it produces voluminous output.



5174 4 Chapter 63: The NLMIXED Procedure

UPDATE=method

UPD=method
specifies the update method for the quasi-Newton, double-dogleg, or conjugate-gradient optimization
technique. Not every update method can be used with each optimizer. See the section “Optimization
Algorithms” on page 5188 for more information.

Valid methods are as follows:

e BFGS
performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse
Hessian matrix.

e DBFGS
performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the default
update method.

e DDFP
performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the
Hessian matrix.

e DFP
performs the original DFP update of the inverse Hessian matrix.
e PB
performs the automatic restart update method of Powell (1977) and Beale (1972).
e FR
performs the Fletcher-Reeves update (Fletcher 1987).
e PR
performs the Polak-Ribiere update (Fletcher 1987).
e CD

performs a conjugate-descent update of Fletcher (1987).

VSINGULAR=r> 0

VSING=r> 0
specifies a relative singularity criterion for the computation of the inertia (number of positive, nega-
tive, and zero eigenvalues) of the Hessian and its projected forms. The default value is r = 1E—8 if
the SINGHESS= option is not specified, and it is the value of SINGHESS= option otherwise. See the
section “Covariance Matrix” on page 5203 for more information.

XCONV=r<[n]>

XTOL=r<[n]>
specifies the relative parameter convergence criterion. For all techniques except NMSIMP, termina-
tion requires a small relative parameter change in subsequent iterations:

max ; 0% — g%

<r
max(|0$°)]. 0%~ XSIZE)

For the NMSIMP technique, the same formula is used, but 8 %) is defined as the vertex with the lowest
function value and 8 =1 is defined as the vertex with the highest function value in the simplex.
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The default value is r = 1E—8 for the NMSIMP technique and » = 0 otherwise. The optional integer
value n specifies the number of successive iterations for which the criterion must be satisfied before
the process can be terminated.

XREF
displays a cross-reference of the variables in the program showing where each variable is referenced
or given a value. The XREF listing does not include derivative variables. This option is a debugging
feature and is not normally needed.

XSIZE=r > 0
specifies the XSIZE parameter of the relative parameter termination criterion. The default value is
r = 0. For more details, see the XCONV= option.

ARRAY Statement

ARRAY arrayname [{ dimensions }] [$] [variables and constants] ;

The ARRAY statement is similar to, but not exactly the same as, the ARRAY statement in the SAS DATA
step, and it is exactly the same as the ARRAY statements in the NLIN, NLP, and MODEL procedures. The
ARRAY statement is used to associate a name (of no more than eight characters) with a list of variables
and constants. The array name is used with subscripts in the program to refer to the array elements. The
following statements illustrate this:

array r[8] rl-r8;

do i =1 to 8;
r[i] = O;
end;

The ARRAY statement does not support all the features of the ARRAY statement in the DATA step. It
cannot be used to assign initial values to array elements. Implicit indexing of variables cannot be used;
all array references must have explicit subscript expressions. Only exact array dimensions are allowed;
lower-bound specifications are not supported. A maximum of six dimensions is allowed.

On the other hand, the ARRAY statement does allow both variables and constants to be used as array
elements. (Constant array elements cannot have values assigned to them.) Both dimension specification
and the list of elements are optional, but at least one must be specified. When the list of elements is not
specified or fewer elements than the size of the array are listed, array variables are created by suffixing
element numbers to the array name to complete the element list.
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BOUNDS Statement

BOUNDS b con[,b con...];

where b_con : number operator parameter_list operator number

or b_con:= number operator parameter_list
or b_con:= parameter_list operator number
and operator := <=,<,>=,0r>

Boundary constraints are specified with a BOUNDS statement. One- or two-sided boundary constraints are
allowed. The list of boundary constraints are separated by commas. For example:

bounds 0 <= al-a9 X <=1, -1 <= c2-c5;
bounds bl-bl0 y >= 0;

You can specify more than one BOUNDS statement. If you specify more than one lower (upper) bound for
the same parameter, the maximum (minimum) of these is taken.

If the maximum /; of all lower bounds is larger than the minimum of all upper bounds u ; for the same
parameter 6, the boundary constraint is replaced by 6; := /; := min(u ;) defined by the minimum of all
upper bounds specified for 6.

BY Statement

BY variables ;

You can use a BY statement with the NLMIXED procedure to obtain separate analyses on DATA= data set
observations in groups defined by the BY variables. This means that, unless TECH=NONE, an optimization
problem is solved for each BY group separately. When a BY statement appears, the procedure expects the
input DATA= data set to be sorted in the order of the BY variables. If your input data set is not sorted in
ascending order, use one of the following alternatives:

e Use the SORT procedure with a similar BY statement to sort the data.

e Use the BY statement option NOTSORTED or DESCENDING in the BY statement for the
NLMIXED procedure. As a cautionary note, the NOTSORTED option does not mean that the data
are unsorted but rather that the data are arranged in groups (according to values of the BY variables)
and that these groups are not necessarily in alphabetical or increasing numeric order.

e Use the DATASETS procedure (in Base SAS software) to create an index on the BY variables.

For more information about the BY statement, see SAS Language Reference: Concepts. For more informa-
tion about the DATASETS procedure, see the Base SAS Procedures Guide.
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CONTRAST Statement

CONTRAST 'label’ expression <, expression> < options> ;

The CONTRAST statement enables you to conduct a statistical test that several expressions simultaneously
equal zero. The expressions are typically contrasts—that is, differences whose expected values equal zero
under the hypothesis of interest.

In the CONTRAST statement you must provide a quoted string to identify the contrast and then a list of
valid SAS expressions separated by commas. Multiple CONTRAST statements are permitted, and results
from all statements are listed in a common table. PROC NLMIXED constructs approximate F tests for
each statement using the delta method (Cox 1998) to approximate the variance-covariance matrix of the
constituent expressions.

The following option is available in the CONTRAST statement:

DF=d
specifies the denominator degrees of freedom to be used in computing p values for the F statistics.
The default value corresponds to the DF= option in the PROC NLMIXED statement.
ESTIMATE Statement

ESTIMATE ’label’ expression < options > ;

The ESTIMATE statement enables you to compute an additional estimate that is a function of the parameter
values. You must provide a quoted string to identify the estimate and then a valid SAS expression. Multiple
ESTIMATE statements are permitted, and results from all statements are listed in a common table. PROC
NLMIXED computes approximate standard errors for the estimates using the delta method (Billingsley
1986). It uses these standard errors to compute corresponding ¢ statistics, p-values, and confidence limits.

The ECOV option in the PROC NLMIXED statement produces a table containing the approximate covari-
ance matrix of all the additional estimates you specify. The ECORR option produces the corresponding
correlation matrix. The EDER option produces a table of the derivatives of the additional estimates with
respect to each of the model parameters.

The following options are available in the ESTIMATE statement:

ALPHA=«
specifies the alpha level to be used in computing confidence limits. The default value corresponds to
the ALPHA= option in the PROC NLMIXED statement.

DF=d
specifies the degrees of freedom to be used in computing p-values and confidence limits. The default
value corresponds to the DF= option in the PROC NLMIXED statement.



5178 4 Chapter 63: The NLMIXED Procedure

ID Statement

ID names ;

The ID statement identifies additional quantities to be included in the OUT= data set of the PREDICT
statement. These can be any symbols you have defined with SAS programming statements.

MODEL Statement

MODEL dependent-variable ~ distribution ;

The MODEL statement is the mechanism for specifying the conditional distribution of the data given the
random effects. You must specify a single dependent variable from the input data set, a tilde (~), and then a
distribution with its parameters. Valid distributions are as follows.

e normal(m,v) specifies a normal (Gaussian) distribution with mean m and variance v.

e binary(p) specifies a binary (Bernoulli) distribution with probability p.

e binomial(n,p) specifies a binomial distribution with count n and probability p.

e gammaf(a,b) specifies a gamma distribution with shape a and scale b.

e negbin(n,p) specifies a negative binomial distribution with count n and probability p.

e poisson(m) specifies a Poisson distribution with mean m.

e general(ll) specifies a general log likelihood function that you construct using SAS programming

statements.

The MODEL statement must follow any SAS programming statements you specify for computing param-
eters of the preceding distributions. See the section “Built-in Log-Likelihood Functions” on page 5186 for
expressions of the built-in conditional log-likelihood functions.

PARMS Statement

PARMS <name_list [=numbers] [, name_list [=numbers] ... |>
</ options> ;

The PARMS statement lists names of parameters and specifies initial values, possibly over a grid. You can
specify the parameters and values directly in a list, or you can provide the name of a SAS data set that
contains them by using the DATA= option.

While the PARMS statement is not required, you are encouraged to use it to provide PROC NLMIXED with
accurate starting values. Parameters not listed in the PARMS statement are assigned an initial value of 1.
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PROC NLMIXED considers all symbols not assigned values to be parameters, so you should specify your
modeling statements carefully and check the output from the ‘“Parameters” table to make sure the proper
parameters are identified.

A list of parameter names in the PARMS statement is not separated by commas and is followed by an equal
sign and a list of numbers. If the number list consists of only one number, this number defines the initial
value for all the parameters listed to the left of the equal sign.

If the number list consists of more than one number, these numbers specify the grid locations for each of the
parameters listed to the left of the equal sign. You can use the TO and BY keywords to specify a number
list for a grid search. If you specify a grid of points in a PARMS statement, PROC NLMIXED computes
the objective function value at each grid point and chooses the best (feasible) grid point as an initial point
for the optimization process. You can use the BEST= option to save memory for the storing and sorting of
all grid point information.

The following options are available in the PARMS statement after a slash (/):

BEST=i > 0
specifies the maximum number of points displayed in the “Parameters” table, selected as the points
with the maximum likelihood values. By default, all grid values are displayed.

BYDATA
enables you to assign different starting values for each BY group by using the DATA=SAS-data-set
option during BY processing. By default, BY groups are ignored in the PARMS data set. For the
BYDATA option to be effective, the DATA= data set must contain the BY variables and the same BY
groups as the primary input data set. When you supply a grid of starting values with the DATA= data
set and the BYDATA option is in effect, the size of the grid is determined by the first BY group.

DATA=SAS-data-set
specifies a SAS data set containing parameter names and starting values. The data set should be in
one of two forms: narrow or wide. The narrow-form data set contains the variables Parameter and
Estimate, with parameters and values listed as distinct observations. The wide-form data set has the
parameters themselves as variables, and each observation provides a different set of starting values.
By default, BY groups are ignored in this data set, so the same starting grid is evaluated for each BY
group. You can vary the starting values for BY groups by using the BYDATA option.

PREDICT Statement

PREDICT expression OUT=SAS-data-set < options > ;

The PREDICT statement enables you to construct predictions of an expression across all of the observations
in the input data set. Any valid SAS programming expression involving the input data set variables, parame-
ters, and random effects is valid. Predicted values are computed using the parameter estimates and empirical
Bayes estimates of the random effects. Standard errors of prediction are computed using the delta method
(Billingsley 1986, Cox 1998). Results are placed in an output data set that you specify with the OUT=
option. Besides all variables from the input data set, the OUT= data set contains the following variables:
Pred, StdErrPred, DF, tValue, Probt, Alpha, Lower, Upper. You can also add other computed quantities to
this data set with the ID statement.
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The following options are available in the PREDICT statement:

ALPHA=¢
specifies the alpha level to be used in computing ¢ statistics and intervals. The default value corre-
sponds to the ALPHA= option in the PROC NLMIXED statement.

DER
requests that derivatives of the predicted expression with respect to all parameters be included in the
OUT= data set. The variable names for the derivatives are the same as the parameter names with the
prefix “Der_" appended. All of the derivatives are evaluated at the final estimates of the parameters
and the empirical Bayes estimates of the random effects.

DF=d

specifies the degrees of freedom to be used in computing ¢ statistics and intervals in the OUT= data
set. The default value corresponds to the DF= option in the PROC NLMIXED statement.

RANDOM Statement

RANDOM random-effects ~ distribution SUBJECT =variable < options> ;

The RANDOM statement defines the random effects and their distribution. The random effects must be
represented by symbols that appear in your SAS programming statements. They typically influence the
mean value of the distribution specified in the MODEL statement. The RANDOM statement consists of
a list of the random effects (usually just one or two symbols), a tilde (~), the distribution for the random
effects, and then a SUBJECT= variable.

NOTE: The input data set must be clustered according to the SUBJECT= variable. One easy way to
accomplish this is to sort your data by the SUBJECT= variable prior to calling PROC NLMIXED. PROC
NLMIXED does not sort the input data set for you; rather, it processes the data sequentially and considers
an observation to be from a new subject whenever the value of its SUBJECT= variable changes from the
previous observation.

The only distribution available for the random effects is normal(m,v) with mean m and variance v.

This syntax is illustrated as follows for one effect:

random u ~ normal (0, s2u) subject=clinic;

For multiple effects, you should specify bracketed vectors for m and v, the latter consisting of the lower
triangle of the random-effects variance matrix listed in row order. This is illustrated for two and three
random effects as follows:

random bl b2 ~ normal([0,0], [gll,g21,g22]) subject=person;
random bl b2 b3 ~ normal([0,0,0], [gll,g21,g22,g31,g32,g33])
subject=person;

The SUBJECT= variable determines when new realizations of the random effects are assumed to occur.
PROC NLMIXED assumes that a new realization occurs whenever the value of the SUBJECT= variable
changes from the previous observation, so your input data set should be clustered according to this variable.
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One easy way to accomplish this is to run PROC SORT prior to calling PROC NLMIXED by using the
SUBJECT= variable as the BY variable.

Only one RANDOM statement is permitted, so multilevel nonlinear mixed models are not accommodated.
However, you can specify certain nested random effects structure with a single RANDOM statement (see
Chapter 15 of Littell et al. (2006) for an example).

The following options are available in the RANDOM statement:

ALPHA=«
specifies the alpha level to be used in computing ¢ statistics and intervals. The default value corre-
sponds to the ALPHA= option in the PROC NLMIXED statement.

DF=d
specifies the degrees of freedom to be used in computing ¢ statistics and intervals in the OUT= data
set. The default value corresponds to the DF= option in the PROC NLMIXED statement.

OUT=SAS-data-set
requests an output data set containing empirical Bayes estimates of the random effects and their ap-
proximate standard errors of prediction.

REPLICATE Statement

REPLICATE variable ;

The REPLICATE statement provides a way to accommodate models in which different subjects have iden-
tical data. This occurs most commonly when the dependent variable is binary. When you specify a REPLI-
CATE variable, PROC NLMIXED assumes that its value indicates the number of subjects having data
identical to those for the current value of the SUBJECT= variable (specified in the RANDOM statement).
Only the last observation of the REPLICATE variable for each subject is used, and the replicate variable
must have only positive integer values.

Note that the REPLICATE mechanism is different from using a FREQ statement in other statistical mod-
eling procedures, such as PROC GLM, GENMOD, GLIMMIX, and LOGISTIC. A FREQ variable is used
to identify grouped values for observations, essentially multiplying the log likelihood or sum of squares
contribution for the observation. A REPLICATE variable is used to multiply the contribution of a subject
that comprises one or more observations.

Programming Statements

This section lists the programming statements used to code the log-likelihood function in PROC NLMIXED.
It also documents the differences between programming statements in PROC NLMIXED and programming
statements in the SAS DATA step. The syntax of programming statements used in PROC NLMIXED is
identical to that used in the CALIS and GENMOD procedures (see Chapter 26 and Chapter 39, respectively),
and the MODEL procedure (see the SAS/ETS User’s Guide). Most of the programming statements that can
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be used in the SAS DATA step can also be used in the NLMIXED procedure. See SAS Language Reference:
Dictionary for a description of SAS programming statements. The following are valid statements:

ABORT;
CALL name [ ( expression [, expression ...] ) |;
DELETE;
DO [ variable = expression
[TO expression] [BY expression]
[, expression [ TO expression] [ BY expression | ...]
I
[ WHILE expression ] [ UNTIL expression ];
END;
GOTO statement _label;
IF expression;
IF expression THEN program_statement;
ELSE program_statement;
variable = expression;
variable + expression;
LINK statement label,;
PUT [ variable] [=] [...];
RETURN;
SELECT[(expression )];
STOP;
SUBSTR( variable, index, length )= expression;
WHEN (expression) program_statement;
OTHERWISE program_statement;

For the most part, the SAS programming statements work the same as they do in the SAS DATA step, as
documented in SAS Language Reference: Concepts; however, there are the following differences:

e The ABORT statement does not allow any arguments.

e The DO statement does not allow a character index variable. Thus

do i =1,2,3;
is supported, but the following statement is not supported:
do i = VA"'BV,ICI;
e The LAG function does work appropriately with PROC NLMIXED, but you can use the ZLLAG func-
tion instead.

e The PUT statement, used mostly for program debugging in PROC NLMIXED, supports only some of
the features of the DATA step PUT statement, and it has some new features that the DATA step PUT
statement does not.

— The PROC NLMIXED PUT statement does not support line pointers, factored lists, iteration
factors, overprinting, _INFILE_, the colon (:) format modifier, or “$”.
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— The PROC NLMIXED PUT statement does support expressions, but the expression must be
enclosed in parentheses. For example, the following statement displays the square root of x:

put (sart(x));

— The PROC NLMIXED PUT statement supports the item _PDV_ to display a formatted listing
of all variables in the program. For example, the following statement displays a much more
readable listing of the variables than the _ALL_ print item:

put _pdv_;

o The WHEN and OTHERWISE statements enable you to specify more than one target statement. That
is, DO/END groups are not necessary for multiple statement WHENs. For example, the following
syntax is valid:

select;
when (expl) stmtl;
stmt2;
when (exp2) stmt3;
stmt4;
end;

When coding your programming statements, you should avoid defining variables that begin with an under-
score (_), because they might conflict with internal variables created by PROC NLMIXED. The MODEL
statement must come after any SAS programming statements that define or modify terms used in the con-
struction of the log-likelihood.

Details: NLMIXED Procedure

This section contains details about the underlying theory and computations of PROC NLMIXED.

Modeling Assumptions and Notation

PROC NLMIXED operates under the following general framework for nonlinear mixed models. Assume
that you have an observed data vector y; for each of i subjects, i = 1,...,s. The y; are assumed to be
independent across i, but within-subject covariance is likely to exist because each of the elements of y;
is measured on the same subject. As a statistical mechanism for modeling this within-subject covariance,
assume that there exist latent random-effect vectors u; of small dimension (typically one or two) that are
also independent across i. Assume also that an appropriate model linking y; and u; exists, leading to the
joint probability density function

ryilXi. ¢.u;)q(u;|§)

where X; is a matrix of observed explanatory variables and ¢ and & are vectors of unknown parameters.
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Let @ = [¢, &] and assume that it is of dimension n. Then inferences about 8 are based on the marginal
likelihood function

m(®) =1 [ pulX. ¢ g l)du
i=1

In particular, the function

£(8) = —logm(9)

is minimized over # numerically in order to estimate @, and the inverse Hessian (second derivative) matrix at
the estimates provides an approximate variance-covariance matrix for the estimate of 6. The function f(6)
is referred to both as the negative log likelihood function and as the objective function for optimization.

As an example of the preceding general framework, consider the nonlinear growth curve example in
the section “Getting Started: NLMIXED Procedure” on page 5150. Here, the conditional distribution
p(yilXi, ¢, u;) is normal with mean

b1 + ui1
1 + exp[—(d;j — b2)/b3]

and variance 02; thus ¢ = [b1,b2,b3,02]. Also, u; is a scalar and g(u;|£) is normal with mean 0 and
2

variance 02; thus £ = o2.
The following additional notation is also found in this chapter. The quantity 0 %) refers to the parameter
vector at the kth iteration, the vector g(@) refers to the gradient vector V £ (@), and the matrix H(@) refers
to the Hessian V2 £(#). Other symbols are used to denote various constants or option values.

Integral Approximations

An important part of the marginal maximum likelihood method described previously is the computation of
the integral over the random effects. The default method in PROC NLMIXED for computing this integral
is adaptive Gaussian quadrature as described in Pinheiro and Bates (1995). Another approximation method
is the first-order method of Beal and Sheiner (1982, 1988). A description of these two methods follows.

Adaptive Gaussian Quadrature

A quadrature method approximates a given integral by a weighted sum over predefined abscissas for the
random effects. A good approximation can usually be obtained with an adequate number of quadrature
points as well as appropriate centering and scaling of the abscissas. Adaptive Gaussian quadrature for the
integral over u; centers the integral at the empirical Bayes estimate of u;, defined as the vector u; that
minimizes

—log [p(yi [Xi, ¢.u;)g(u; )]

with ¢ and & set equal to their current estimates. The final Hessian matrix from this optimization can be
used to scale the quadrature abscissas.
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Suppose (z;,w;;j = 1,..., p) denote the standard Gauss-Hermite abscissas and weights (Golub and
Welsch 1969, or Table 25.10 of Abramowitz and Stegun 1972). The adaptive Gaussian quadrature integral
approximation is as follows:

f pi1X;. 6. u)g(ui€)du; ~

p p r
220X, 0) 72D {pm|x,-,¢,a,-l,...,j,>q(ajl,...,,-,|s) [T wi expzik]

=t jr=1 k=1

where r is the dimension of u;, I'(X;, #) is the Hessian matrix from the empirical Bayes minimization,
Zj,,...,j, 1s a vector with elements (z,,,...,z;,), and

..... j, = + 2121 (X, 0)_1/21j1,...,jr

PROC NLMIXED selects the number of quadrature points adaptively by evaluating the log-likelihood func-
tion at the starting values of the parameters until two successive evaluations have a relative difference less
than the value of the QTOL= option. The specific search sequence is described under the QFAC= option.
Using the QPOINTS= option, you can adjust the number of quadrature points p to obtain different levels
of accuracy. Setting p = 1 results in the Laplacian approximation as described in Beal and Sheiner (1992),
Wolfinger (1993), Vonesh (1992, 1996), Vonesh and Chinchilli (1997), and Wolfinger and Lin (1997).

The NOAD option in the PROC NLMIXED statement requests nonadaptive Gaussian quadrature. Here all
u; are set equal to zero, and the Cholesky root of the estimated variance matrix of the random effects is
substituted for I'(X;, #)~!/2 in the preceding expression for a j1,...,jr - In this case derivatives are computed
using the algorithm of Smith (1995). The NOADSCALE option requests the same scaling substitution but
with the empirical Bayes u;.

PROC NLMIXED computes the derivatives of the adaptive Gaussian quadrature approximation when car-
rying out the default dual quasi-Newton optimization.

First-Order Method

Another integral approximation available in PROC NLMIXED is the first-order method of Beal and
Sheiner (1982, 1988) and Sheiner and Beal (1985). This approximation is used only in the case where
p(yilXi, ¢, u;) is normal—that is,

pilXi, ¢, ) = 2m) "2 R (X;, ¢)| /2
exp {—(1/2) [y —m; (X;. ¢.u)]' R (X;. )" [yi —m; (Xi. . uy)]}
where n; is the dimension of y;, R; is a diagonal variance matrix, and m; is the conditional mean vector of
Yi.

The first-order approximation is obtained by expanding m; (X;, ¢, u;) with a one-term Taylor series expan-
sion about u; = 0, resulting in the approximation

pyilXi, ¢, w) ~ Qr) 2R (Xi, )2
exp (—(1/2) [yi — m; (X;, 9.0) — Z; (X;. ¢)u;]’
R (X;,¢) ' yi —m;(Xi.¢,0) — Z;(X;. ¢)u;])
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where Z; (X;, ¢) is the Jacobian matrix dm; (X;, ¢, u;)/0u; evaluated at u; = 0.

Assuming that g (u;|&) is normal with mean 0 and variance matrix G(&), the first-order integral approxima-
tion is computable in closed form after completing the square:

[ p(yilXi. b u)g(wil€) du; ~ (27) "2 Vi (X;, 0) 12

exp (—(1/2) [yi —m;(X;,¢,0)]' Vi(X;. )" [yi — m; (X;, ¢.0)])

where V;(X;,0) = Z;( X;, 9)G(§)Z;(X;, ¢) + R;(X;, ¢). The resulting approximation for () is then
minimized over 8 = [¢, &] to obtain the first-order estimates. PROC NLMIXED uses finite-difference
derivatives of the first-order integral approximation when carrying out the default dual quasi-Newton opti-
mization.

Built-in Log-Likelihood Functions

This section displays the basic formulas used by the NLMIXED procedure to compute the conditional log-
likelihood functions of the data given the random effects. Note, however, that in addition to these basic
equations, the NLMIXED procedure employs a number of checks for missing values and floating-point
arithmetic. You can see the entire program used by the NLMIXED procedure to compute the conditional
log-likelihood functions /(¢; y) by adding the LIST debugging option to the PROC NLMIXED statement.

Y ~ normal(m, v)

a2
I(m,v;y) = —% (]og{27r} + w + 10g{v})
E[Y]=m
Var[Y] = v
v>0

Y ~ binary(p)

ooy} ylogipt y>0
Lip:y) = { 0 otherwise

)= ) (=) logil —p} y <1
L(p;y) = { 0 otherwise

I(p;y) =1L(p;y)+1a(p;y)
E[Y]=p
Var[Y] = p (1 — p)
0<p<l
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Y ~ binomial(n, p)
le =log{T(n+ 1)} —log{l'(y + 1)} —log{l’'(n —y + 1)}

vy ) ¥ logip} y >0
li(n,p;y) = { 0 otherwise

oy =y log{l—p} n—y=>0
L(n,p:y) = { 0 otherwise

l(n,p:y)=Ilc+11(n,p;y) +1l2(n,p:y)

E[Y]=np
Var[Y] =np(1—p)
0<p<l

Y ~ gamma(a, b)

l{a.b:y) = —alog{b} —log{I'(a)} + (a — 1) log{y} — y/b
E[Y] =ab
Var[Y] = ab?
a>0
b>0
This parameterization of the gamma distribution differs from the parameterization used
in the GLIMMIX and GENMOD procedures. The following statements show the equiv-

alent reparameterization in the NLMIXED procedure that fits a generalized linear model
for gamma-distributed data in the parameterization of the GLIMMIX procedure:

proc glimmix;
model y = x / dist=gamma s;
run;

proc nlmixed;
parms b0=1 bl=0 scale=14;

linp = b0 + blxx;
mu = exp(linp);
b = mu/scale;

model y ~ gamma (scale,b);
run;

Y ~ negbin(n, p)

I(n, p;y) =log{T'(n + y)} —log{I'(n)} —log{T'(y + 1)}
+ nlog{p} + ylog{l — p}

E[Y] =nP =n (1_—”)
p

Var[Y] = nP(1 — P) =n (1_—”) !
p Jr

n=>0

O0<p<l
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This form of the negative binomial distribution is one of the many parameterizations in
which the mass function or log-likelihood function appears. Another common parame-
terization uses

I(n, p;y) =log{l'(n + y)} —log{T'(n)} —log{I"(y + 1)}
+nlog{l — P/(1 + P)} + ylog{P/(1 + P)}

with P =(1—p)/p, P > 0.

Note that the parameter n can be real-numbered; it does not have to be integer-valued.
The parameterization of the negative binomial distribution in the NLMIXED procedure
differs from that in the GLIMMIX and GENMOD procedures. The following statements
show the equivalent formulations for maximum likelihood estimation in the GLIMMIX
and NLMIXED procedures in a negative binomial regression model:

proc glimmix;
model y = x / dist=negbin s;
run;

proc nlmixed;
parms b0=3, bl=1l, k=0.8;
linp = b0 + blx*x;
mu = exp(linp);
p = 1/(l4muxk);
model y ~ negbin(1l/k,p);
run;

Y ~ Poisson(m)

[(m;y) = ylog{m} —m —log{I'(y + 1)}

E[Y]=m
Var[Y] =m
m >0

Optimization Algorithms

There are several optimization techniques available in PROC NLMIXED. You can choose a particular opti-
mizer with the TECH= option in the PROC NLMIXED statement.

Algorithm TECH=
trust region method TRUREG
Newton-Raphson method with line search NEWRAP
Newton-Raphson method with ridging NRRIDG
quasi-Newton methods (DBFGS, DDFP, BEGS, DFP) QUANEW
double-dogleg method (DBFGS, DDFP) DBLDOG
conjugate gradient methods (PB, FR, PR, CD) CONGRA

Nelder-Mead simplex method NMSIMP
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No algorithm for optimizing general nonlinear functions exists that always finds the global optimum for a
general nonlinear minimization problem in a reasonable amount of time. Since no single optimization tech-
nique is invariably superior to others, PROC NLMIXED provides a variety of optimization techniques that
work well in various circumstances. However, you can devise problems for which none of the techniques in
PROC NLMIXED can find the correct solution. Moreover, nonlinear optimization can be computationally
expensive in terms of time and memory, so you must be careful when matching an algorithm to a problem.

All optimization techniques in PROC NLMIXED use O(n?) memory except the conjugate gradient meth-
ods, which use only O(n) of memory and are designed to optimize problems with many parameters. Since
the techniques are iterative, they require the repeated computation of the following:

o the function value (optimization criterion)

o the gradient vector (first-order partial derivatives)

o for some techniques, the (approximate) Hessian matrix (second-order partial derivatives)
However, since each of the optimizers requires different derivatives, some computational efficiencies can be

gained. The following table shows, for each optimization technique, which derivatives are required (FOD:
first-order derivatives; SOD: second-order derivatives).

Algorithm FOD SOD

TRUREG
NEWRAP
NRRIDG
QUANEW
DBLDOG
CONGRA
NMSIMP - .

Moo ) ) M
Moo M

Each optimization method employs one or more convergence criteria that determine when it has con-
verged. The various termination criteria are listed and described in the “PROC NLMIXED Statement”
section. An algorithm is considered to have converged when any one of the convergence criteria is satisfied.
For example, under the default settings, the QUANEW algorithm will converge if ABSGCONV< 1E-S5,
FCONV< 10~FPIGITS or GCONV< 1E-8.

Choosing an Optimization Algorithm

The factors that go into choosing a particular optimization technique for a particular problem are complex
and can involve trial and error.

For many optimization problems, computing the gradient takes more computer time than computing the
function value, and computing the Hessian sometimes takes much more computer time and memory than
computing the gradient, especially when there are many decision variables. Unfortunately, optimization
techniques that do not use some kind of Hessian approximation usually require many more iterations than
techniques that do use a Hessian matrix, and as a result the total run time of these techniques is often longer.
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Techniques that do not use the Hessian also tend to be less reliable. For example, they can more easily
terminate at stationary points rather than at global optima.

A few general remarks about the various optimization techniques follow:

e The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best for small problems
where the Hessian matrix is not expensive to compute. Sometimes the NRRIDG algorithm can be
faster than the TRUREG algorithm, but TRUREG can be more stable. The NRRIDG algorithm re-
quires only one matrix with n(n + 1)/2 double words; TRUREG and NEWRAP require two such
matrices.

o The first-derivative methods QUANEW and DBLDOG are best for medium-sized problems where the
objective function and the gradient are much faster to evaluate than the Hessian. The QUANEW and
DBLDOG algorithms, in general, require more iterations than TRUREG, NRRIDG, and NEWRAP,
but each iteration can be much faster. The QUANEW and DBLDOG algorithms require only the
gradient to update an approximate Hessian, and they require slightly less memory than TRUREG or
NEWRAP (essentially one matrix with n(n + 1) /2 double words). QUANEW is the default optimiza-
tion method.

e The first-derivative method CONGRA is best for large problems where the objective function and
the gradient can be computed much faster than the Hessian and where too much memory is required
to store the (approximate) Hessian. The CONGRA algorithm, in general, requires more iterations
than QUANEW or DBLDOG, but each iteration can be much faster. Since CONGRA requires only
a factor of n double-word memory, many large applications of PROC NLMIXED can be solved only
by CONGRA.

e The no-derivative method NMSIMP is best for small problems where derivatives are not continuous
or are very difficult to compute.

Algorithm Descriptions

Some details about the optimization techniques follow.

Trust Region Optimization (TRUREG)

The trust region method uses the gradient g(8 %) and the Hessian matrix H(0 %)); thus, it requires that the
objective function f(#) have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function
within a hyperelliptic trust region with radius A that constrains the step size corresponding to the quality
of the quadratic approximation. The trust region method is implemented using Dennis, Gay, and Welsch
(1981), Gay (1983), and Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it does not need many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.
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Newton-Raphson Optimization with Line Search (NEWRAP)

The NEWRAP technique uses the gradient g(f ®)) and the Hessian matrix H(8 ©); thus, it requires that
the objective function have continuous first- and second-order derivatives inside the feasible region. If
second-order derivatives are computed efficiently and precisely, the NEWRAP method can perform well for
medium-sized to large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. Otherwise, a combination of ridging and line
search is performed to compute successful steps. If the Hessian is not positive definite, a multiple of the
identity matrix is added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is performed along the search direction to find an approximate optimum of
the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation
(LINESEARCH=2).

Newton-Raphson Ridge Optimization (NRRIDG)

The NRRIDG technique uses the gradient g(6 %)) and the Hessian matrix H(8 %)); thus, it requires that the
objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step
reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied,
a multiple of the identity matrix is added to the Hessian matrix.

The NRRIDG method performs well for small- to medium-sized problems, and it does not require many
function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally
expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Since the NRRIDG technique uses an orthogonal decomposition of the approximate Hessian, each iteration
of NRRIDG can be slower than that of the NEWRAP technique, which works with Cholesky decomposition.
Usually, however, NRRIDG requires fewer iterations than NEWRAP.

Quasi-Newton Optimization (QUANEW)

The (dual) quasi-Newton method uses the gradient g(8 %)), and it does not need to compute second-order
derivatives since they are approximated. It works well for medium to moderately large optimization prob-
lems where the objective function and the gradient are much faster to compute than the Hessian; but, in
general, it requires more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which compute
second-order derivatives. QUANEW is the default optimization algorithm because it provides an appropri-
ate balance between the speed and stability required for most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending on the value of the UPDATE= option.

o the original quasi-Newton algorithm, which updates an approximation of the inverse Hessian

e the dual quasi-Newton algorithm, which updates the Cholesky factor of an approximate Hessian (de-
fault)
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You can specify four update formulas with the UPDATE= option:

DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Cholesky
factor of the Hessian matrix. This is the default.

DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the
Hessian matrix.

BFGS performs the original BFGS update of the inverse Hessian matrix.

DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an approximate optimum.
The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size o
satisfying the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region
defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the positive
definiteness of the quasi-Newton update. In that case, either the update is skipped or the iterations are
restarted with an identity matrix, resulting in the steepest descent or ascent search direction. You can specify
line-search algorithms other than the default with the LINESEARCH= option.

The QUANEW algorithm uses its own line-search technique. No options and parameters (except the IN-
STEP= option) controlling the line search in the other algorithms apply here. In several applications, large
steps in the first iterations are troublesome. You can use the INSTEP= option to impose an upper bound
for the step size o during the first five iterations. You can also use the INHESSIAN=r option to spec-
ify a different starting approximation for the Hessian. If you specify only the INHESSIAN option, the
Cholesky factor of a (possibly ridged) finite difference approximation of the Hessian is used to initialize
the quasi-Newton update process. The values of the LCSINGULAR=, LCEPSILON=, and LCDEACT=
options, which control the processing of linear and boundary constraints, are valid only for the quadratic
programming subroutine used in each iteration of the QUANEW algorithm.

Double-Dogleg Optimization (DBLDOG)

The double-dogleg optimization method combines the ideas of the quasi-Newton and trust region meth-
ods. In each iteration, the double-dogleg algorithm computes the step s6) as the linear combination of the
(k) (k).
1 2 -

steepest descent or ascent search direction s ~ and a quasi-Newton search direction s

s = alsgk) + ozzsgk)

The step is requested to remain within a prespecified trust region radius; see Fletcher (1987, p. 107). Thus,
the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. You can
specify two update formulas with the UPDATE= option:

e DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of the Cholesky factor of
the Hessian matrix. This is the default.

e DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky factor of the Hessian
matrix.
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The double-dogleg optimization technique works well for medium to moderately large optimization prob-
lems where the objective function and the gradient are much faster to compute than the Hessian. The
implementation is based on Dennis and Mei (1979) and Gay (1983), but it is extended for dealing with
boundary and linear constraints. The DBLDOG technique generally requires more iterations than the
TRUREG, NEWRAP, and NRRIDG techniques, which require second-order derivatives; however, each
of the DBLDOG iterations is computationally cheap. Furthermore, the DBLDOG technique requires only
gradient calls for the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)

Second-order derivatives are not required by the CONGRA algorithm and are not even approximated. The
CONGRA algorithm can be expensive in function and gradient calls, but it requires only O(n) memory for
unconstrained optimization. In general, many iterations are required to obtain a precise solution, but each
of the CONGRA iterations is computationally cheap. You can specify four different update formulas for
generating the conjugate directions by using the UPDATE= option:

e PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is the
default.

e FR performs the Fletcher-Reeves update (Fletcher 1987).
e PR performs the Polak-Ribiere update (Fletcher 1987).

e CD performs a conjugate-descent update of Fletcher (1987).

The default, UPDATE=PB, behaved best in most test examples. You are advised to avoid the option UP-
DATE=CD, which behaved worst in most test examples.

The CONGRA subroutine should be used for optimization problems with large n. For the unconstrained
or boundary constrained case, CONGRA requires only O(n) bytes of working memory, whereas all other
optimization methods require order O (n?) bytes of working memory. During 7 successive iterations, un-
interrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle
of n conjugate search directions. In each iteration, a line search is performed along the search direction
to find an approximate optimum of the objective function. The default line-search method uses quadratic
interpolation and cubic extrapolation to obtain a step size « satisfying the Goldstein conditions. One of the
Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. Other
line-search algorithms can be specified with the LINESEARCH= option.

Nelder-Mead Simplex Optimization (NMSIMP)

The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective
function has continuous derivatives. The objective function itself needs to be continuous. This technique
is quite expensive in the number of function calls, and it might be unable to generate precise results for
n > 40.

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This
algorithm does not compute the objective for infeasible points, but it changes the shape of the simplex adapt-
ing to the nonlinearities of the objective function, which contributes to an increased speed of convergence.
It uses a special termination criterion.



5194 4 Chapter 63: The NLMIXED Procedure

Finite-Difference Approximations of Derivatives

The FD= and FDHESSIAN= options specify the use of finite-difference approximations of the derivatives.
The FD= option specifies that all derivatives are approximated using function evaluations, and the FDHES-
SIAN= option specifies that second-order derivatives are approximated using gradient evaluations.

Computing derivatives by finite-difference approximations can be very time-consuming, especially for
second-order derivatives based only on values of the objective function (FD= option). If analytical deriva-
tives are difficult to obtain (for example, if a function is computed by an iterative process), you might
consider one of the optimization techniques that use first-order derivatives only (QUANEW, DBLDOG, or
CONGRA). In the expressions that follow, @ denotes the parameter vector, 4; denotes the step size for the
i th parameter, and e; is a vector of zeros with a 1 in the i th position.

Forward-Difference Approximations

The forward-difference derivative approximations consume less computer time, but they are usually not as
precise as approximations that use central-difference formulas.

e For first-order derivatives, n additional function calls are required:

df SO +hie) = f(8)

5= %6, ~ I

e For second-order derivatives based on function calls only (Dennis and Schnabel 1983, p. 80), n+n?/2
additional function calls are required for dense Hessian:

Pf  f(8 +hiei +hje;)— f(8 +hiei) — f(8 +hje;) + f(8)
36;060, hih;

e For second-order derivatives based on gradient calls (Dennis and Schnabel 1983, p. 103), n additional
gradient calls are required:

f g0 +hje)—gi(6) L 850 +hiei) —g;(6)
00;00; 2h; 2h;

Central-Difference Approximations
Central-difference approximations are usually more precise, but they consume more computer time than

approximations that use forward-difference derivative formulas.

e For first-order derivatives, 2n additional function calls are required:

.:%N SO +hie;))— f(0 —hie;)
s 891 ~ Zhi
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e For second-order derivatives based on function calls only (Abramowitz and Stegun 1972, p. 884),
2n + 4n? /2 additional function calls are required.

02 f =0 +2hie;) +16/(0 + hie;) —30f(0) + 16 /(0 — hie;) — f(6 —2h;e;)

367 1212

Pf S0 +hiei+hje;)— f(0 +hiei—hje;)— f(0 —hiei +hje;) + f(0 —hie; —hje;)
86;00; 4hih;

e For second-order derivatives based on gradient calls, 2n additional gradient calls are required:

Pf g0 +hje;)—gi(0 —hje)) n gj(0 + hiej) —g;(0 —hie;)
96; 00, 4h; 4h;

You can use the FDIGITS= option to specify the number of accurate digits in the evaluation of the objective
function. This specification is helpful in determining an appropriate interval size /4 to be used in the finite-
difference formulas.

The step sizes hj, j = 1,...,n are defined as follows:

e For the forward-difference approximation of first-order derivatives that use function calls and second-
order derivatives that use gradient calls, 7; = /n(1 + [0;]).

e For the forward-difference approximation of second-order derivatives that use only function calls and
all central-difference formulas, h; = 3/n(1 + 16;]).

The value of 7 is defined by the FDIGITS= option:

e If you specify the number of accurate digits by using FDIGITS=r, n is set to 107",

e If you do not specify the FDIGITS= option, 7 is set to the machine precision €.

Hessian Scaling

The rows and columns of the Hessian matrix can be scaled when you use the trust region, Newton-Raphson,
and double-dogleg optimization techniques. Each element H; ;, i, j = 1,...,n is divided by the scaling
factor d;dj, where the scaling vector d = (di,...,dy) is iteratively updated in a way specified by the
HESCAL=i option, as follows:

i = 0: No scaling is done (equivalent to d; = 1).

i # 0: First iteration and each restart iteration sets:

0 / 0
dl.( ) = max(|HiEi)|,e)
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i = 1: Refer to Moré (1978):

dl.(kﬂ) = max |:dl.(k), \/max(|Hi(’I;)|, e)]

i = 2 : Refer to Dennis, Gay, and Welsch (1981):

A% = max [0.64"”, Jmax(|H®)|, e)]

i = 3: d; is reset in each iteration:

%D = Jmax((H®), ¢)

i,i

In the preceding equations, € is the relative machine precision or, equivalently, the largest double-precision
value that, when added to 1, results in 1.

Active Set Methods

The parameter vector @ € R can be subject to a set of m linear equality and inequality constraints:

n
Zaijgj:bi i=1,...,me
Jj=1

n

Zaijngbi i=me+1,...,m
Jj=1

The coefficients a;; and right-hand sides b; of the equality and inequality constraints are collected in the
m X n matrix A and the m vector b.

The m linear constraints define a feasible region G in R” that must contain the point 6, that minimizes the
problem. If the feasible region G is empty, no solution to the optimization problem exists.

In PROC NLMIXED, all optimization techniques use active set methods. The iteration starts with a feasible
point 6 ) which you can provide or which can be computed by the Schittkowski and Stoer (1979) algorithm
implemented in PROC NLMIXED. The algorithm then moves from one feasible point ¥~ to a better
feasible point 6 (k) along a feasible search direction sk,

gl — gk=1) | k) L) g

Theoretically, the path of points 8 %) never leaves the feasible region G of the optimization problem, but it
can reach its boundaries. The active set A% of point 6 (k) is defined as the index set of all linear equality
constraints and those inequality constraints that are satisfied at %) If no constraint is active %), the
point is located in the interior of G, and the active set AR = g is empty. If the point 0 %) in iteration k
hits the boundary of inequality constraint 7, this constraint { becomes active and is added to A% Each
equality constraint and each active inequality constraint reduce the dimension (degrees of freedom) of the
optimization problem.
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In practice, the active constraints can be satisfied only with finite precision. The LCEPSILON=r option
specifies the range for active and violated linear constraints. If the point 8 () satisfies the condition

n
Zal’jej(k) —bi| <t
=1

where ¢t = r(|b;| + 1), the constraint i is recognized as an active constraint. Otherwise, the constraint
i is either an inactive inequality or a violated inequality or equality constraint. Due to rounding errors in
computing the projected search direction, error can be accumulated so that an iterate 8 %) steps out of the
feasible region.

In those cases, PROC NLMIXED might try to pull the iterate 6 (k) back into the feasible region. However,
in some cases the algorithm needs to increase the feasible region by increasing the LCEPSILON=r value.
If this happens, a message is displayed in the log output.

If the algorithm cannot improve the value of the objective function by moving from an active constraint
back into the interior of the feasible region, it makes this inequality constraint an equality constraint in the
next iteration. This means that the active set A%+ still contains the constraint i . Otherwise, it releases the
active inequality constraint and increases the dimension of the optimization problem in the next iteration.

A serious numerical problem can arise when some of the active constraints become (nearly) linearly depen-
dent. PROC NLMIXED removes linearly dependent equality constraints before starting optimization. You
can use the LCSINGULAR= option to specify a criterion r used in the update of the QR decomposition that
determines whether an active constraint is linearly dependent relative to a set of other active constraints.

If the solution @ * is subjected to n,4¢; linear equality or active inequality constraints, the QR decomposition
of the n X ng; matrix A’ of the linear constraints is computed by A = QR, where Q is an n x n orthogonal
matrix and R is an n X ng¢; upper triangular matrix. The n columns of matrix Q can be separated into
two matrices, Q = [Y,Z], where Y contains the first ng¢; orthogonal columns of Q and Z contains the
last n — nger orthogonal columns of Q. The n x (n — nger) column-orthogonal matrix Z is also called the
null-space matrix of the active linear constraints A’. The n — Nger columns of the n X (n — ngey) matrix Z
form a basis orthogonal to the rows of the 4. X n matrix A.

At the end of the iterating, PROC NLMIXED computes the projected gradient gz,
gz =17'g

In the case of boundary-constrained optimization, the elements of the projected gradient correspond to the
gradient elements of the free parameters. A necessary condition for #* to be a local minimum of the
optimization problem is

gz(0%) =7Z'g(6*) =0
The symmetric ng¢; X nger matrix Gz,
Gz =7'GZ

is called a projected Hessian matrix. A second-order necessary condition for @ * to be a local minimizer
requires that the projected Hessian matrix is positive semidefinite.

Those elements of the 7n4.; vector of first-order estimates of Lagrange multipliers,

A= (AA)1AZZ'g
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that correspond to active inequality constraints indicate whether an improvement of the objective func-
tion can be obtained by releasing this active constraint. For minimization, a significant negative Lagrange
multiplier indicates that a possible reduction of the objective function can be achieved by releasing this
active linear constraint. The LCDEACT=r option specifies a threshold r for the Lagrange multiplier that
determines whether an active inequality constraint remains active or can be deactivated. (In the case of
boundary-constrained optimization, the Lagrange multipliers for active lower (upper) constraints are the
negative (positive) gradient elements corresponding to the active parameters.)

Line-Search Methods

In each iteration k, the (dual) quasi-Newton, conjugate gradient, and Newton-Raphson minimization tech-
niques use iterative line-search algorithms that try to optimize a linear, quadratic, or cubic approximation of
[ along a feasible descent search direction s,

g+ _ g 4 (ogl) oK) S g

by computing an approximately optimal scalar a®),

Therefore, a line-search algorithm is an iterative process that optimizes a nonlinear function f(«) of one
parameter (o) within each iteration k of the optimization technique. Since the outside iteration process
is based only on the approximation of the objective function, the inside iteration of the line-search algo-
rithm does not have to be perfect. Usually, it is satisfactory that the choice of o significantly reduces (in a
minimization) the objective function. Criteria often used for termination of line-search algorithms are the
Goldstein conditions (see Fletcher 1987).

You can select various line-search algorithms by specifying the LINESEARCH= option. The line-search
method LINESEARCH=2 seems to be superior when function evaluation consumes significantly less com-
putation time than gradient evaluation. Therefore, LINESEARCH=2 is the default method for Newton-
Raphson, (dual) quasi-Newton, and conjugate gradient optimizations.

You can modify the line-search methods LINESEARCH=2 and LINESEARCH=3 to be exact line searches
by using the LSPRECISION= option and specifying the o parameter described in Fletcher (1987). The
line-search methods LINESEARCH=1, LINESEARCH=2, and LINESEARCH=3 satisfy the left-side and
right-side Goldstein conditions (see Fletcher 1987). When derivatives are available, the line-search methods
LINESEARCH=6, LINESEARCH=7, and LINESEARCH=S try to satisfy the right-side Goldstein condi-
tion; if derivatives are not available, these line-search algorithms use only function calls.

Restricting the Step Length

Almost all line-search algorithms use iterative extrapolation techniques that can easily lead them to (feasible)
points where the objective function f is no longer defined or is difficult to compute. Therefore, PROC
NLMIXED provides options restricting the step length o or trust region radius A, especially during the first
main iterations.
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The inner product g’s of the gradient g and the search direction s is the slope of f(«) = f(6 + «s) along the
search direction s. The default starting value o(® = a®:9) in each line-search algorithm (ming~q /(0 +
as)) during the main iteration k is computed in three steps:

1. The first step uses either the difference df = | f® — f*=1| of the function values during the last

two consecutive iterations or the final step-size value o~ of the last iteration k — 1 to compute a first

value of ago).

o [f the DAMPSTEP option is not used,

step if 0.1 <step <10
=110 ifstep>10
0.1 if step < 0.1

with

df/|g's| if |g's| > € max(100df, 1)
1

step = ;
P otherwise

This value of a§o) can be too large and can lead to a difficult or impossible function evaluation,

especially for highly nonlinear functions such as the EXP function.
o [f the DAMPSTEP=r option is used,

ago) = min(1, ra-)

The initial value for the new step length can be no larger than r times the final step length «- of
the former iteration. The default value is r = 2.

2. During the first five iterations, the second step enables you to reduce ago) to a smaller starting value

aéo) by using the INSTEP=r option:

(0) - (0)
oy = min(a; ", 71)
After more than five iterations, ago) 18 set to aio).

3. The third step can further reduce the step length by

a§0) = min(aéo), min(10, u))

where u is the maximum length of a step inside the feasible region.

The INSTEP=r option enables you to specify a smaller or larger radius A of the trust region used in the first
iteration of the trust region and double-dogleg algorithms. The default initial trust region radius A s the
length of the scaled gradient (Moré 1978). This step corresponds to the default radius factor of r = 1. In
most practical applications of the TRUREG and DBLDOG algorithms, this choice is successful. However,
for bad initial values and highly nonlinear objective functions (such as the EXP function), the default start
radius can result in arithmetic overflows. If this happens, you can try decreasing values of INSTEP=r,
0 < r < 1, until the iteration starts successfully. A small factor r also affects the trust region radius AGK+D
of the next steps because the radius is changed in each iteration by a factor 0 < ¢ < 4, depending on the
ratio p expressing the goodness of quadratic function approximation. Reducing the radius A corresponds to
increasing the ridge parameter A, producing smaller steps aimed more closely toward the (negative) gradient
direction.
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Computational Problems
Floating-Point Errors and Overflows

Numerical optimization of a numerically integrated function is a difficult task, and the computation of the
objective function and its derivatives can lead to arithmetic exceptions and overflows. A typical cause of
these problems is parameters with widely varying scales. If the scaling of your parameters varies by more
than a few orders of magnitude, the numerical stability of the optimization problem can be seriously reduced
and can result in computational difficulties. A simple remedy is to rescale each parameter so that its final
estimated value has a magnitude near 1.

If parameter rescaling does not help, consider the following actions:

e Specify the ITDETAILS option in the PROC NLMIXED statement to obtain more detailed informa-
tion about when and where the problem is occurring.

Provide different initial values or try a grid search of values.

Use boundary constraints to avoid the region where overflows can happen.

Delete outlying observations or subjects from the input data, if this is reasonable.

Change the algorithm (specified in programming statements) that computes the objective function.

The line-search algorithms that work with cubic extrapolation are especially sensitive to arithmetic over-
flows. If an overflow occurs during a line search, you can use the INSTEP= option to reduce the length
of the first trial step during the first five iterations, or you can use the DAMPSTEP or MAXSTEP option
to restrict the step length of the initial o in subsequent iterations. If an arithmetic overflow occurs in the
first iteration of the trust region or double-dogleg algorithm, you can use the INSTEP= option to reduce
the default trust region radius of the first iteration. You can also change the optimization technique or the
line-search method.

Long Run Times

PROC NLMIXED can take a long time to run for problems involving complex models, many parameters,
or large input data sets. Although the optimization techniques used by PROC NLMIXED are some of the
best ones available, they are not guaranteed to converge quickly for all problems. Ill-posed or misspecified
models can cause the algorithms to use more extensive calculations designed to achieve convergence, and
this can result in longer run times. So first make sure that your model is specified correctly, that your
parameters are scaled to be of the same order of magnitude, and that your data reasonably match the model
you are contemplating.

If you are using the default adaptive Gaussian quadrature algorithm and no iteration history is printing at
all, then PROC NLMIXED might be bogged down trying to determine the number of quadrature points at
the first set of starting values. Specifying the QPOINTS= option will bypass this stage and proceed directly
to iterations; however, be aware that the likelihood approximation might not be accurate if there are too few
quadrature points.
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PROC NLMIXED can also have difficulty determining the number of quadrature points if the initial starting
values are far from the optimum values. To obtain more accurate starting values for the model parameters,
one easy method is to fit a model with no RANDOM statement. You can then use these estimates as starting
values, although you will still need to specify values for the random-effects distribution. For normal-normal
models, another strategy is to use METHOD=FIRO. If you can obtain estimates by using this approximate
method, then they can be used as starting values for more accurate likelihood approximations.

If you are running PROC NLMIXED multiple times, you will probably want to include a statement like the
following in your program:

ods output ParameterEstimates=pe;

This statement creates a SAS data set named PE upon completion of the run. In your next invocation of
PROC NLMIXED, you can then specify

parms / data=pe;
to read in the previous estimates as starting values.

To speed general computations, you should double-check your programming statements to minimize the
number of floating-point operations. Using auxiliary variables and factoring amenable expressions can be
useful changes in this regard.

Problems Evaluating Code for Objective Function

The starting point @ ®) must be a point for which the programming statements can be evaluated. However,
during optimization, the optimizer might iterate to a point 6 (&) where the objective function or its derivatives
cannot be evaluated. In some cases, the specification of boundary for parameters can avoid such situations.
In many other cases, you can indicate that the point 8 ©) js a bad point simply by returning an extremely
large value for the objective function. In these cases, the optimization algorithm reduces the step length and
stays closer to the point that has been evaluated successfully in the former iteration.

No Convergence

There are a number of things to try if the optimizer fails to converge.

e Change the initial values by using a grid search specification to obtain a set of good feasible starting
values.
e Change or modify the update technique or the line-search algorithm.
This method applies only to TECH=QUANEW and TECH=CONGRA. For example, if you use the
default update formula and the default line-search algorithm, you can do the following:
— change the update formula with the UPDATE= option
— change the line-search algorithm with the LINESEARCH= option

— specify a more precise line search with the LSPRECISION= option, if you use LINE-
SEARCH=2 or LINESEARCH=3
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e Change the optimization technique.
For example, if you use the default option, TECH=QUANEW, you can try one of the second-
derivative methods if your problem is small or the conjugate gradient method if it is large.

e Adjust finite-difference derivatives.

The forward-difference derivatives specified with the FD= or FDHESSIAN= option might not be
precise enough to satisfy strong gradient termination criteria. You might need to specify the more
expensive central-difference formulas. The finite-difference intervals might be too small or too big,
and the finite-difference derivatives might be erroneous.

e Double-check the data entry and program specification.

Convergence to Stationary Point

The gradient at a stationary point is the null vector, which always leads to a zero search direction. This point
satisfies the first-order termination criterion. Search directions that are based on the gradient are zero, so the
algorithm terminates. There are two ways to avoid this situation:

e Use the PARMS statement to specify a grid of feasible initial points.

e Use the OPTCHECK=r option to avoid terminating at the stationary point.

The signs of the eigenvalues of the (reduced) Hessian matrix contain the following information regarding a
stationary point:

o If all of the eigenvalues are positive, the Hessian matrix is positive definite, and the point is a minimum
point.

e If some of the eigenvalues are positive and all remaining eigenvalues are zero, the Hessian matrix is
positive semidefinite, and the point is a minimum or saddle point.

o If all of the eigenvalues are negative, the Hessian matrix is negative definite, and the point is a maxi-
mum point.

e If some of the eigenvalues are negative and all remaining eigenvalues are zero, the Hessian matrix is
negative semidefinite, and the point is a maximum or saddle point.

o If all of the eigenvalues are zero, the point can be a minimum, maximum, or saddle point.

Precision of Solution

In some applications, PROC NLMIXED can result in parameter values that are not precise enough. Usually,
this means that the procedure terminated at a point too far from the optimal point. The termination criteria
define the size of the termination region around the optimal point. Any point inside this region can be
accepted for terminating the optimization process. The default values of the termination criteria are set to
satisfy a reasonable compromise between the computational effort (computer time) and the precision of the
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computed estimates for the most common applications. However, there are a number of circumstances in
which the default values of the termination criteria specify a region that is either too large or too small.

If the termination region is too large, then it can contain points with low precision. In such cases, you
should determine which termination criterion stopped the optimization process. In many applications, you
can obtain a solution with higher precision simply by using the old parameter estimates as starting values in
a subsequent run in which you specify a smaller value for the termination criterion that was satisfied at the
former run.

If the termination region is too small, the optimization process might take longer to find a point inside such
a region, or it might not even find such a point due to rounding errors in function values and derivatives.
This can easily happen in applications in which finite-difference approximations of derivatives are used and
the GCONV and ABSGCONYV termination criteria are too small to respect rounding errors in the gradient
values.

Covariance Matrix

The estimated covariance matrix of the parameter estimates is computed as the inverse Hessian matrix, and
for unconstrained problems it should be positive definite. If the final parameter estimates are subjected to
nger > 0 active linear inequality constraints, the formulas of the covariance matrices are modified similar
to Gallant (1987) and Cramer (1986, p. 38) and additionally generalized for applications with singular
matrices.

There are several steps available that enable you to tune the rank calculations of the covariance matrix.

1. You can use the ASINGULAR=, MSINGULAR=, and VSINGULAR= options to set three singularity
criteria for the inversion of the Hessian matrix H. The singularity criterion used for the inversion is

)

where d ; is the diagonal pivot of the matrix H, and ASING, VSING, and MSING are the specified
values of the ASINGULAR=, VSINGULAR=, and MSINGULAR= options, respectively. The default
values are as follows:

|d;, ;| < max(ASING, VSING * |H; ;|, MSING * max(|H,1

veoos | Hyp

e ASING: the square root of the smallest positive double-precision value

e MSING: 1E—12 if you do not specify the SINGHESS= option and max(10¢, IE — 4 x
SINGHESS) otherwise, where € is the machine precision

e VSING: 1E—8 if you do not specify the SINGHESS= option and the value of SINGHESS oth-
erwise

Note that, in many cases, a normalized matrix D~'AD™! is decomposed, and the singularity criteria
are modified correspondingly.

2. If the matrix H is found to be singular in the first step, a generalized inverse is computed. Depend-
ing on the G4= option, either a generalized inverse satisfying all four Moore-Penrose conditions is
computed (a g4-inverse) or a generalized inverse satisfying only two Moore-Penrose conditions is
computed (a gp-inverse, Pringle and Rayner, 1971). If the number of parameters n of the application
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is less than or equal to G4=i, a g4-inverse is computed; otherwise, only a g,-inverse is computed. The
ga-inverse is computed by the (computationally very expensive but numerically stable) eigenvalue de-
composition, and the g,-inverse is computed by Gauss transformation. The g4-inverse is computed
using the eigenvalue decomposition A = ZAZ/', where Z is the orthogonal matrix of eigenvectors
and A is the diagonal matrix of eigenvalues, A = diag(A1,...,A,). The g4-inverse of H is set to

AT =7ZA 7
where the diagonal matrix A~ = diag(A7],...,A,) is defined using the COVSING= option:

5= — | 1A if [A;] > COVSING
700 if |1;| < COVSING

If you do not specify the COVSING= option, the nr smallest eigenvalues are set to zero, where nr is
the number of rank deficiencies found in the first step.

For optimization techniques that do not use second-order derivatives, the covariance matrix is computed
using finite-difference approximations of the derivatives.

Prediction

The nonlinear mixed model is a useful tool for statistical prediction. Assuming a prediction is to be made
regarding the ith subject, suppose that f(#,u;) is a differentiable function predicting some quantity of
interest. Recall that # denotes the vector of unknown parameters and u; denotes the vector of random
effects for the ith subject. A natural point prediction is f (b\, u;), where 9 is the maximum likelihood
estimate of @ and u; is the empirical Bayes estimate of u; described previously in the section “Integral
Approximations” on page 5184.

An approximate prediction variance matrix for (’0\, u;) is
~ _1 (e
i i ( Bu, )

~\/
()it T ()i ()

where H is the approximate Hessian matrix from the optimization for 0, T is the approximate Hessian
matrix from the optimization for u;, and (ou; / d0) is the derivative of u; with respect to @, evaluated at
(0 u;). The approximate variance matrix for 9 is the standard one discussed in the previous section, and
that for u; is an approximation to the conditional mean squared error of prediction described by Booth and
Hobert (1998).

P=

The prediction variance for a general scalar function f(@,u;) is defined as the expected squared difference
E[f (/0\, U;) — f(#.u;)]>. PROC NLMIXED computes an approximation to it as follows. The derivative of
f(0,u;) is computed with respect to each element of (€, u;) and evaluated at (5, u;). If a; is the resulting
vector, then the approximate prediction variance is a;Pa;. This approximation is known as the delta method
(Billingsley 1986, Cox 1998).
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Computational Resources

Since nonlinear optimization is an iterative process that depends on many factors, it is difficult to estimate
how much computer time is necessary to find an optimal solution satisfying one of the termination criteria.
You can use the MAXTIME=, MAXITER=, and MAXFUNC= options to restrict the amount of CPU time,
the number of iterations, and the number of function calls in a single run of PROC NLMIXED.

In each iteration k, the NRRIDG technique uses a symmetric Householder transformation to decompose the
n x n Hessian matrix H,

H=VTV, V: orthogonal, T: tridiagonal
to compute the (Newton) search direction s,
s® = _[H®]"1g® k=1,23,...

The TRUREG and NEWRAP techniques use the Cholesky decomposition to solve the same linear system
while computing the search direction. The QUANEW, DBLDOG, CONGRA, and NMSIMP techniques do
not need to invert or decompose a Hessian matrix; thus, they require less computational resources than the
other techniques.

The larger the problem, the more time is needed to compute function values and derivatives. Therefore,
you might want to compare optimization techniques by counting and comparing the respective numbers of
function, gradient, and Hessian evaluations.

Finite-difference approximations of the derivatives are expensive because they require additional function
or gradient calls:

e forward-difference formulas

— For first-order derivatives, n additional function calls are required.

— For second-order derivatives based on function calls only, for a dense Hessian, n + n2/2 addi-
tional function calls are required.

— For second-order derivatives based on gradient calls, n additional gradient calls are required.
e central-difference formulas

— For first-order derivatives, 2n additional function calls are required.

— For second-order derivatives based on function calls only, for a dense Hessian, 2n + 2n? addi-
tional function calls are required.

— For second-order derivatives based on gradient calls, 2n additional gradient calls are required.

Many applications need considerably more time for computing second-order derivatives (Hessian matrix)
than for computing first-order derivatives (gradient). In such cases, a dual quasi-Newton technique is rec-
ommended, which does not require second-order derivatives.
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Displayed Output

This section describes the displayed output from PROC NLMIXED. See the section “ODS Table Names”
on page 5208 for details about how this output interfaces with the Output Delivery System.

Specifications

The NLMIXED procedure first displays the “Specifications” table, listing basic information about the non-
linear mixed model that you have specified. It includes the principal variables and estimation methods.

Dimensions

The “Dimensions” table lists counts of important quantities in your nonlinear mixed model, including the
number of observations, subjects, parameters, and quadrature points.

Parameters

The “Parameters” table displays the information you provided with the PARMS statement and the value of
the negative log-likelihood function evaluated at the starting values.

Starting Gradient and Hessian

The START option in the PROC NLMIXED statement displays the gradient of the negative log-likelihood
function at the starting values of the parameters. If you also specify the HESS option, then the starting
Hessian is displayed as well.

Iterations

The iteration history consists of one line of output for each iteration in the optimization process. The
iteration history is displayed by default because it is important that you check for possible convergence
problems. The default iteration history includes the following variables:

e lter, the iteration number

e (Calls, the number of function calls

e NeglogLike, the value of the objective function

o Diff, the difference between adjacent function values

e MaxGrad, the maximum of the absolute (projected) gradient components (except NMSIMP)

e Slope, the slope g’s of the search direction s at the current parameter iterate § ) (QUANEW only)
e Rho, the ratio between the achieved and predicted values of Diff (NRRIDG only)

e Radius, the radius of the trust region (TRUREG only)
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e StdDeyv, the standard deviation of the simplex values (NMSIMP only)
e Delta, the vertex length of the simplex (NMSIMP only)

e Size, the size of the simplex (NMSIMP only)

For the QUANEW method, the value of Slope should be significantly negative. Otherwise, the line-search
algorithm has difficulty reducing the function value sufficiently. If this difficulty is encountered, an asterisk
(*) appears after the iteration number. If there is a tilde (~) after the iteration number, the BEGS update is
skipped, and very high values of the Lagrange function are produced. A backslash (\ ) after the iteration
number indicates that Powell’s correction for the BFGS update is used.

For methods using second derivatives, an asterisk (*) after the iteration number means that the computed
Hessian approximation was singular and had to be ridged with a positive value.

For the NMSIMP method, only one line is displayed for several internal iterations. This technique skips
the output for some iterations because some of the termination tests (StdDev and Size) are rather time-
consuming compared to the simplex operations, and they are performed only every five simplex operations.

The ITDETAILS option in the PROC NLMIXED statement provides a more detailed iteration history. Be-
sides listing the current values of the parameters and their gradients, the ITDETAILS option provides the
following values in addition to the default output:

e Restart, the number of iteration restarts

Active, the number of active constraints

Lambda, the value of the Lagrange multiplier (TRUREG and DBLDOG only)

Ridge, the ridge value (NRRIDG only)

Alpha, the line-search step size (QUANEW only)

An apostrophe () trailing the number of active constraints indicates that at least one of the active constraints
was released from the active set due to a significant Lagrange multiplier.

Convergence Status

The “Convergence Status” table contains a status message describing the reason for termination of the
optimization. For ODS purposes, the name of this table is “ConvergenceStatus,” and you can query the
nonprinting numeric variable Status to check for a successful optimization. This is useful in batch process-
ing, or when processing BY groups, for example, in simulations. Successful convergence is indicated by
Status= 0.

Fitting Information

The “Fitting Information” table lists the final minimized value of —2 times the log likelihood as well as the
information criteria of Akaike (AIC) and Schwarz (BIC), as well as a finite-sample corrected version of AIC
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(AICC). The criteria are computed as follows:

AIC =2£(0) +2p
AICC =2f(0)+2pn/(n—p—1)
BIC =2£(8) + plog(s)

where f() is the negative of the marginal log-likelihood function, 9 is the vector of parameter estimates,
p is the number of parameters, n is the number of observations, and s is the number of subjects. Refer to
Hurvich and Tsai (1989) and Burnham and Anderson (1998) for additional details.

Parameter Estimates

The “Parameter Estimates” table lists the estimates of the parameter values after successful convergence of
the optimization problem or the final values of the parameters under nonconvergence. If the problem did
converge, standard errors are computed from the final Hessian matrix. The ratio of the estimate with its
standard error produces a ¢ value, with approximate degrees of freedom computed as the number of subjects
minus the number of random effects. A p-value and confidence limits based on this ¢ distribution are also
provided. Finally, the gradient of the negative log-likelihood function is displayed for each parameter, and
you should verify that they each are sufficiently small for nonconstrained parameters.

Covariance and Correlation Matrices

Following standard maximum likelihood theory (for example, Serfling 1980), the asymptotic variance-
covariance matrix of the parameter estimates equals the inverse of the Hessian matrix. You can display
this matrix with the COV option in the PROC NLMIXED statement. The corresponding correlation form is
available with the CORR option.

Additional Estimates

The “Additional Estimates” table displays the results of all ESTIMATE statements that you specify, with the
same columns as the “Parameter Estimates” table. The ECOV and ECORR options in the PROC NLMIXED
statement produce tables displaying the approximate covariance and correlation matrices of the additional
estimates. They are computed using the delta method (Billingsley 1986; Cox 1998). The EDER option in
the PROC NLMIXED statement produces a table that displays the derivatives of the additional estimates
with respect to the model parameters evaluated at their final estimated values.

ODS Table Names

PROC NLMIXED assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 63.2. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”
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Table 63.2 ODS Tables Produced by PROC NLMIXED

ODS Table Name Description Statement or Option
AdditionalEstimates  Results from ESTIMATE statements ESTIMATE
Contrasts Results from CONTRAST statements CONTRAST
ConvergenceStatus  Convergence status default
CorrMatAddEst Correlation matrix of additional estimates ECORR
CorrMatParmEst Correlation matrix of parameter estimates CORR
CovMatAddEst Covariance matrix of additional estimates ECOV
CovMatParmEst Covariance matrix of parameter estimates COV
DerAddEst Derivatives of additional estimates EDER
Dimensions Dimensions of the problem default
FitStatistics Fit statistics default
Hessian Second derivative matrix HESS
IterHistory Iteration history default
Parameters Parameters default
ParameterEstimates ~ Parameter estimates default
Specifications Model specifications default
StartingHessian Starting Hessian matrix START HESS
Starting Values Starting values and gradient START

Examples: NLMIXED Procedure

Example 63.1: One-Compartment Model with Pharmacokinetic Data

A popular application of nonlinear mixed models is in the field of pharmacokinetics, which studies how a
drug disperses through a living individual. This example considers the theophylline data from Pinheiro and
Bates (1995). Serum concentrations of the drug theophylline are measured in 12 subjects over a 25-hour
period after oral administration. The data are as follows.

data theoph;
input subject time conc dose wt;

datalines;

1 0.00 0.74 4.02 79.6
1 0.25 2.84 4.02 79.6
1 0.57 6.57 4.02 79.6
1 1.12 10.50 4.02 79.6
1 2.02 9.66 4.02 79.6
1 3.82 8.58 4.02 79.6
1 5.10 8.36 4.02 79.6

. more lines ...

12 24.15 1.17 5.30 60.5
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Pinheiro and Bates (1995) consider the following first-order compartment model for these data:

Cit = ————
T Clika; — ke;)

[exp(—ke; 1) — exp(—kq; 1)] + eir

where C;; is the observed concentration of the i th subject at time ¢, D is the dose of theophylline, k,, is the
elimination rate constant for subject i, kg, is the absorption rate constant for subject i, C/; is the clearance
for subject 7, and e;; are normal errors. To allow for random variability between subjects, they assume

Cl; = exp(B1 + bi1)
ka; = exp(B2 + bi2)
ke; = exp(fB3)

where the s denote fixed-effects parameters and the b; s denote random-effects parameters with an unknown
covariance matrix.

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=theoph;
parms betal=-3.22 beta2=0.47 beta3=-2.45
s2bl =0.03 cbl2 =0 s2b2 =0.4 s2=0.5;

cl = exp (betal + bl);
ka = exp (beta2 + b2);
ke = exp (beta3);

pred = dosexkexkax* (exp (—kextime)-exp (-ka*time)) /cl/ (ka-ke);

model conc ~ normal (pred,s2);

random bl b2 ~ normal([0,0], [s2bl,cbl2,s2b2]) subject=subject;
run;

The PARMS statement specifies starting values for the three Bs and four variance-covariance parameters.
The clearance and rate constants are defined using SAS programming statements, and the conditional model
for the data is defined to be normal with mean pred and variance s2. The two random effects are b1 and b2,
and their joint distribution is defined in the RANDOM statement. Brackets are used in defining their mean
vector (two zeros) and the lower triangle of their variance-covariance matrix (a general 2 x 2 matrix). The
SUBJECT= variable is subject.

The results from this analysis are as follows.

Output 63.1.1 Model Specification for One-Compartment Model

The NLMIXED Procedure
Specifications

Data Set WORK . THEOPH
Dependent Variable conc
Distribution for Dependent Variable Normal
Random Effects bl b2
Distribution for Random Effects Normal
Subject Variable subject
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian

Quadrature
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The “Specifications” table lists the setup of the model (Output 63.1.1). The “Dimensions” table indicates
that there are 132 observations, 12 subjects, and 7 parameters. PROC NLMIXED selects 5 quadrature
points for each random effect, producing a total grid of 25 points over which quadrature is performed
(Output 63.1.2).

Output 63.1.2 Dimensions Table for One-Compartment Model

Dimensions
Observations Used 132
Observations Not Used 0
Total Observations 132
Subjects 12
Max Obs Per Subject 11
Parameters 7
Quadrature Points 5

The “Parameters” table lists the 7 parameters, their starting values, and the initial evaluation of the negative
log likelihood using adaptive Gaussian quadrature (Output 63.1.3). The “Iteration History” table indicates
that 10 steps are required for the dual quasi-Newton algorithm to achieve convergence.

Output 63.1.3 Starting Values and Iteration History

Parameters
betal beta2 beta3 s2bl cbl2 s2b2 s2 NegLogLike
-3.22 0.47 -2.45 0.03 0 0.4 0.5 177.789945
Iteration History

Iter Calls NegLogLike Diff MaxGrad Slope

1 5 177.776248 0.013697 2.873367 -63.0744

2 8 177.7643 0.011948 1.698144 -4.75239

3 10 177.757264 0.007036 1.297439 -1.97311

4 12 177.755688 0.001576 1.441408 -0.49772

5 14 177.7467 0.008988 1.132279 -0.8223

6 17 177.746401 0.000299 0.831293 -0.00244

7 19 177.746318 0.000083 0.724198 -0.00789

8 21 177.74574 0.000578 0.180018 -0.00583

9 23 177.745736 3.88E-6 0.017958 -8.25E-6

10 25 177.745736 3.222E-8 0.000143 -6.51E-8

NOTE: GCONV convergence criterion satisfied.
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Output 63.1.4 Fit Statistics for One-Compartment Model

Fit Statistics

-2 Log Likelihood 355.5
AIC (smaller is better) 369.5
AICC (smaller is better) 370.4
BIC (smaller is better) 372.9

The “Fit Statistics” table lists the final optimized values of the log-likelihood function and information
criteria in the “smaller is better” form (Output 63.1.4).

Output 63.1.5 Parameter Estimates for One-Compartment Model

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower
betal -3.2268 0.05950 10 -54.23 <.0001 0.05 -3.3594
beta2 0.4806 0.1989 10 2.42 0.0363 0.05 0.03745
beta3 -2.4592 0.05126 10 -47.97 <.0001 0.05 -2.5734
s2bl 0.02803 0.01221 10 2.30 0.0445 0.05 0.000833
cbl2 -0.00127 0.03404 10 -0.04 0.9710 0.05 -0.07712
s2b2 0.4331 0.2005 10 2.16 0.0560 0.05 -0.01353
s2 0.5016 0.06837 10 7.34 <.0001 0.05 0.3493
Parameter Estimates
Parameter Upper Gradient
betal -3.0942 -0.00009
beta2 0.9238 3.645E-7
beta3 -2.3449 0.000039
s2bl 0.05523 -0.00014
cbl2 0.07458 -0.00007
s2b2 0.8798 -6.98E-6
s2 0.6540 6.133E-6

The “Parameter Estimates” table contains the maximum likelihood estimates of the parameters (Out-
put 63.1.5). Both s2b1 and s2b2 are marginally significant, indicating between-subject variability in the
clearances and absorption rate constants, respectively. There does not appear to be a significant covariance
between them, as seen by the estimate of cb12.

The estimates of B1, B2, and B3 are close to the adaptive quadrature estimates listed in Table 3 of Pinheiro
and Bates (1995). However, Pinheiro and Bates use a Cholesky-root parameterization for the random-
effects variance matrix and a logarithmic parameterization for the residual variance. The PROC NLMIXED
statements using their parameterization are as follows, and results are similar.

proc nlmixed data=theoph;
parms 111=-1.5 12=0 113=-0.1 betal=-3 beta2=0.5 beta3=-2.5 1s2=-0.7;
s2 = exp(1ls2);
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11 = exp(11l1l),;
13 = exp(113);
s2bl = 1l1lx1l1l*xs2;
cbl2 = 12x11lxs2;
s2b2 = (12%12 + 13%13)*xs2;

cl = exp (betal + bl);
ka = exp(beta2 + b2);
ke = exp (beta3);

pred = dosexkexkax* (exp (—kextime)-exp (-ka*time)) /cl/ (ka-ke);

model conc ~ normal (pred, s2);

random bl b2 ~ normal([0,0], [s2bl,cbl2,s2b2]) subject=subject;
run;

Example 63.2: Probit-Normal Model with Binomial Data

For this example, consider the data from Weil (1970), also studied by Williams (1975), Ochi and Prentice
(1984), and McCulloch (1994). In this experiment 16 pregnant rats receive a control diet and 16 receive a
chemically treated diet, and the litter size for each rat is recorded after 4 and 21 days. The SAS data set
follows:

data rats;
input trt $ m x QQ;
if (trt='c') then do;

x1l =1;
x2 = 0;
end;
else do;
xl = 0;
x2 = 1;
end;
litter = _n_;
datalines;
c 13 13 c 12 12 c 9 9 c 9 9 c 8 8 c 8 8 c 13 12 c 12 11
c 10 9 c 10 9 c 9 8 c 13 11 c 5 4 c 7 5 c 10 7 c 10 7
t 12 12 t 11 11 t 10 10 t 9 9 t 11 10 t 10 9 t 10 9 t 9 8
t 9 8 t 5 4 t 9 7 t 7 4 t 10 5 t 6 3 t 10 3 t 7 O

’

Here, m represents the size of the litter after 4 days, and x represents the size of the litter after 21 days. Also,
indicator variables x1 and x2 are constructed for the two treatment levels.

Following McCulloch (1994), assume a latent survival model of the form
Yijk =l +dij + ejjk

where i indexes treatment, j indexes litter, and k& indexes newborn rats within a litter. The #; represent
treatment means, the «;; represent random litter effects assumed to be iid N (0, sl.z), and the ¢;; represent
1id residual errors, all on the latent scale.

Instead of observing the survival times y;;x, assume that only the binary variable indicating whether y;;x
exceeds 0 is observed. If x;; denotes the sum of these binary variables for the ith treatment and the jth



5214 4 Chapter 63: The NLMIXED Procedure

litter, then the preceding assumptions lead to the following generalized linear mixed model:
xijloij ~ Binomial(m;;, pi;)

where m;; is the size of each litter after 4 days and
pij = ®(ti + aij)

The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=rats;
parms tl=1 t2=1 sl1=.05 s2=1;
eta = x1xtl + x2xt2 + alpha;
P = probnorm(eta);
model x ~ binomial (m,p);
random alpha ~ normal (0, xl*slxsl+x2%xs2+s2) subject=litter;
estimate 'gamma2' t2/sqrt (1+s2x%s2);
predict p out=p;
run;

As in Example 63.1, the PROC NLMIXED statement invokes the procedure and the PARMS statement
defines the parameters. The parameters for this example are the two treatment means, t1 and t2, and the two
random-effect standard deviations, s1 and s2.

The indicator variables x1 and x2 are used in the program to assign the proper mean to each observation in
the input data set as well as the proper variance to the random effects. Note that programming expressions
are permitted inside the distributional specifications, as illustrated by the random-effects variance specified
here.

The ESTIMATE statement requests an estimate of y, = t/,/1 + s%, which is a location-scale parameter
from Ochi and Prentice (1984).

The PREDICT statement constructs predictions for each observation in the input data set. For this example,
predictions of p and approximate standard errors of prediction are output to a SAS data set named P. These
predictions are functions of the parameter estimates and the empirical Bayes estimates of the random effects
Q.

The output for this model is as follows.

Output 63.2.1 Specifications, Dimensions, and Starting Values

The NLMIXED Procedure
Specifications
Data Set WORK .RATS
Dependent Variable b3
Distribution for Dependent Variable Binomial
Random Effects alpha
Distribution for Random Effects Normal
Subject Variable litter
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian
Quadrature
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Output 63.2.1 continued

Dimensions
Observations Used 32
Observations Not Used 0
Total Observations 32
Subijects 32
Max Obs Per Subject 1
Parameters 4
Quadrature Points 7
Parameters
tl t2 sl s2 NegLogLike
1 1 0.05 1 54.9362323

The “Specifications” table provides basic information about this nonlinear mixed model (Output 63.2.1).
The “Dimensions” table provides counts of various variables. Note that each observation in the data com-
prises a separate subject. Using the starting values in the “Parameters” table, PROC NLMIXED determines
that the log-likelihood function can be approximated with sufficient accuracy with a seven-point quadrature
rule.

Output 63.2.2 lteration History for Probit-Normal Model

Iteration History
Iter Calls NegLogLike Diff MaxGrad Slope
1 2 53.9933934 0.942839 11.03261 -81.9428
2 3 52.875353 1.11804 2.148952 -2.862717
3 5 52.6350386 0.240314 0.329957 -1.05049
4 6 52.6319939 0.003045 0.122926 -0.00672
5 8 52.6313583 0.000636 0.028246 -0.00352
6 11 52.6313174 0.000041 0.013551 -0.00023
7 13 52.6313115 5.839E-6 0.000603 -0.00001
8 15 52.6313115 9.45E-9 0.000022 -1.68E-8
NOTE: GCONV convergence criterion satisfied.

The “Iteration History” table indicates successful convergence in 8 iterations (Output 63.2.2).

Output 63.2.3 Fit Statistics for Probit-Normal Model

Fit Statistics

-2 Log Likelihood 105.3
AIC (smaller is better) 113.3
AICC (smaller is better) 114.7

BIC (smaller is better) 119.1
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The “Fit Statistics” table lists useful statistics based on the maximized value of the log likelihood (Out-
put 63.2.3).

Output 63.2.4 Parameter Estimates for Probit-Normal Model

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t]| Alpha Lower
tl 1.3063 0.1685 31 7.75 <.0001 0.05 0.9626
t2 0.9475 0.3055 31 3.10 0.0041 0.05 0.3244
sl 0.2403 0.3015 31 0.80 0.4315 0.05 -0.3746
s2 1.0292 0.2988 31 3.44 0.0017 0.05 0.4198

Parameter Estimates

Parameter Upper Gradient
tl 1.6499 -0.00002
t2 1.5705 9.283E-6
sl 0.8552 0.000014
s2 1.6385 -3.16E-6

The “Parameter Estimates” table indicates significance of all the parameters except S1 (Output 63.2.4).

Output 63.2.5 Additional Estimates

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t]| Alpha Lower Upper
gamma2 0.6603 0.2165 31 3.05 0.0047 0.05 0.2186 1.1019

The “Additional Estimates” table displays results from the ESTIMATE statement (Output 63.2.5). The
estimate of y, equals 0.66, agreeing with that obtained by McCulloch (1994). The standard error 0.22 is
computed using the delta method (Billingsley 1986; Cox, 1998).

Not shown is the P data set, which contains the original 32 observations and predictions of the p;;.

Example 63.3: Probit-Normal Model with Ordinal Data

The data for this example are from Ezzet and Whitehead (1991), who describe a crossover experiment on
two groups of patients using two different inhaler devices (A and B). Patients from group 1 used device A
for one week and then device B for another week. Patients from group 2 used the devices in reverse order.
The data entered as a SAS data set are as follows:
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data inhaler;
input clarity group time freq QQ;
gt = groupx*time;
sub = floor((_n_+1)/2);

datalines;
100 59 10159 100 35 2 01 35 100 3 301 3 100 2
401 2 2 00 11 10111 2 0 0 27 2 01 27 200 2 301 2
200 1 401 1 400 1 101 1 400 1 201 1 110 63
11163 110 13 211 13 210 40 11140 210 15 21115
310 7 111 7 310 2 211 2 310 1 311 1 410 2
111 2 410 1 311 1

4

The response measurement, clarity, is the patients’ assessment on the clarity of the leaflet instructions for
the devices. The clarity variable is on an ordinal scale, with 1=easy, 2=only clear after rereading, 3=not very
clear, and 4=confusing. The group variable indicates the treatment group, and the time variable indicates the
time of measurement. The freq variable indicates the number of patients with exactly the same responses.
A variable gt is created to indicate a group-by-time interaction, and a variable sub is created to indicate
patients.

As in the previous example and in Hedeker and Gibbons (1994), assume an underlying latent continuous
variable, here with the form

yij = Bo+ P1gi + Pat; + Pagit; +u; + e

where i indexes patient and ;j indexes the time period, g; indicates groups, ¢; indicates time, u; is a patient-
level normal random effect, and e;; are iid normal errors. The Bs are unknown coefficients to be estimated.

Instead of observing y;;, however, you observe only whether it falls in one of the four intervals: (—oo, 0),
(0,11), ({1,114 12),0r ({14 I2,00), where I1 and 12 are both positive. The resulting category is the
value assigned to the clarity variable.

The following code sets up and fits this ordinal probit model:

proc nlmixed data=inhaler corr ecorr;
parms b0=0 bl=0 b2=0 b3=0 sd=1 il=1 i2=1;
bounds il > 0, i2 > O0;
eta = b0 + blxgroup + b2xtime + b3xgt + u;
if (clarity=1l) then p = probnorm(-eta);
else if (clarity=2) then

P = probnorm(il-eta) - probnorm(-eta);
else if (clarity=3) then
p = probnorm(il+i2-eta) - probnorm(il-eta);

else p = 1 - probnorm(il+i2-eta);
if (p > 1le-8) then 11 = log(p);
else 11 = -1le20;
model clarity ~ general(ll);
random u ~ normal (0, sdxsd) subject=sub;
replicate fregq;
estimate 'thresh2' il;
estimate 'thresh3' il + i2;
estimate 'icc' sdxsd/ (1l+sdxsd);
run;
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The PROC NLMIXED statement specifies the input data set and requests correlations both for the parameter
estimates (CORR option) and for the additional estimates specified with ESTIMATE statements (ECORR
option).

The parameters as defined in the PARMS statement are as follows: b0 (overall intercept), b1 (group main
effect), B2 (time main effect), b3 (group-by-time interaction), sd (standard deviation of the random effect),
i1 (increment between first and second thresholds), and i2 (increment between second and third thresholds).
The BOUNDS statement restricts i1 and i2 to be positive.

The SAS programming statements begin by defining the linear predictor eta, which is a linear combination
of the b parameters and a single random effect u. The next statements define the ordinal likelihood according
to the clarity variable, eta, and the increment variables. An error trap is included in case the likelihood
becomes too small.

A general log-likelihood specification is used in the MODEL statement, and the RANDOM statement de-
fines the random effect u to have standard deviation sd and subject variable sub. The REPLICATE statement
indicates that data for each subject should be replicated according to the freq variable.

The ESTIMATE statements specify the second and third thresholds in terms of the increment variables (the
first threshold is assumed to equal zero for model identifiability). Also computed is the intraclass correlation.

The output is as follows.

Output 63.3.1 Specifications for Ordinal Data Model

The NLMIXED Procedure
Specifications
Data Set WORK. INHALER
Dependent Variable clarity
Distribution for Dependent Variable General
Random Effects u
Distribution for Random Effects Normal
Subject Variable sub
Replicate Variable freq
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian
Quadrature

The “Specifications” table echoes some primary information specified for this nonlinear mixed model (Out-
put 63.3.1). Because the log-likelihood function was expressed with SAS programming statements, the
distribution is displayed as General in the “Specifications” table.

The “Dimensions” table reveals a total of 286 subjects, which is the sum of the values of the FREQ variable
for the second time point. Five quadrature points are selected for log-likelihood evaluation (Output 63.3.2).
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Output 63.3.2 Dimensions Table for Ordinal Data Model

Dimensions
Observations Used 38
Observations Not Used 0
Total Observations 38
Subijects 286
Max Obs Per Subject 2
Parameters 7
Quadrature Points 5

Output 63.3.3 Parameter Starting Values and Negative Log Likelihood

Parameters
b0 bl b2 b3 sd il i2 NegLogLike
0 0 0 0 1 1 1 538.484276

The “Parameters” table lists the simple starting values for this problem (Output 63.3.3). The “Iteration
History” table indicates successful convergence in 13 iterations (Output 63.3.4).

Output 63.3.4 lteration History

Iteration History
Iter Calls NegLogLike Diff MaxGrad Slope
1 2 476.382511 62.10176 43.75062 -1431.4
2 4 463.228197 13.15431 14.24648 -106.753
3 5 458.528118 4.70008 48.31316 -33.0389
4 6 450.975735 7.552383 22.60098 -40.9954
5 8 448.012701 2.963033 14.86877 -16.7453
6 10 447.245153 0.767549 7.774189 -2.26743
7 11 446.72767 0.517483 3.793533 -1.59278
8 13 446.518273 0.209396 0.868638 -0.37801
9 16 446.514528 0.003745 0.328568 -0.02356
10 18 446.513341 0.001187 0.056778 -0.00183
11 20 446.513314 0.000027 0.010785 -0.00004
12 22 446.51331 3.956E-6 0.004922 -5.41E-6
13 24 446.51331 1.989E-7 0.00047 —-4E-17
NOTE: GCONV convergence criterion satisfied.
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Output 63.3.5 Fit Statistics for Ordinal Data Model

Fit Statistics

-2 Log Likelihood 893.0
AIC (smaller is better) 907.0
AICC (smaller is better) 910.8
BIC (smaller is better) 932.6

The “Fit Statistics” table lists the log likelihood and information criteria for model comparisons (Out-
put 63.3.5).

Output 63.3.6 Parameter Estimates at Convergence

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha Lower
b0 -0.6364 0.1342 285 -4.74 <.0001 0.05 -0.9006
bl 0.6007 0.1770 285 3.39 0.0008 0.05 0.2523
b2 0.6015 0.1582 285 3.80 0.0002 0.05 0.2900
b3 -1.4817 0.2385 285 -6.21 <.0001 0.05 -1.9512
sd 0.6599 0.1312 285 5.03 <.0001 0.05 0.4017
il 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548
i2 0.5985 0.1427 285 4.19 <.0001 0.05 0.3177
Parameter Estimates
Parameter Upper Gradient
b0 -0.3722 0.00047
bl 0.9491 0.000265
b2 0.9129 0.00008
b3 -1.0122 0.000102
sd 0.9181 -0.00009
il 2.0352 0.000202
i2 0.8794 0.000087

The “Parameter Estimates” table indicates significance of all the parameters (Output 63.3.6).

Output 63.3.7 Threshold and Intraclass Correlation Estimates

Additional Estimates

Standard
Label Estimate Error DF t Value Pr > |t] Alpha Lower Upper

thresh2 1.7450 0.1474 285 11.84 <.0001 0.05 1.4548 2.0352
thresh3 2.3435 0.2073 285 11.31 <.0001 0.05 1.9355 2.7515
ice 0.3034 0.08402 285 3.61 0.0004 0.05 0.1380 0.4687

The “Additional Estimates” table displays results from the ESTIMATE statements (Output 63.3.7).
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Example 63.4: Poisson-Normal Model with Count Data

This example uses the pump failure data of Gaver and O’Muircheartaigh (1987). The number of failures
and the time of operation are recorded for 10 pumps. Each of the pumps is classified into one of two groups
corresponding to either continuous or intermittent operation. The data are as follows:

data pump;
input y t group;
pump = n_;
logtstd = log(t) - 2.4564900;
datalines;
5 94.320 1
1 15.720 2
5 62.880 1
14 125.760 1
3 5.240 2
19 31.440 1
1 1.048 2
1 1.048 2
4 2.096 2
22 10.480 2

Each row denotes data for a single pump, and the variable logtstd contains the centered operation times.

Letting y;; denote the number of failures for the jth pump in the ith group, Draper (1996) considers the
following hierarchical model for these data:

vijlAij ~ Poisson(;;)
logdij = a; + Bi(logt;j —logt) + e

ejj |62 ~ Normal(0, 02)

The model specifies different intercepts and slopes for each group, and the random effect is a mechanism
for accounting for overdispersion.

The corresponding PROC NLMIXED statements are as follows:

proc nlmixed data=pump;
parms logsig 0 betal 1 beta2 1 alphal 1 alpha2 1;
if (group = 1) then eta = alphal + betalxlogtstd + e;
else eta = alpha2 + beta2xlogtstd + e;
lambda = exp(eta);
model y ~ poisson(lambda);
random e ~ normal (0,exp(2*logsig)) subject=pump;
estimate 'alphal-alpha2' alphal-alpha2;
estimate 'betal-beta2' betal-beta2;
run;

The selected output is as follows.
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Output 63.4.1 Dimensions Table for Poisson-Normal Model

The NLMIXED Procedure
Dimensions
Observations Used 10
Observations Not Used 0
Total Observations 10
Subjects 10
Max Obs Per Subject 1
Parameters 5
Quadrature Points 5

The “Dimensions” table indicates that data for 10 pumps are used with one observation for each (Out-
put 63.4.1).

Output 63.4.2 lteration History for Poisson-Normal Model

Iteration History
Iter Calls NegLogLike Diff MaxGrad Slope
1 2 30.6986932 2.162768 5.107253 -91.602
2 5 30.0255468 0.673146 2.761738 -11.0489
3 7 29.726325 0.299222 2.990401 -2.36048
4 9 28.7390263 0.987299 2.074431 -3.93678
5 10 28.3161933 0.422833 0.612531 -0.63084
6 12 28.09564 0.220553 0.462162 -0.52684
7 14 28.0438024 0.051838 0.405047 -0.10018
8 16 28.0357134 0.008089 0.135059 -0.01875
9 18 28.033925 0.001788 0.026279 -0.00514
10 20 28.0338744 0.000051 0.00402 -0.00012
11 22 28.0338727 1.681E-6 0.002864 -5.09E-6
12 24 28.0338724 3.199E-7 0.000147 -6.87E-7
13 26 28.0338724 2.532E-9 0.000017 -5.75E-9
NOTE: GCONV convergence criterion satisfied.

The “Iteration History” table indicates successful convergence in 13 iterations (Output 63.4.2).

Output 63.4.3 Fit Statistics for Poisson-Normal Model

Fit Statistics

-2 Log Likelihood 56.1
AIC (smaller is better) 66.1
AICC (smaller is better) 81.1
BIC (smaller is better) 67.6

The “Fit Statistics” table lists the final log likelihood and associated information criteria (Output 63.4.3).
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Output 63.4.4 Parameter Estimates and Additional Estimates

Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t]| Alpha Lower
logsig -0.3161 0.3213 9 -0.98 0.3508 0.05 -1.0429
betal -0.4256 0.7473 9 -0.57 0.5829 0.05 -2.1162
beta2 0.6097 0.3814 9 1.60 0.1443 0.05 -0.2530
alphal 2.9644 1.3826 9 2.14 0.0606 0.05 -0.1632
alpha2 1.7992 0.5492 9 3.28 0.0096 0.05 0.5568
Parameter Estimates
Parameter Upper Gradient
logsig 0.4107 -0.00002
betal 1.2649 -0.00002
beta2 1.4724 -1.61E-6
alphal 6.0921 -5.25E-6
alpha2 3.0415 -5.73E-6
Additional Estimates
Standard
Label Estimate Error DF t Value Pr > |t]| Alpha Lower
alphal-alpha2 1.1653 1.4855 9 0.78 0.4529 0.05 -2.1952
betal-beta2 -1.0354 0.8389 9 -1.23 0.2484 0.05 -2.9331
Additional Estimates
Label Upper
alphal-alpha2 4.5257
betal-beta2 0.8623

The “Parameter Estimates” and “Additional Estimates” tables list the maximum likelihood estimates for
each of the parameters and two differences (Output 63.4.4). The point estimates for the mean parameters
agree fairly closely with the Bayesian posterior means reported by Draper (1996); however, the likelihood-
based standard errors are roughly half the Bayesian posterior standard deviations. This is most likely due
to the fact that the Bayesian standard deviations account for the uncertainty in estimating o2, whereas the
likelihood values plug in its estimated value. This downward bias can be corrected somewhat by using the
t9 distribution shown here.
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Example 63.5: Failure Time and Frailty Model

In this example an accelerated failure time model with proportional hazard is fitted with and without ran-
dom effects. The data are from the “Getting Started” example of PROC LIFEREG; see Chapter 50, “The
LIFEREG Procedure.” Thirty-eight patients are divided into two groups of equal size, and different pain
relievers are assigned to each group. The outcome reported is the time in minutes until headache relief. The
variable censor indicates whether relief was observed during the course of the observation period (censor =
0) or whether the observation is censored (censor = 1). The SAS DATA step for these data is as follows:

data headache;
input minutes group censor @Q;

patient = _n_;

datalines;
11 1 O 12 1 0 19 1 O 19 1 O
19 1 O 19 1 O 21 1 O 20 1 O
21 1 O 21 1 O 20 1 O 21 1 O
20 1 O 21 1 O 25 1 O 27 1 O
30 1 O 21 1 1 24 1 1 14 2 O
16 2 0 16 2 0 21 2 O 21 2 O
23 2 O 23 2 0 23 2 0 23 2 0
25 2 1 23 2 O 24 2 O 24 2 O
26 2 1 32 2 1 30 2 1 30 2 O
32 2 1 20 2 1

4

In modeling survival data, censoring of observations must be taken into account carefully. In this example,
only right censoring occurs. If g(z, B), h(¢, B), and G(t, B) denote the density of failure, the hazard function,
and the survival distribution function at time 7, respectively, then the log likelihood can be written as

B:t) =Y logg(ti.p)+ Y _ logGti. B)
ieUy ieU.

= ) logh(i,B) + ) _logG(ii, B)
ielUy, i=1

(See Cox and Oakes 1984, Ch. 3.) In these expressions Uy, is the set of uncensored observations, U, is the
set of censored observations, and n denotes the total sample size.

The proportional hazards specification expresses the hazard in terms of a baseline hazard, multiplied by a
constant. In this example the hazard is that of a Weibull model and is parameterized as (¢, B) = ya(at)? !
and o = exp{—x/'B}.

The linear predictor is set equal to the intercept in the reference group (group = 2); this defines the baseline
hazard. The corresponding distribution of survival past time 7 is G(¢, ) = exp{—(«z)?}. See Cox and
Oakes (1984, Table 2.1) and the section “Supported Distributions” in Chapter 50, “The LIFEREG Proce-
dure,” for this and other survival distribution models and various parameterizations.

The following NLMIXED statements fit this accelerated failure time model and estimate the cumulative
distribution function of time to headache relief:
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proc nlmixed data=headache;
bounds gamma > O;
linp = b0 - blx*(group-2);

alpha = exp(-linp);

G_t = exp (- (alpha*minutes) **xgamma) ;

g = gammaxalphax* ( (alpha*minutes) ** (gamma-1) ) *G_t;
11 = (censor=0)xlog(g) + (censor=1l)x*log(G_t);

model minutes ~ general (11);
predict 1-G_t out=cdf;
run;

Output 63.5.1 Specifications Table for Fixed-Effects Failure Time Model

The NLMIXED Procedure
Specifications

Data Set

Dependent Variable

Distribution for Dependent Variable
Optimization Technique

Integration Method

WORK . HEADACHE
minutes

General

Dual Quasi-Newton
None

The “Specifications” table shows that no integration is required, since the model does not contain random

effects (Output 63.5.1).

Output 63.5.2 Negative Log Likelihood with Default Starting Values

Parameters
gamma b0 bl
1 1 1

NegLogLike

263.990327

No starting values were given for the three parameters. The NLMIXED procedure assigns the default value
of 1.0 in this case. The negative log likelihood based on these starting values is shown in Output 63.5.2.
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Output 63.5.3 Iteration History for Fixed-Effects Failure Time Model

Iteration History
Iter Calls NegLogLike Diff MaxGrad Slope
1 2 169.244311 94.74602 22.5599 -2230.83
2 4 142.873508 26.3708 14.88631 -3.64643
3 6 140.633695 2.239814 11.25234 -9.49454
4 8 122.890659 17.74304 19.44959 -2.50807
5 9 121.396959 1.493699 13.85584 —-4.55427
6 11 120.623843 0.773116 13.67062 -1.38064
7 12 119.278196 1.345647 15.78014 -1.69072
8 14 116.271325 3.006871 26.94029 -3.2529
9 16 109.427401 6.843925 19.88382 -6.9289
10 19 103.298102 6.129298 12.15647 -4.96054
11 22 101.686239 1.611863 14.24868 -4.34059
12 23 100.027875 1.658364 11.69853 -13.2049
13 26 99.9189048 0.108971 3.602552 -0.55176
14 28 99.8738836 0.045021 0.170712 -0.16645
15 30 99.8736392 0.000244 0.050822 -0.00041
16 32 99.8736351 4.071E-6 0.000705 -6.9E-6
17 34 99.8736351 6.1E-10 4.768E-6 -1.23E-9
NOTE: GCONV convergence criterion satisfied.

The “Iteration History” table shows that the procedure converges after 17 iterations and 34 evaluations of
the objective function (Output 63.5.3).

Output 63.5.4 Fit Statistics and Parameter Estimates

Fit Statistics

-2 Log Likelihood 199.7
AIC (smaller is better) 205.7
AICC (smaller is better) 206.5
BIC (smaller is better) 210.7

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t]| Alpha Lower
gamma 4.7128 0.6742 38 6.99 <.0001 0.05 3.3479
b0 3.3091 0.05885 38 56.23 <.0001 0.05 3.1900
bl -0.1933 0.07856 38 -2.46 0.0185 0.05 -0.3523

Parameter Estimates

Parameter Upper Gradient
gamma 6.0777 5.327E-8
b0 3.4283 -4.77E-6

bl -0.03426 -1.22E-6
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The parameter estimates and their standard errors shown in Output 63.5.4 are identical to those obtained
with the LIFEREG procedure and the following statements:

proc lifereg data=headache;
class group;
model minutes*censor (l) = group / dist=weibull;
output out=new cdf=prob;

run;

The ¢ statistic and confidence limits are based on 38 degrees of freedom. The LIFEREG procedure computes
z intervals for the parameter estimates.

For the two groups you obtain

@ (group = 1) = exp{—3.3091 + 0.1933} = 0.04434
a(group = 2) = exp{—3.3091} = 0.03655

The probabilities of headache relief by r minutes are estimated as

1= G(t, group = 1) = 1 — exp{—(0.04434 x 1)* 7128}
1= G(t. group = 2) = 1 —exp{—(0.03655  1)*712%}

These probabilities, calculated at the observed times, are shown for the two groups in Output 63.5.5 and
printed with the following statements:
proc print data=cdf;
var group censor patient minutes pred;
run;

Since the slope estimate is negative with p-value of 0.0185, you can infer that pain reliever 1 leads to
overall significantly faster relief, but the estimated probabilities give no information about patient-to-patient
variation within and between groups. For example, while pain reliever 1 provides faster relief overall, some
patients in group 2 might respond more quickly than some patients in group 1. A frailty model enables you
to accommodate and estimate patient-to-patient variation in health status by introducing random effects into
a subject’s hazard function.
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Output 63.5.5 Estimated Cumulative Distribution Function

Obs group censor patient minutes
1 1 0 1 11
2 1 0 2 12
3 1 0 3 19
4 1 0 4 19
5 1 0 5 19
6 1 0 6 19
7 1 0 7 21
8 1 0 8 20
9 1 0 9 21

10 1 0 10 21
11 1 0 11 20
12 1 0 12 21
13 1 0 13 20
14 1 0 14 21
15 1 0 15 25
16 1 0 16 27
17 1 0 17 30
18 1 1 18 21
19 1 1 19 24
20 2 0 20 14
21 2 0 21 16
22 2 0 22 16
23 2 0 23 21
24 2 0 24 21
25 2 0 25 23
26 2 0 26 23
27 2 0 27 23
28 2 0 28 23
29 2 1 29 25
30 2 0 30 23
31 2 0 31 24
32 2 0 32 24
33 2 1 33 26
34 2 1 34 32
35 2 1 35 30
36 2 0 36 30
37 2 1 37 32
38 2 1 38 20

O OO0 000D 0D0D0D0D0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0DO0ODO0ODO0ODO0DO0ODO0ODO0ODO0ODOOOOO OO OO

Pred

.03336
.04985
.35975
.35975
.35975
.35975
.51063
.43325
.51063
.51063
.43325
.51063
.43325
.51063
.80315
.90328
.97846
.51063
.73838
.04163
.07667
.07667
.24976
.24976
.35674
.35674
.35674
.35674
.47982
.35674
.41678
.41678
.54446
.87656
.78633
.78633
.87656
.20414

The following statements model the hazard for patient 7 in terms of or; = exp{—xg B—zi}, where z; is a (nor-
mal) random patient effect. Notice that the only difference from the previous NLMIXED statements are the
RANDOM statement and the addition of z in the linear predictor. The empirical Bayes estimates of the ran-
dom effect (RANDOM statement), the parameter estimates (ODS OUTPUT statement), and the estimated
cumulative distribution function (PREDICT statement) are saved to subsequently graph the patient-specific

distribution functions.

ods output ParameterEstimates=est;
proc nlmixed data=headache;
bounds gamma > O;
linp = b0 - blx(group-2) + z;
alpha = exp(-linp);
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G_t exp (- (alpha*minutes) **gamma) ;

g gamma*alphax ( (alpha*minutes) xx (gamma-1) ) *xG_t;

11 = (censor=0)*log(g) + (censor=1l)xlog(G_t);

model minutes ~ general (11);

random z ~ normal (0,exp(2*logsig)) subject=patient out=EB;
predict 1-G_t out=cdf;

run;

Output 63.5.6 Specifications for Random Frailty Model

The NLMIXED Procedure
Specifications
Data Set WORK . HEADACHE
Dependent Variable minutes
Distribution for Dependent Variable General
Random Effects z
Distribution for Random Effects Normal
Subject Variable patient
Optimization Technique Dual Quasi-Newton
Integration Method Adaptive Gaussian
Quadrature

The “Specifications” table shows that the objective function is computed by adaptive Gaussian quadrature
because of the presence of random effects (compare Output 63.5.6 and Output 63.5.1). The “Dimensions”
table reports that nine quadrature points are being used to integrate over the random effects (Output 63.5.7).

Output 63.5.7 Dimensions Table for Random Frailty Model

Dimensions
Observations Used 38
Observations Not Used 0
Total Observations 38
Subjects 38
Max Obs Per Subject 1
Parameters 4
Quadrature Points 9
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Output 63.5.8 Iteration History for Random Frailty Model

Iter

W oo Jo Ll dWN B

[
= o

12
13
14
15

Calls

~

11
13
15
16
18
20
22
24
25
27
29
31

NOTE:

Iteration History

NegLogLike

142.121411
136.440369
122.972041
120.904825
109.224144
105.064733
101.902207
99.6907395
99.3654033
99.2602178

99.254434
99.2456973
99.2445445
99.2444958
99.2444957

Diff MaxGrad

28.82225 12.14484
5.681042 25.93096
13.46833 46.56546
2.067216 23.77936
11.68068 57.65493
.159411 4.824649
.162526 14.1287
.211468 7.676822
.325336 5.689204
.105185 0.317643
.005784 1.17351
.008737 0.247412
.001153 0.104942
.000049 0.005646
.147E-8 0.000271

W O O O0OO0ODO0OODMNWN

GCONV convergence criterion satisfied.

Slope

-88.8664
-65.7217
-146.887
-94.2862
-92.4075
-19.5879
-6.33767
-3.42364
-0.93978
-0.23408
-0.00556
-0.00871
-0.00218

-0.0001
-1.84E-7

The procedure converges after 15 iterations (Output 63.5.8). The achieved —2 log likelihood is only 1.2
less than that in the model without random effects (compare Output 63.5.9 and Output 63.5.4). Compared
to a chi-square distribution with one degree of freedom, the addition of the random effect appears not to
improve the model significantly. You must exercise care, however, in interpreting likelihood ratio tests
when the value under the null hypothesis falls on the boundary of the parameter space (see, for example,

Self and Liang 1987).

Output 63.5.9 Fit Statistics for Random Frailty Model

Fit Statistics

-2 Log Likelihood 198.5
AIC (smaller is better) 206.5
AICC (smaller is better) 207.7

BIC (smaller is better) 213.0
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Output 63.5.10 Parameter Estimates

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t]| Alpha Lower
gamma 6.2867 2.1334 37 2.95 0.0055 0.05 1.9641
b0 3.2786 0.06576 37 49.86 <.0001 0.05 3.1453
bl -0.1761 0.08264 37 -2.13 0.0398 0.05 -0.3436
logsig -1.9027 0.5273 37 -3.61 0.0009 0.05 -2.9711

Parameter Estimates

Parameter Upper Gradient
gamma 10.6093 -1.89E-7
b0 3.4118 0.000271
bl -0.00868 0.000111
logsig -0.8343 0.000027

The estimate of the Weibull parameter has changed drastically from the model without random effects (com-
pare Output 63.5.10 and Output 63.5.4). The variance of the patient random effect is exp{—2 x 1.9027} =
0.02225. The listing in Output 63.5.11 shows the empirical Bayes estimates of the random effects. These
are the adjustments made to the linear predictor in order to obtain a patient’s survival distribution. The
listing is produced with the following statements:

proc print data=eb;

var Patient Effect Estimate StdErrPred;
run;
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Output 63.5.11 Empirical Bayes Estimates of Random Effects

StdErr

Obs patient Effect Estimate Pred
1 1 z -0.13597 0.23249
2 2 z -0.13323 0.22793
3 3 z -0.06294 0.13813
4 4 z -0.06294 0.13813
5 5 z -0.06294 0.13813
6 6 z -0.06294 0.13813
7 7 z -0.02568 0.11759
8 8 z -0.04499 0.12618
9 9 z -0.02568 0.11759
10 10 z -0.02568 0.11759
11 11 z -0.04499 0.12618
12 12 z -0.02568 0.11759
13 13 z -0.04499 0.12618
14 14 z -0.02568 0.11759
15 15 z 0.05980 0.11618
16 16 z 0.10458 0.12684
17 17 z 0.17147 0.14550
18 18 z 0.06471 0.13807
19 19 z 0.11157 0.14604
20 20 z -0.13406 0.22899
21 21 z -0.12698 0.21667
22 22 z -0.12698 0.21667
23 23 z -0.08506 0.15701
24 24 z -0.08506 0.15701
25 25 z -0.05797 0.13294
26 26 z -0.05797 0.13294
27 27 z -0.05797 0.13294
28 28 z -0.05797 0.13294
29 29 z 0.06420 0.13956
30 30 z -0.05797 0.13294
31 31 z -0.04266 0.12390
32 32 z -0.04266 0.12390
33 33 z 0.07618 0.14132
34 34 z 0.16292 0.16460
35 35 z 0.13193 0.15528
36 36 z 0.06327 0.12124
37 37 z 0.16292 0.16460
38 38 z 0.02074 0.14160

The predicted values and patient-specific survival distributions can be plotted with the SAS code that fol-
lows:

proc transpose data=est (keep=estimate)
out=trest (rename=(coll=gamma col2=b0 col3=bl));
run;

data pred;
merge eb (keep=estimate) headache (keep=patient group);
array pp{2} predl-pred2;
if n_ =1 then set trest (keep=gamma b0 bl);
do time=11 to 32;
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linp = b0 - blx(group-2) + estimate;
pp{group} = l-exp(— (exp(-linp) *time) **xgamma) ;
symbolid = patient+l;
output;
end;
keep predl pred2 time patient;
run;
data pred;
merge pred
cdf (where = (group=1)
rename = (pred=pcdfl minutes=minutesl)
keep = pred minutes group)
cdf (where = (group=2)
rename = (pred=pcdf2 minutes=minutes2)
keep = pred minutes group);
drop group;
run;

proc sgplot data=pred noautolegend;
label minutesl='Minutes to Headache Relief'
pcdfl ='Estimated Patient-specific CDF';
series x=time y=predl /
group=patient
lineattrs=(pattern=solid color=black);
series x=time y=pred2 [/
group=patient
lineattrs=(pattern=dash color=black);
scatter x=minutesl y=pcdfl /
markerattrs=(symbol=CircleFilled size=9);
scatter x=minutes2 y=pcdf2 /
markerattrs=(symbol=Circle size=9);
run;

The separation of the distribution functions by groups is evident in Output 63.5.12. Most of the distributions
of patients in the first group are to the left of the distributions in the second group. The separation is not
complete, however. Several patients who are assigned the second pain reliever experience headache relief
more quickly than patients assigned to the first group.
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Output 63.5.12 Patient-Specific CDFs and Predicted Values. Pain Reliever 1: Solid Lines, Closed
Circles; Pain Reliever 2: Dashed Lines, Open Circles.

1.0

0.8

0.6

0.4

Estimated Patient-specific CDF

0.2

0.0

10 15 20 25 30
Minutes to Headache Relief
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sorting of input data set, 5162, 5180
stationary point, 5202

step length options, 5198

syntax summary, 5157

termination criteria, 5160, 5189
update methods, 5173

nonlinear

mixed models (NLMIXED), 5148

normal distribution

NLMIXED procedure, 5178, 5180

o

optimization

techniques (NLMIXED), 5173, 5188

OUTQ= data set, 5171
overflows
NLMIXED procedure, 5200

P

parameter estimates

NLMIXED procedure, 5208
parameter rescaling

NLMIXED procedure, 5200
parameter specification

NLMIXED procedure, 5178
pharmakokinetics example

NLMIXED procedure, 5209
Poisson distribution

NLMIXED procedure, 5178
Poisson-normal example

NLMIXED procedure, 5221
precision

NLMIXED procedure, 5202
prediction

NLMIXED procedure, 5179, 5204

probit-normal-binomial example
NLMIXED procedure, 5213
probit-normal-ordinal example
NLMIXED procedure, 5216
programming statements
NLMIXED procedure, 5181
projected gradient
NLMIXED procedure, 5196
projected Hessian
NLMIXED procedure, 5196

Q

quadrature options
NLMIXED procedure, 5171
quasi-Newton, 5173

R

random effects

NLMIXED procedure, 5180
replicate subjects

NLMIXED procedure, 5181



sandwich estimator

NLMIXED procedure, 5163
singularity tolerances

NLMIXED procedure, 5172
stationary point

NLMIXED procedure, 5202
step length options

NLMIXED procedure, 5198

T

theophylline data
examples, NLMIXED, 5209
trust region (TR), 5173

U

update methods
NLMIXED procedure, 5173



Syntax Index

A

ABSCONV= option

PROC NLMIXED statement, 5160
ABSFCONV= option

PROC NLMIXED statement, 5160
ABSGCONV= option

PROC NLMIXED statement, 5160
ABSXCONV= option

PROC NLMIXED statement, 5161
ALPHA= option

ESTIMATE statement (NLMIXED), 5177

PREDICT statement (NLMIXED), 5180

PROC NLMIXED statement, 5161

RANDOM statement (NLMIXED), 5181
ARRAY statement

NLMIXED procedure, 5175
ASINGULAR= option

PROC NLMIXED statement, 5161

B

BEST= option

PARMS statement (NLMIXED), 5179
BOUNDS statement

NLMIXED procedure, 5176
BY statement

NLMIXED procedure, 5176
BYDATA option

PARMS statement (NLMIXED), 5179

C

CFACTOR= option

PROC NLMIXED statement, 5161
CONTRAST statement

NLMIXED procedure, 5177
CORR option

PROC NLMIXED statement, 5161
COV option

PROC NLMIXED statement, 5161
COVSING= option

PROC NLMIXED statement, 5161

D

DAMPSTEP option, 5199
PROC NLMIXED statement, 5162

DATA= option
PARMS statement (NLMIXED), 5179
PROC NLMIXED statement, 5162
DER option
PREDICT statement (NLMIXED), 5180
DF= option
CONTRAST statement (NLMIXED), 5177
ESTIMATE statement (NLMIXED), 5177
PREDICT statement (NLMIXED), 5180
PROC NLMIXED statement, 5162
RANDOM statement (NLMIXED), 5181
DIAHES option
PROC NLMIXED statement, 5162

E

EBOPT option

PROC NLMIXED statement, 5162
EBSSFRAC option

PROC NLMIXED statement, 5162
EBSSTOL option

PROC NLMIXED statement, 5162
EBSTEPS option

PROC NLMIXED statement, 5162
EBSUBSTEPS option

PROC NLMIXED statement, 5162
EBTOL option

PROC NLMIXED statement, 5162
EBZSTART option

PROC NLMIXED statement, 5163
ECORR option

PROC NLMIXED statement, 5163
ECOV option

PROC NLMIXED statement, 5163
EDER option

PROC NLMIXED statement, 5163
EMPIRICAL option

PROC NLMIXED statement, 5163
ESTIMATE statement

NLMIXED procedure, 5177

F

FCONV2= option

PROC NLMIXED statement, 5164
FCONV= option

PROC NLMIXED statement, 5163
FD= option



PROC NLMIXED statement, 5164
FDHESSIAN= option

PROC NLMIXED statement, 5165
FDIGITS= option, 5195

PROC NLMIXED statement, 5165
FLOW option

PROC NLMIXED statement, 5165
FSIZE= option

PROC NLMIXED statement, 5165

G

G4= option

PROC NLMIXED statement, 5165
GCONV= option

PROC NLMIXED statement, 5165

H

HESCAL-= option

PROC NLMIXED statement, 5166
HESS option

PROC NLMIXED statement, 5166

ID statement

NLMIXED procedure, 5178
INHESSIAN option

PROC NLMIXED statement, 5166
INSTEP= option, 5199

PROC NLMIXED statement, 5167
ITDETAILS option

PROC NLMIXED statement, 5167

L

LCDEACT= option

PROC NLMIXED statement, 5167
LCEPSILON= option

PROC NLMIXED statement, 5167
LCSINGULAR= option

PROC NLMIXED statement, 5168
LINESEARCH= option, 5198

PROC NLMIXED statement, 5168
LIST option

PROC NLMIXED statement, 5168
LISTCODE option

PROC NLMIXED statement, 5168
LISTDEP option

PROC NLMIXED statement, 5168
LISTDER option

PROC NLMIXED statement, 5169
LOGNOTE option

PROC NLMIXED statement, 5169
LSPRECISION= option
PROC NLMIXED statement, 5169

M

MAXFUNC= option

PROC NLMIXED statement, 5169
MAXITER= option

PROC NLMIXED statement, 5169
MAXSTEP= option

PROC NLMIXED statement, 5170
MAXTIME= option

PROC NLMIXED statement, 5170
METHOD-= option

PROC NLMIXED statement, 5170
MINITER= option

PROC NLMIXED statement, 5171
MODEL statement

NLMIXED procedure, 5178
MSINGULAR= option

PROC NLMIXED statement, 5171

N

NLMIXED procedure, 5157
syntax, 5157
NLMIXED procedure, ARRAY statement, 5175
NLMIXED procedure, BOUNDS statement, 5176
NLMIXED procedure, BY statement, 5176
NLMIXED procedure, CONTRAST statement, 5177
DF= option, 5177
NLMIXED procedure, ESTIMATE statement, 5177
ALPHA= option, 5177
DF= option, 5177
NLMIXED procedure, ID statement, 5178
NLMIXED procedure, MODEL statement, 5178
NLMIXED procedure, PARMS statement, 5178
BEST= option, 5179
BYDATA option, 5179
DATA= option, 5179
NLMIXED procedure, PREDICT statement, 5179
ALPHA-= option, 5180
DER option, 5180
DF= option, 5180
NLMIXED procedure, PROC NLMIXED statement
ABSCONV= option, 5160
ABSFCONV= option, 5160
ABSGCONV= option, 5160
ABSXCONV= option, 5161
ALPHA= option, 5161
ASINGULAR= option, 5161
CFACTOR= option, 5161
CORR option, 5161



COV option, 5161
COVSING= option, 5161
DAMPSTEP option, 5162
DATA= option, 5162

DF= option, 5162

DIAHES option, 5162
EBOPT option, 5162
EBSSFRAC option, 5162
EBSSTOL option, 5162
EBSTEPS option, 5162
EBSUBSTEPS option, 5162
EBTOL option, 5162
EBZSTART option, 5163
ECORR option, 5163
ECOV option, 5163

EDER option, 5163
EMPIRICAL option, 5163
FCONV2= option, 5164
FCONV= option, 5163

FD= option, 5164
FDHESSIAN= option, 5165
FDIGITS= option, 5165
FLOW option, 5165
FSIZE= option, 5165

G4= option, 5165
GCONV= option, 5165
HESCAL= option, 5166
HESS option, 5166
INHESSIAN option, 5166
INSTEP= option, 5167
ITDETAILS option, 5167
LCDEACT= option, 5167
LCEPSILON= option, 5167
LCSINGULAR= option, 5168
LINESEARCH= option, 5168
LIST option, 5168
LISTCODE option, 5168
LISTDEP option, 5168
LISTDER option, 5169
LOGNOTE option, 5169
LSPRECISION= option, 5169
MAXFUNC= option, 5169
MAXITER= option, 5169
MAXSTEP= option, 5170
MAXTIME= option, 5170
METHOD-= option, 5170
MINITER= option, 5171
MSINGULAR= option, 5171
NOAD option, 5171
NOADSCALE option, 5171
OPTCHECK option, 5171
OUTQ= option, 5171

QFAC option, 5171

QMAX option, 5171

QPOINTS option, 5171
QSCALEFAC option, 5172
QTOL option, 5172
RESTART option, 5172
SEED option, 5172
SINGCHOL= option, 5172
SINGHESS= option, 5172
SINGSWEEP= option, 5172
SINGVAR option, 5172
START option, 5172
SUBGRADIENT option, 5173
TECHNIQUE-= option, 5173
TRACE option, 5173
UPDATE-= option, 5174
VSINGULAR= option, 5174
XCONV=option, 5174
XREF option, 5175
XSIZE= option, 5175
NLMIXED procedure, RANDOM statement, 5180
ALPHA= option, 5181
DF= option, 5181
OUT= option, 5181
NLMIXED procedure, REPLICATE statement, 5181
NOAD option
PROC NLMIXED statement, 5171
NOADSCALE option
PROC NLMIXED statement, 5171

0]

OPTCHECK option

PROC NLMIXED statement, 5171
OUT= option

RANDOM statement (NLMIXED), 5181
OUTQ= option

PROC NLMIXED statement, 5171

P

PARMS statement

NLMIXED procedure, 5178
PREDICT statement

NLMIXED procedure, 5179

Q

QFAC option

PROC NLMIXED statement, 5171
QMAX option

PROC NLMIXED statement, 5171
QPOINTS option

PROC NLMIXED statement, 5171
QSCALEFAC option

PROC NLMIXED statement, 5172



QTOL option
PROC NLMIXED statement, 5172

R

RANDOM statement

NLMIXED procedure, 5180
REPLICATE statement

NLMIXED procedure, 5181
RESTART option

PROC NLMIXED statement, 5172

S

SEED option

PROC NLMIXED statement, 5172
SINGCHOL= option

PROC NLMIXED statement, 5172
SINGHESS= option

PROC NLMIXED statement, 5172
SINGSWEEP= option

PROC NLMIXED statement, 5172
SINGVAR option

PROC NLMIXED statement, 5172
START option

PROC NLMIXED statement, 5172
SUBGRADIENT option

PROC NLMIXED statement, 5173

T

TECHNIQUE-= option

PROC NLMIXED statement, 5173
TRACE option

PROC NLMIXED statement, 5173

U

UPDATE-= option
PROC NLMIXED statement, 5174

\Y%

VSINGULAR= option
PROC NLMIXED statement, 5174

X

XCONV= option

PROC NLMIXED statement, 5174
XREF option

PROC NLMIXED statement, 5175
XSIZE= option

PROC NLMIXED statement, 5175
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