

SAS/STAT® 9.3 User's Guide Shared Concepts and Topics (Chapter)

This document is an individual chapter from SAS/STAT® 9.3 User's Guide.

The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2011. SAS/STAT® 9.3 User's Guide. Cary, NC: SAS Institute Inc.

Copyright © 2011, SAS Institute Inc., Cary, NC, USA

All rights reserved. Produced in the United States of America.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.

U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.

1st electronic book, July 2011

SAS® Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at **support.sas.com/publishing** or call 1-800-727-3228.

 $SAS^{@}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. @ indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Chapter 19

Shared Concepts and Topics

		4		4
Co	on	ıte	n	ES

11.5	
Levelization of Classification Variables	392
Parameterization of Model Effects	395
GLM Parameterization of Classification Variables and Effects	395
Intercept	395
Regression Effects	396
Main Effects	396
Interaction Effects	396
Nested Effects	397
Continuous-Nesting-Class Effects	398
Continuous-by-Class Effects	398
General Effects	399
Other Parameterizations	400
EFFECT Statement	404
Collection Effects	406
Lag Effects (Experimental)	406
Multimember Effects	409
Polynomial Effects	411
Spline Effects	414
Splines and Spline Bases	418
Truncated Power Function Basis	419
B-Spline Basis	420
Natural Cubic Spline Basis	422
EFFECTPLOT Statement	423
Syntax: EFFECTPLOT Statement	423
Dictionary of Options	425
ODS Graphics: EFFECTPLOT Statement	433
Examples: EFFECTPLOT Statement	434
Example 19.1: A Saddle Surface	434
Example 19.2: Unbalanced Two-Way ANOVA	438
Example 19.3: Logistic Regression	444
ESTIMATE Statement	449
Syntax: ESTIMATE Statement	449
Positional and Nonpositional Syntax for Coefficients in Linear Functions	460
Joint Hypothesis Tests with Complex Alternatives, the Chi-Bar-Square Statistic	463

This chapter introduces a number of concepts that are common to two or more SAS/STAT procedures. Most sections display a listing of the procedures for which the shared topic is relevant.

Levelization of Classification Variables

A classification variable is a variable that enters the statistical analysis or model not through its values, but through its levels. The process of associating values of a variable with levels is termed *levelization*.

This section covers in particular procedures that support a CLASS statement for specifying classification variables. Some of the concepts discussed also apply to procedures that use different syntax to request levelization of variables (for example, the CLASS() transformation in the TRANSREG procedure).

During the process of levelization, observations that share the same value are assigned to the same level. The manner in which values are grouped can be affected by the inclusion of formats. The sort order of the levels can be determined with the ORDER= option in the procedure statement. With the GENMOD, GLM-SELECT, and LOGISTIC procedures, you can also control the sorting order separately for each variable in the CLASS statement.

Consider the data on nine observations in Table 19.1. The variable A is integer valued, and the variable X is a continuous variable with a missing value for the fourth observations. The fourth and fifth columns of Table 19.1 apply two different formats to the variable X.

Table 19.1 E	Example Da	ita for Leve	lization
---------------------	------------	--------------	----------

Obs	A	X	FORMAT x 3.0	FORMAT x 3.1
1	2	1.09	1	1.1
2	2	1.13	1	1.1
3	2	1.27	1	1.3
4	3	•		
5	3	2.26	2	2.3
6	3	2.48	2	2.5
7	4	3.34	3	3.3
8	4	3.34	3	3.3
9	4	3.14	3	3.1

By default, levelization of the variables groups observations by the formatted value of the variable, except for numerical variables for which no explicit format is provided. Numerical variables for which no explicit format is provided are sorted by their internal value. The levelization of the four columns in table Table 19.1 leads to the level assignment in Table 19.2.

Table 19.2 Values and Levels

Obs	Valu	A e Level	Value	X e Level		RMAT x 3.0 ue Level		MAT x 3.1 e Level
1	2	1	1.09	1	1	1	1.1	1
2	2	1	1.13	2	1	1	1.1	1
3	2	1	1.27	3	1	1	1.3	2
4	3	2	•					
5	3	2	2.26	4	2	2	2.3	3
6	3	2	2.48	5	2	2	2.5	4
7	4	3	3.34	7	3	3	3.3	6
8	4	3	3.34	7	3	3	3.3	6
9	4	3	3.14	6	3	3	3.1	5

The ORDER= option in the PROC statement specifies the sorting order for the levels of CLASS variables. When ORDER=FORMATTED (which is the default) is in effect for numeric variables for which you have supplied no explicit format, the levels are ordered by their internal values. To order numeric class levels with no explicit format by their BEST12. formatted values, you can specify the BEST12. format explicitly for the CLASS variables.

The following table shows how values of the ORDER= option are interpreted.

Value of ORDER=	Levels Sorted By
DATA	Order of appearance in the input data set
FORMATTED	External formatted value, except for numeric variables with no explicit format, which are sorted by their unformatted (internal) value
FREQ	Descending frequency count; levels with the most observations come first in the order
INTERNAL	Unformatted value

For FORMATTED and INTERNAL values, the sort order is machine dependent. For more information about sort order, see the chapter on the SORT procedure in the *Base SAS Procedures Guide* and the discussion of BY-group processing in *SAS Language Reference: Concepts*.

The GLMSELECT, LOGISTIC, and GENMOD procedures support a MISSING option in the CLASS statement. When this option is in effect, missing values ('.' for a numeric variable and blanks for a character variable) are included in the levelization and are assigned a level. Table 19.3 displays the results of levelizing the values in Table 19.1 when the MISSING option is in effect.

Obs	A Obs Value Level		Value	X Value Level		FORMAT x 3.0 Value Level		FORMAT x 3.1 Value Level	
1	2	1	1.09	2	1	2	1.1	2	
2	2	1	1.13	3	1	2	1.1	2	
3	2	1	1 27	4	1	2	1 3	3	

2.3

2.5

3.3

3.3

3.1

2.26 5

2.48 6

3.34 8

3.34 8

3.14 7

 Table 19.3
 Values and Levels with MISSING Option

When the MISSING option is not specified, or for procedures whose CLASS statement does not support this option, it is important to understand the implications of missing values for your statistical analysis. When a SAS/STAT procedure levelizes the CLASS variables, an observation for which a CLASS variable has a missing value is excluded from the analysis. This is true regardless of whether the variable is used to form the statistical model. Consider, for example, the case where some observations contain missing values for variable A but the records for these observations are otherwise complete with respect to all other variables in the statistical models. The analysis results from the following statements do not include any observations for which variable A contains missing values, even though A is not specified in the MODEL statement:

class A B;
model y = B x B*x;

Many statistical procedures print a "Number of Observations" table that shows the number of observations read from the data set and the number of observations used in the analysis. Pay careful attention to this table—especially when your data set contains missing values—to ensure that no observations are unintentionally excluded from the analysis.

Parameterization of Model Effects

The general form of a linear regression model is defined in Chapter 3, "Regression Models and Models with Classification Effects" as

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

This section describes how matrices of regressor effects such as **X** are constructed in SAS/STAT software. These constructions (parameterization rules) apply to regression models, models with classification effects, generalized linear models, and mixed models. The simplest and most general parameterization rules are the ones used in the GLM procedure, and they are discussed first. Several procedures also support alternate parameterizations of classification variables, including the CATMOD, GENMOD, GLMSELECT, LOGIS-TIC, PHREG, SURVEYLOGISTIC, and SURVEYPHREG procedures. These are discussed after the GLM parameterization of classification variables and model effects.

All modeling procedures that have a CLASS statement support classification variables and effects, and those procedures that additionally support the supplemental parameterizations have a PARAM= option in the CLASS statement.

GLM Parameterization of Classification Variables and Effects

This section applies to the following procedures:

GAM, GENMOD, GLIMMIX, GLM, GLMPOWER, GLMSELECT, LIFEREG, LOGISTIC, MI, MIXED, MULLTEST, ORTHOREG, PHREG, PLS, QUANTREG, ROBUSTREG, SURVEYLOGISTIC, and SUR-VEYPHREG.

Intercept

By default, SAS/STAT linear models automatically include a column of 1s in X which corresponds to an intercept parameter. In many procedures you can use the NOINT option in the MODEL statement to suppress this intercept. For example, the NOINT option is useful when the MODEL statement contains a classification effect and you want the parameter estimates to be in terms of the mean response for each level of that effect.

Regression Effects

Numeric variables or polynomial terms that involve them can be included in the model as regression effects (covariates). The actual values of such terms are included as columns of the relevant model matrices. You can use the bar operator with a regression effect to generate polynomial effects. For example, XIXIX expands to X X*X X*X*X, which is a cubic model.

Main Effects

If a classification variable has m levels, the GLM parameterization generates m columns for its main effect in the model matrix. Each column is an indicator variable for a given level. The order of the columns is the sort order of the values of their levels and frequently can be controlled with the ORDER= option in the procedure or CLASS statement.

Table 19.4 is an example where β_0 denotes the intercept and A and B are classification variables with two and three levels, respectively.

I	Data I		,	4		В		
Α	В	eta_0	A 1	A2	B1	B2	В3	
1	1	1	1	0	1	0	0	
1	2	1	1	0	0	1	0	
1	3	1	1	0	0	0	1	
2	1	1	0	1	1	0	0	
2	2	1	0	1	0	1	0	
2	3	1	0	1	0	0	1	

Table 19.4 Example of Main Effects

Typically, there are more columns for these effects than there are degrees of freedom to estimate them. In other words, the GLM parameterization of main effects is *singular*.

Interaction Effects

Often a model includes interaction (crossed) effects to account for how the effect of a variable changes with the values of other variables. With an interaction, the terms are first reordered to correspond to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if A precedes B in the CLASS statement. Then, the GLM parameterization generates columns for all combinations of levels that occur in the data. The order of the columns is such that the rightmost variables in the interaction change faster than the leftmost variables (Table 19.5). In the MIXED and GLIMMIX procedures, which support both fixed-and random-effects models, empty columns (that is, columns that would contain all 0s) are not generated for fixed effects, but they are generated for random effects.

Da	ata	I	,	4		В				A [;]	*B		
Α	В	β_0	A1	A2	B1	B2	В3	A1B1	A1B2	A1B3	A2B1	A2B2	A2B3
1	1	1	1	0	1	0	0	1	0	0	0	0	0
1	2	1	1	0	0	1	0	0	1	0	0	0	0
1	3	1	1	0	0	0	1	0	0	1	0	0	0
2	1	1	0	1	1	0	0	0	0	0	1	0	0
2	2	1	0	1	0	1	0	0	0	0	0	1	0
2	3	1	0	1	0	0	1	0	0	0	0	0	1

Table 19.5 Example of Interaction Effects

In the preceding matrix, main-effects columns are not linearly independent of crossed-effects columns; in fact, the column space for the crossed effects contains the space of the main effect.

When your model contains many interaction effects, you might be able to code them more parsimoniously by using the bar operator (1). The bar operator generates all possible interaction effects. For example, AIBIC expands to A B A*B C A*C B*C A*B*C. To eliminate higher-order interaction effects, use the at sign (@) in conjunction with the bar operator. For instance, AlBICID@2 expands to A B A*B C A*C B*C D A*D B*D C*D.

Nested Effects

Nested effects are generated in the same manner as crossed effects. Hence, the design columns generated by the following two statements are the same (but the ordering of the columns is different):

The nesting operator in SAS/STAT software is more of a notational convenience than an operation distinct from crossing. Nested effects are typically characterized by the property that the nested variables never appear as main effects. The order of the variables within nesting parentheses is made to correspond to the order of these variables in the CLASS statement. The order of the columns is such that variables outside the parentheses index faster than those inside the parentheses, and the rightmost nested variables index faster than the leftmost variables (Table 19.6).

Table 19.6	Example of No	ested Effects
-------------------	---------------	---------------

I	Data	I	1	4			В	(A)		
Α	В	β_0	A1	A2	B1A1	B2A1	B3A1	B1A2	B2A2	B3A2
1	1	1	1	0	1	0	0	0	0	0
1	2	1	1	0	0	1	0	0	0	0
1	3	1	1	0	0	0	1	0	0	0
2	1	1	0	1	0	0	0	1	0	0
2	2	1	0	1	0	0	0	0	1	0
2	3	1	0	1	0	0	0	0	0	1

Continuous-Nesting-Class Effects

When a continuous variable nests or crosses with a classification variable, the design columns are constructed by multiplying the continuous values into the design columns for the classification effect (Table 19.7).

			1			9			
Data		Data	I	P	١	X(A)			
	X	Α	β_0	A1	A2	X(A1) X((A2)		
	21	1	1	1	0	21	0		
	24	1	1	1	0	24	0		
	22	1	1	1	0	22	0		
	28	2	1	0	1	0	28		
	19	2	1	0	1	0	19		
	23	2	1	0	1	0	23		

Table 19.7 Example of Continuous-Nesting-Class Effects

This model estimates a separate intercept and a separate slope for X within each level of A.

Continuous-by-Class Effects

23 2

Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. Table 19.8 shows the construction of the X*A effect. The two columns for this effect are the same as the columns for the X(A) effect in Table 19.7.

I	Data	I	X	А	X:	*A
X	Α	eta_0	X	A1 A2	X*A1	X*A2
21	1	1	21	1 0	21	0
24	1	1	24	1 0	24	0
22	1	1	22	1 0	22	0
28	2	1	28	0 1	0	28
19	2	1	19	0 1	0	19

Table 19.8 Example of Continuous-by-Class Effects

23

You can use continuous-by-class effects together with pure continuous effects to test for homogeneity of slopes.

1

23

An example that combines all the effects is X1*X2*A*B*C(D E). The continuous list comes first, followed by the crossed list, followed by the nested list in parentheses. You should be aware of the sequencing of parameters when you use statements that depend on the ordering of parameters. Such statements include CONTRAST and ESTIMATE statements, which are used in a number of procedures to estimate and test functions of the parameters.

Effects might be renamed by the procedure to correspond to ordering rules. For example, B*A(E D) might be renamed A*B(D E) to satisfy the following:

- Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which they appear in the CLASS statement.
- Variables within parentheses (nested effects) are sorted in the order in which they appear in the CLASS statement.

The sequencing of the parameters generated by an effect can be described by which variables have their levels indexed faster:

- Variables in the crossed list index faster than variables in the nested list.
- Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each having two levels, 1 and 2. If the CLASS statement is

class A B C D;

then the order of the parameters for the effect B*A(C D), which is renamed A*B(C D), is

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn, combinations of A and B appear. The B effect changes fastest because it is rightmost in the cross list. Then A changes next fastest, and D changes next fastest. The C effect changes most slowly because it is leftmost in the nested list.

Other Parameterizations

This section applies to the following procedures: CATMOD, GENMOD, GLMSELECT, LOGISTIC, PHREG, and SURVEYPHREG.

Some SAS/STAT procedures, including GENMOD, GLMSELECT, and LOGISTIC, support nonsingular parameterizations for classification effects. A variety of these nonsingular parameterizations are available. In most of these procedures you use the PARAM= option in the CLASS statement to specify the parameterization.

Consider a model with one CLASS variable A that has four levels, 1, 2, 5, and 7. Details of the possible choices for the PARAM= option follow.

EFFECT

Three columns are created to indicate group membership of the nonreference levels. For the reference level, all three dummy variables have a value of -1. For example, if the reference level is 7 (REF=7), the design matrix columns for A are as follows.

	Effect C	oding	
	Design Matrix		
A	A1	A2	A5
1	1	0	0
2	0	1	0
5	0	0	1
7	-1	-1	-1

Parameter estimates of CLASS main effects that use the effect coding scheme estimate the difference in the effect of each nonreference level compared to the average effect over all four levels.

The EFFECT parameterization is the default parameterization in the CATMOD procedure. See the section "Generation of the Design Matrix" on page 1732, in Chapter 29, "The CATMOD Procedure," for further details about parameterization of model effects with the CATMOD procedure.

As in the GLM procedure, four columns are created to indicate group membership. The design matrix columns for A are as follows.

GLM Coding				
Design Matrix				
A	A1	A2	A5	A7
1	1	0	0	0
2	0	1	0	0
5	0	0	1	0
7	0	0	0	1

Parameter estimates of CLASS main effects that use the GLM coding scheme estimate the difference in the effects of each level compared to the last level. See the previous section for details about the GLM parameterization of model effects.

ORDINAL

THERMOMETER

Three columns are created to indicate group membership of the higher levels of the effect. For the first level of the effect (which for A is 1), all three dummy variables have a value of 0. The design matrix columns for A are as follows.

Ordinal Coding			
Design Matrix			
A	A2	A5	A7
1	0	0	0
2	1	0	0
5	1	1	0
7	1	1	1

The first level of the effect is a control or baseline level. Parameter estimates of CLASS main effects, using the ORDINAL coding scheme, estimate the differences between effects of successive levels. When the parameters have the same sign, the effect is monotonic across the levels.

POLYNOMIAL

POLY

Three columns are created. The first represents the linear term (x), the second represents the quadratic term (x^2) , and the third represents the cubic term (x^3) , where x is the level value. If the CLASS levels are not numeric, they are translated into 1, 2, 3, ... according to their sorting order. The design matrix columns for A are as follows.

Polynomial Coding			
	Design Matrix		
A	APOLY1	APOLY2	APOLY3
1	1	1	1
2	2	4	8
5	5	25	125
7	7	49	343

REFERENCE

REF

Three columns are created to indicate group membership of the nonreference levels. For the reference level, all three dummy variables have a value of 0. For example, if the reference level is 7 (REF=7), the design matrix columns for A are as follows.

Reference Coding			
Design Matrix			
A	A1	A2	A5
1	1	0	0
2	0	1	0
5	0	0	1
7	0	0	0

Parameter estimates of CLASS main effects that use the reference coding scheme estimate the difference in the effect of each nonreference level compared to the effect of the reference level.

The REFERENCE parameterization is also available through the MODEL statement in the CATMOD procedure. See the section "Generation of the Design Matrix" on page 1732, in Chapter 29, "The CATMOD Procedure," for further details about parameterization of model effects with the CATMOD procedure.

ORTHEFFECT

The columns are obtained by applying the Gram-Schmidt orthogonalization to the columns for PARAM=EFFECT. The design matrix columns for A are as follows.

Orthogonal Effect Coding			
	Design Matrix		
A	AOEFF1	AOEFF2	AOEFF3
1	1.41421	-0.81650	-0.57735
2	0	1.63299	-0.57735
5	0	0	1.73205
7	-1.41421	-0.81649	-0.57735

ORTHORDINAL

ORTHOTHERM

The columns are obtained by applying the Gram-Schmidt orthogonalization to the columns for PARAM=ORDINAL. The design matrix columns for A are as follows.

Orthogonal Ordinal Coding				
		Design Matrix		
A	AOORD1	AOORD2	AOORD3	
1	-1.73205	0	0	
2	0.57735	-1.63299	0	
5	0.57735	0.81650	-1.41421	
7	0.57735	0.81650	1.41421	

ORTHPOLY

The columns are obtained by applying the Gram-Schmidt orthogonalization to the columns for PARAM=POLY. The design matrix columns for A are as follows.

	Orthogonal Polynomial Coding			
		Design Matrix		
A	AOPOLY1	AOPOLY2	AOPOLY5	
1	-1.15311	0.90712	-0.92058	
2	-0.73380	-0.54041	1.47292	
5	0.52414	-1.37034	-0.92058	
7	1.36277	1.00363	0.36823	

ORTHREF

The columns are obtained by applying the Gram-Schmidt orthogonalization to the columns for PARAM=REFERENCE. The design matrix columns for A are as follows.

Orthogonal Reference Coding			
	Design Matrix		
A	AOREF1	AOREF2	AOREF3
1	1.73205	0	0
2	-0.57735	1.63299	0
5	-0.57735	-0.81650	1.41421
7	-0.57735	-0.81650	-1.41421

EFFECT Statement

This section applies to the following procedures:

GLIMMIX, GLMSELECT, HPMIXED, LOGISTIC, ORTHOREG, PHREG, PLS, QUANTREG, ROBUSTREG, SURVEYLOGISTIC, and SURVEYREG.

The EFFECT statement enables you to construct special collections of columns for design matrices. These collections are referred to as *constructed effects* to distinguish them from the usual model effects that are formed from continuous or classification variables, as discussed in the section "GLM Parameterization of Classification Variables and Effects" on page 395. For example, the terms A, B, x, A*x, A*B, and sub in the following statements define fixed, random, and subject effects of the usual type in a mixed model:

```
proc glimmix;
  class A B sub;
  model y = A B x A*x;
  random A*B / subject=sub;
run;
```

A constructed effect, on the other hand, is assigned through the EFFECT statement. For example, in the following program, the EFFECT statement defines a constructed effect named spl:

```
proc glimmix;
  class A B SUB;
  effect spl = spline(x);
  model y = A B A*spl;
  random A*B / subject=sub;
run:
```

The columns of spl are formed from the data set variable x as a cubic B-spline basis with three equally spaced interior knots.

Each constructed effect corresponds to a collection of columns that are referred to by using the name you supply. You can specify multiple EFFECT statements, and all EFFECT statements must precede the MODEL statement.

The general syntax for the EFFECT statement with *effect-specification* is

```
EFFECT effect-name = effect-type (var-list < / effect-options >);
```

The name of the effect is specified after the EFFECT keyword. This name can appear in only one EFFECT statement and cannot be the name of a variable in the input data set. The *effect-type* is specified after an equal sign, followed by a list of variables within parentheses which are used in constructing the effect. *Effect-options* that are specific to an *effect-type* can be specified after a slash (/) following the variable list. The following *effect-types* are available and are discussed in the following sections:

COLLECTION is a collection effect that defines one or more variables as a single effect with multiple degrees of freedom. The variables in a collection are considered as a unit for estimation and inference. LAG is a classification effect in which the level that is used for a given period corresponds to the level in the preceding period. **Note:** The LAG *effect-type* is experimental in this release. MULTIMEMBER | MM is a multimember classification effect whose levels are determined by one or more variables that appear in a CLASS statement. POLYNOMIAL | POLY is a multivariate polynomial effect in the specified numeric variables. **SPLINE** is a regression spline effect whose columns are univariate spline expansions of one or more variables. A spline expansion replaces the original variable with an expanded or larger set of new variables.

Table 19.9 summarizes important options for each type of EFFECT statement.

Table 19.9 Important EFFECT Statement Options

Option	Description
Options for Collection	Effects
DETAILS	Displays the constituents of the collection effect
Options for Lag Effec	ts
DESIGNROLE=	Names a variable that controls to which lag design an observation is assigned
DETAILS	Displays the lag design of the lag effect
NLAG=	Specifies the number of periods in the lag
PERIOD=	Names the variable that defines the period
WITHIN=	Names the variable or variables that define the group within which each period is defined
Options for Multimen	nber Effects
NOEFFECT	Specifies that observations with all missing levels for the multi- member variables should have zero values in the corresponding design matrix columns
WEIGHT=	Specifies the weight variable for the contributions of each of the classification effects
Options for Polynomia	al Effects
DEGREE=	Specifies the degree of the polynomial
MDEGREE=	Specifies the maximum degree of any variable in a term of the polynomial
STANDARDIZE=	Specifies centering and scaling suboptions for the variables that define the polynomial

Table 19.9 continued

Option	Description			
Options for Spline Effects				
BASIS=	Specifies the type of basis (B-spline basis or truncated power function basis) for the spline expansion			
DEGREE= KNOTMETHOD=	Specifies the degree of the spline transformation Specifies how to construct the knots for spline effects			

Collection Effects

EFFECT name=**COLLECTION** (var-list < / **DETAILS** >);

You use a collection effect to define a set of variables that are treated as a single effect with multiple degrees of freedom. The variables in var-list can be continuous or classification variables. The columns in the design matrix that are contributed by a collection effect are the design columns of its constituent variables in the order in which they appear in the definition of the collection effect. If you specify the DETAILS option, then a table that shows the constituents of the collection effect is displayed.

Lag Effects (Experimental)

EFFECT name=**LAG** (variable / lag-options);

A lag effect is a classification effect for the CLASS variable that is given after the keyword LAG. A lag effect is used to represent the effect of a previous value of the lagged variable when there is some inherent ordering of the observations of this variable. A typical example where lag effects are useful is a study in which different subjects are given sequences of treatments and you want to investigate whether the treatment in the previous period is important in understanding the outcome in the current period. You can do this by including a lagged treatment effect in your model.

The precise definition of a LAG effect depends on a subdivision of the data into disjoint subsets, often referred to as "subjects," and an ordering into units called "periods" of the observations within a subject. For an observation that belongs to a given subject and at a given period, the design matrix columns of the lagged variable are the usual design matrix columns of that variable except for the observation at the preceding period for that subject. Observations at the initial period do not have a preceding value, and so the design matrix columns of the lag effect for these observations are set to zero. You can also define lag effects where the number of periods that are lagged is greater than one. If the number of periods that are lagged is n, then the design matrix columns of observations in periods less than or equal to n are set to zero. The design matrix columns that correspond to a subject at period p, where p > n, are the usual design matrix columns of the lagged variable for that subject at period p - n.

A convenient way to represent the organization of observations into subjects and periods is to form the lag design matrix. The rows and columns of this matrix correspond to the subjects and periods respectively. The lag design matrix entry is the treatment for the corresponding subject and period. In a valid lag design there is at most one observation for a given period and subject. For example, the following set of treatments by subject and period form a valid lag design:

Subject	Period	Treatment
Sheila	1	В
Joey	1	A
Athena	1	A
Gelindo	1	A
Sheila	2	С
Joey	2	A
Athena	2	•
Gelindo	2	В
Sheila	3	В
Joey	3	С
Athena	3	A
Gelindo	3	В

The associated lag design matrix is

	P	eriod	
Subject	1	2	3
_			
Athena	A		A
Gelindo	A	В	В
Joey	A	A	С
Sheila	В	С	В

Note that the subject Athena did not receive a treatment at period 2, and so the corresponding entry in the lag design matrix is missing. You can define a lag effect for this lag design with the following statements:

```
CLASS treatment;
EFFECT Lag = LAG( treatment / WITHIN=subject PERIOD=period);
```

When GLM coding is used for the CLASS variable treatment, the design matrix columns Lag_A, Lag_B, and Lag_C for the constructed effect Lag are as follows:

Subject	period	treatment	Lag_A	Lag_B	Lag_C
Athena	1	A	0	0	0
Athena	2		1	0	0
Athena	3	A	•		•
Gelindo	1	A	0	0	0
Gelindo	2	В	1	0	0
Gelindo	3	В	0	1	0
Joey	1	A	0	0	0
Joey	2	A	1	0	0
Joey	3	С	1	0	0
Sheila	1	В	0	0	0
Sheila	2	С	0	1	0
Sheila	3	В	0	0	1

The design matrix columns for each subject at period 1 are all zero because there are no lagged observations for period 1. You can also see that the design matrix columns at period 3 for subject Athena are missing because Athena did not receive a treatment at period 2. Nevertheless, the design matrix columns for Athena at period 2 are nonmissing and correspond to the treatment "A" that she received in period 1.

The following *lag-options* are required:

PERIOD=variable

specifies the period variable of the LAG design. The number of periods is the number of unique formatted values of the PERIOD= variable, and the ordering of the period is formed by sorting these formatted values in ascending order. You must specify a PERIOD= variable.

WITHIN=(variables)

WITHIN=variable

specifies a variable (or a list of variables within parentheses) that defines the subject grouping of the lag design. If there is only one WITHIN= *variable*, then the parentheses are not required. Each *subject* is defined by the unique set of formatted values of the *variables* in the WITHIN= list. The subjects are sorted in ascending lexicographic order. You must specify a WITHIN= variable.

You can also specify the following *lag-options*:

DESIGNROLE=*variable*

specifies a numeric variable that is used to subset observations into a fitting group in which the value of the DESIGNROLE= variable is nonzero and a second group in which the value of the specified *variable* is zero. The observations in the fitting group are used to form the LAG design matrix that is used in fitting the model. The LAG design that corresponds to the non-fitting group is used when scoring observations in the input data set that do not belong to the fitting group. This option is useful when you want to obtain predicted values in an output data set for observations that are not used in fitting the model. If you do not specify a DESIGNROLE= *variable*, then all observations are assigned to the fitting group.

DETAILS

requests a table that shows the lag design matrix of the lag effect.

NLAG = n

specifies the number of lags. By default NLAG=1.

Multimember Effects

```
EFFECT name=MULTIMEMBER (var-list </mm-options>);
EFFECT name=MM (var-list </mm-options>);
```

A multimember effect is formed from one or more classification variables in such a way that each observation can be associated with one or more levels of the union of the levels of the classification variables. In other words, a multimember effect is a classification-type effect with possibly more than one nonzero column entry for each observation. Multimember effects are useful, for example, in modeling the following:

- nurses' effects on patient recovery in hospitals
- teachers' effects on student scores
- lineage effects in genetic studies. See Example 40.16 in Chapter 40, "The GLIMMIX Procedure," for an application with random multimember effects in a genetic diallel experiment.

The levels of a multimember effect consist of the union of formatted values of the variables that define this effect. Each such level contributes one column to the design matrix. For each observation, the value that corresponds to each level of the multimember effect in the design matrix is the number of times that this level occurs for the observation.

For example, the following data provide teacher information and end-of-year test scores for students after two semesters:

Student	Score	Teacher1	Teacher2
Mary	87	Tobias	Cohen
Tom	89	Rodriguez	Tobias
Fred	82	Cohen	Cohen
Jane	88	Tobias	•
Jack	99		•

For example, Mary had different teachers in the two semesters, Fred had the same teacher in both semesters, and Jane received instruction only in the first semester.

You can model the effect of the teachers on student performance by using a multimember effect specified as follows:

```
CLASS teacher1 teacher2;
EFFECT teacher = MM(teacher1 teacher2);
```

The levels of the teacher effect are Cohen, Rodriguez, and Tobias, and the associated design matrix columns are as follows:

Student	Cohen	Rodriguez	Tobias
Mary	1	0	1
Tom	0	1	1
Fred	2	0	0
Jane	0	0	1
Jack		•	

You can specify the following *mm-options* after a slash (/):

DETAILS

requests a table that shows the levels of the multimember effect.

NOEFFECT

specifies that, for observations with all missing levels of the multimember variables, the values in the corresponding design matrix columns be set to zero. If, in the preceding example, the teacher effect is defined by

```
EFFECT teacher = MM(teacher1 teacher2 / noeffect);
```

then the associated design matrix columns values for Jack are all zero. This enables you to include Jack in the analysis even though there is no effect of teachers on his performance.

A situation where it is important to designate observations as having no effect due to a classification variable is the analysis of crossover designs, where lagged treatment levels are used to model the carryover effects of treatments between periods. Since there is no carryover effect for the first period, the treatment lag effect in a crossover design can be modeled with a multimember effect that consists of a single classification variable and the NOEFFECT option, as in the following statements:

```
CLASS Treatment lagTreatment;
EFFECT Carryover = MM(lagTreatment / noeffect);
```

The lagTreatment variable contains a missing value for the first period. Otherwise, it contains the value of the treatment variable for the preceding period.

STDIZE

specifies that for each observation, the entries in the design matrix that corresponds to the multimember effect be scaled to have a sum of one.

WEIGHT=wght-list

specifies numeric variables used to weigh the contributions of each of the classification effects that define the constructed multimember effect. The number of variables in *wght-list* must match the number of classification variables that define the effect.

Polynomial Effects

```
EFFECT name=POLYNOMIAL (var-list </polynomial-options>); 
EFFECT name=POLY (var-list </polynomial-options>);
```

The variables in *var-list* must be numeric. A design matrix column is generated for each term of the specified polynomial. By default, each of these terms is treated as a separate effect for the purpose of model building. For example, the statements

```
proc glmselect;
    effect MyPoly = polynomial(x1-x3/degree=2);
    model y = MyPoly;
run;

yield the identical analysis to the statements

proc glmselect;
    model y = x1 x2 x3 x1*x1 x1*x2 x1*x3 x2*x2 x2*x3 x3*x3;
run;
```

You can specify the following *polynomial-options* after a slash (/):

DEGREE=n

specifies the degree of the polynomial. The degree must be a positive integer. The degree is typically a small integer, such as 1, 2, or 3. The default is DEGREE=1.

DETAILS

requests a table that shows the details of the specified polynomial, including the number of terms generated. If you also specify the STANDARDIZE option, then a table that shows the standardization details is also produced.

LABELSTYLE=(style-opts)

LABELSTYLE=style-opt

specifies how the terms in the polynomial are labeled. By default, powers are shown with $\hat{}$ as the exponentiation operator and * as the multiplication operator. For example, a polynomial term such as $x_1^3x_2x_3^2$ is labeled $x_1^3x_2x_3^2$. You can change the style of the label by using the following *style-opts* within parentheses. If you specify a single *style-opt*, then you can omit the enclosing parentheses.

EXPAND

specifies that each variable with an exponent greater than 1 be written as products of that variable. For example, the term $x_1^3x_2x_3^2$ receives the label $x1^*x1^*x2^*x3^*x3$.

EXPONENT < = quoted string >

specifies that each variable with an exponent greater than 1 be written using exponential notation. By default, the symbol ^ is used as the exponentiation operator. If you supply the optional quoted string after an equal sign, then that string is used as the exponentiation operator. For example, if you specify

```
LABELSTYLE= (EXPONENT="**")
```

then the term $x_1^3x_2x_3^2$ receives the label x1**3*x2*x3**2.

INCLUDENAME

specifies that the name of the effect followed by an underscore be used as a prefix for term labels. For example, the following statement generates terms with labels MyPoly_x1 and MyPoly_x1^2:

```
EFFECT MyPoly=POLYNOMIAL(x1/degree=2 labelstyle=INCLUDENAME)
```

The INCLUDENAME option is ignored if you also specify the NOSEPARATE option in the EFFECT=POLYNOMIAL statement.

PRODUCTSYMBOL=NONE | quoted string

specifies that the supplied string be used as the product symbol. For example, the following statement generates terms with labels x1, x2, and x1 x2:

If you specify PRODUCTSYMBOL=NONE, then the labels are formed by juxtaposing the constituent variable names.

MDEGREE=n

specifies the maximum degree of any variable in a term of the polynomial. This degree must be a positive integer. The default is the degree of the specified polynomial. For example, the following statement generates the terms x_1 , x_2 , x_1^2 , x_1x_2 , x_2^2 , $x_1^2x_2$, $x_1x_2^2$ and $x_1^2x_2^2$:

```
EFFECT MyPoly=POLYNOMIAL(x1 x2/degree=4 MDEGREE=2);
```

NOSEPARATE

specifies that the polynomial be treated as a single effect with multiple degrees of freedom. The effect name that you specify is used as the constructed effect name, and the labels of the terms are used as labels of the corresponding parameters.

STANDARDIZE < (centerscale-opts) > <= standardize-opt >

specifies that the variables that define the polynomial be standardized. By default, the standardized variables receive prefix "s_" in the variable names.

You can use the following *centerscale-opts* to specify how the center and scale are estimated:

METHOD=MOMENTS

specifies that the center be estimated by the variable mean and the scale be estimated by the standard deviation. If a weight variable is specified using a WEIGHT statement, the observations with invalid weights are ignored when forming the mean and standard deviation, but the weights are otherwise not used. Only observations that are used in performing the analysis are used for the standardization.

METHOD=RANGE

specifies that the center be estimated by the midpoint of the variable range and the scale be estimated as half the variable range. Any observation that has a missing value for any regressor used in the model is ignored when computing the range of variables in a polynomial effect. Observations with valid regressor values but missing or invalid values of frequency variables, weight variables, or dependent variables are used in computing variable ranges. The default (if you do not specify the METHOD= suboption) is METHOD=RANGE.

METHOD=WMOMENTS

is the same as METHOD=MOMENTS except that weighted means and weighted standard deviations are used.

Let

n =number of observations used in the analysis

w = weight variable

f = frequency variable

x =variable to be standardized

 $x_{(n)} = \operatorname{Max}_{i=1}^{n}(x_i)$

 $x_{(1)} = \operatorname{Min}_{i=1}^{n}(x_i)$

F = sum of frequencies

 $= \sum_{i=1}^{n} f_i$

WF = sum of weighted frequencies

 $= \sum_{i=1}^{n} w_i f_i$

Table 19.10 shows how the center and scale are computed for each of the supported methods.

Table 19.10 Center and Scale Estimates by Method

Method	Center	Scale
Range	$(x_{(n)} + x_{(1)})/2$	$(x_{(n)}-x_{(1)})/2$
Moments	$\bar{x} = \sum_{i=1}^{n} f_i x_i / F$	$\sqrt{\sum_{i=1}^{n} f_i(x_i - \bar{x})^2 / (F - 1)}$
WMoments	$\bar{x}_w = \sum_{i=1}^n w_i f_i x_i / WF$	$\sqrt{\sum_{i=1}^{n} w_i f_i (x_i - \bar{x}_w)^2 / (F - 1)}$

PREFIX=NONE | quoted-string

specifies the prefix that is appended to standardized variables when forming the term labels. If you omit this option, the default prefix is "s_". If you specify PREFIX=NONE, then standardized variables are not prefixed.

You can control whether the standardization is to center, scale, or both center and scale by specifying a *standardize-opt*:

CENTER

specifies that variables be centered but not scaled. For a variable x,

s
$$x = x - center$$

CENTERSCALE

specifies that variables be centered and scaled. This is the default if you do not specify a standardization-opt. For a variable x,

$$s_x = \frac{x - \text{center}}{\text{scale}}$$

NONE

specifies that no standardization be performed.

SCALE

specifies that variables be scaled but not centered. For a variable x,

$$s_x = \frac{x}{\text{scale}}$$

Spline Effects

This section discusses the construction of spline effects through the EFFECT statement. You can also include spline effects in statistical models by other means. The TRANSREG procedure has dedicated facilities for including regression splines in your model and controlling the construction of the splines. For example, you can use the TRANSREG procedure to fit a spline function but restrict the function to be always increasing or decreasing (monotone). See the section "Using Splines and Knots" on page 7800 in Chapter 93, "The TRANSREG Procedure," for more information about using splines with the TRANSREG procedure. The GAM and TPSPLINE procedures also can model the effects of regressor variables in terms of smooth functions that are generated from spline bases. For more information see Chapter 38, "The GAM Procedure," and Chapter 92, "The TPSPLINE Procedure."

A spline effect expands variables into spline bases whose form depends on the options that you specify. You can find details about regression splines and spline bases in the section "Splines and Spline Bases" on page 418. You request a spline effect with the syntax

The variables in *var-list* must be numeric. Design matrix columns are generated separately for each of these variables, and the set of columns is collectively referred to with the specified name. By default, the spline basis that is generated for each variable is a cubic B-spline basis with three equally spaced knots positioned between the minimum and maximum values of that variable. This yields by default seven design matrix columns for each of the variables in the SPLINE effect.

You can specify the following *spline-options* after a slash (/):

BASIS=BSPLINE

specifies a B-spline basis for the spline expansion. For splines of degree d defined with n knots, this basis consists of n+d+1 columns. In order to completely specify the B-spline basis, d left-side boundary knots and $\max\{d,1\}$ right-side boundary knots are also required. See the suboptions KNOTMETHOD=, DATABOUNDARY, KNOTMIN=, and KNOTMAX= for details about how to specify the positions of both the internal and boundary knots. This is the default if you do not specify the BASIS= suboption.

BASIS=TPF(options)

specifies a truncated power function basis for the spline expansion. For splines of degree d defined with n knots for a variable x, this basis consists of an intercept, polynomials x, x^2 ,..., x^d and one truncated power function for each of the n knots. Unlike the B-spline basis, no boundary knots are required. See the suboption KNOTMETHOD= for details about how you can specify the position of the internal knots.

You can modify the number of columns when you request BASIS=TPF with the following *options*:

NOINT

excludes the intercept column.

NOPOWERS

excludes the intercept and polynomial columns.

DATABOUNDARY

specifies that the extremes of the data be used as boundary knots when building a B-spline basis.

DEGREE=n

specifies the degree of the spline transformation. The degree must be a nonnegative integer. The degree is typically a small integer, such as 0, 1, 2, or 3. The default is DEGREE=3.

DETAILS

requests tables that show the knot locations and the knots associated with each spline basis function.

KNOTMAX=value

specifies that, for each variable in the EFFECT statement, the right-side boundary knots be equally spaced starting at the maximum of the variable and ending at the specified value. This option is ignored for variables whose maximum value is greater than the specified value or if the DATABOUND-ARY option is also specified.

KNOTMETHOD=knot-method<(knot-options)>

specifies how to construct the knots for spline effects. You can choose from the following *knot-methods* and affect the knot construction further with the method-specific *knot-options*:

EQUAL<(n)>

specifies that n equally spaced knots be positioned between the extremes of the data. The default is n=3. For a B-spline basis, any needed boundary knots continue to be equally spaced unless the DATABOUNDARY option has also been specified. KNOTMETHOD=EQUAL is the default if no knot-method is specified.

LIST(number-list)

specifies the list of internal knots to be used in forming the spline basis columns. For a B-spline basis, the data extremes are used as boundary knots.

LISTWITHBOUNDARY(number-list)

specifies the list of all knots that are used in forming the spline basis columns. When you use a truncated power function basis, this list is interpreted as the list of internal knots. When you use a B-spline basis of degree d, then the first d entries are used as left-side boundary knots and the last MAX(d, 1) entries in the list are used as right-side boundary knots.

MULTISCALE < (multiscale-options) >

specifies that multiple B-spline bases be generated, corresponding to sets with an increasing number of internal knots. As you increase the number of internal knots, the spline basis you generate is able to approximate features of the data at finer scales. So, by generating bases at multiple scales, you facilitate the modeling of both coarse- and fine-grained features of the data. For scale i, the spline basis corresponds to 2^i equally spaced internal knots. By default, the bases for scales 0–7 are generated. For each scale, a separate spline effect is generated. The name of the constructed spline effect at scale i is formed by appending S^i to the effect name that you specify in the EFFECT statement. If you specify multiple variables in the EFFECT statement, then spline bases are generated separately for each variable at each scale and the name of the corresponding effect is obtained by appending the variable name followed by S^i to the name in the EFFECT statement. For example, the following statement generates effects named S^i spl_x1_S1, S^i spl_x1_S2, ..., S^i and S^i spl_x2_S1, S^i spl_x2_S2, ..., S^i spl_x2_S7:

```
EFFECT spl = spline(x1 x2 / knotmethod=multiscale);
```

The MULTISCALE option is ignored if you specify the BASIS=TPF *spline-option*. The MULTISCALE option is not available for spline effects that are specified in the RANDOM statement of the GLIMMIX procedure.

You can control which scales are included with the following multiscale-options:

STARTSCALE=n

specifies the start scale, where n is a positive integer. The default is STARTSCALE=0.

ENDSCALE=n

specifies the end scale, where n is a positive integer. The default is ENDSCALE=7.

PERCENTILES(n)

requests that internal knots be placed at n equally spaced percentiles of the variable or variables named in the EFFECT statement. For example, the following statement positions internal knots at the deciles of the variable x. For a B-spline basis, the extremes of the data are used as boundary knots:

```
EFFECT spl = spline(x / knotmethod=percentiles(9));
```

RANGEFRACTIONS(fraction-list)

requests that internal knots be placed at each fraction of the ranges of the variables in the EFFECT statement. For example, if variable x1 ranges between 1 and 3, and variable x2 ranges

between 0 and 20, then the following EFFECT statement uses internal knots 1.2, 2, and 2.5 for variable x1 and internal knots 2, 10, and 15 for variable x2:

```
EFFECT spl = spline(x1 x2 / knotmethod=rangefractions(.1 .5 .75));
```

For a B-spline basis, the data extremes are used as boundary knots.

KNOTMIN=value

specifies that for each variable in the EFFECT statement, the left-side boundary knots be equally spaced starting at the specified value and ending at the minimum of the variable. This option is ignored for variables whose minimum value is less than the specified value or if the DATABOUNDARY option is also specified.

NATURALCUBIC

specifies a natural cubic spline basis for the spline expansion. Natural cubic splines, also known as restricted cubic splines, are cubic splines that are constrained to be linear beyond the extreme knots. The natural cubic spline basis that is produced by the EFFECT statement is obtained by starting from the unrestricted truncated power function cubic spline basis that is defined with n distinct knots and imposes the linearity constraints beyond the extreme knots. This basis consists of an intercept, the polynomial x, and n-2 functions that are all linear beyond the largest knot. The ith function, $i=1,2,\ldots,n-2$, is zero to the left of the ith knot, which is called the "break knot." See the section "Splines and Spline Bases" on page 418 for details of this basis. You can use the NOINT and NOPOWERS suboptions of the BASIS=TPF option to supress the intercept and polynomial x when forming the columns of the natural cubic spline basis. When you specify the NAT-URALCUBIC option, the options BASIS=BSPLINE, DATABOUNDARY, DEGREE=, and KNOT-METHOD=MULTISCALE are not applicable.

SEPARATE

specifies that when multiple variables are specified in the EFFECT statement, the spline basis for each variable be treated as a separate effect. The names of these separated effects are formed by appending an underscore followed by the name of the variable to the name that you specify in the EFFECT statement. For example, the effect names generated with the following statement are spl_x1 and spl_x2:

```
EFFECT spl = spline(x1 x2 / separate);
```

In procedures that support variable selection, such as the GLMSELECT procedure, these two effects can enter or leave the model independently during the selection process. Separated effects are not supported in the RANDOM statement of the GLIMMIX procedure.

SPLIT

specifies that each individual column in the design matrix that corresponds to the spline effect be treated as a separate effect that can enter or leave the model independently. Names for these split effects are generated by appending the variable name and an index for each column to the name that you specify in the EFFECT statement. For example, the effects generated for the spline effect in the following statement are spl_x1:1, spl_x1:2, ..., spl_x1:7 and spl_x2:1, spl_x2:2, ..., spl_x2:7:

```
EFFECT spl = spline(x1 x2 / split);
```

The SPLIT option is not supported in the GLIMMIX procedure.

Splines and Spline Bases

This section provides details about the construction of spline bases with the EFFECT statement. A spline function is a piecewise polynomial function in which the individual polynomials have the same degree and connect smoothly at join points whose abscissa values, referred to as knots, are prespecified. You can use spline functions to fit curves to a wide variety of data.

A spline of degree 0 is a step function with steps located at the knots. A spline of degree 1 is a piecewise linear function where the lines connect at the knots. A spline of degree 2 is a piecewise quadratic curve whose values and slopes coincide at the knots. A spline of degree 3 is a piecewise cubic curve whose values, slopes, and curvature coincide at the knots. Visually, a cubic spline is a smooth curve, and it is the most commonly used spline when a smooth fit is desired. Note that when no knots are used, splines of degree d are simply polynomials of degree d.

More formally, suppose you specify knots $k_1 < k_2 < k_3 < \dots < k_n$. Then a spline of degree $d \ge 0$ is a function S(x) with d-1 continuous derivatives such that

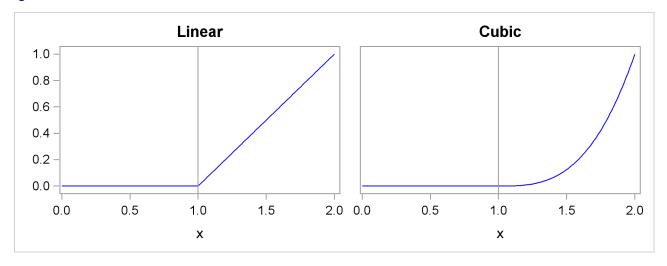
$$S(x) = \begin{cases} P_0(x) & x < k_1 \\ P_i(x) & k_i \le x < k_{i+1}; i = 1, 2, \dots, n-1 \\ P_n(x) & x \ge k_n \end{cases}$$

where each $P_i(x)$ is a polynomial of degree d. The requirement that S(x) has d-1 continuous derivatives is satisfied by requiring that the function values and all derivatives up to order d-1 of the adjacent polynomials at each knot match.

A counting argument yields the number of parameters that define a spline with n knots. There are n+1 polynomials of degree d, giving (n+1)(d+1) coefficients. However, there are d restrictions at each of the n knots, so the number of free parameters is (n+1)(d+1)-nd=n+d+1. In mathematical terminology this says that the dimension of the vector space of splines of degree d on n distinct knots is n+d+1. If you have n+d+1 basis vectors, then you can fit a curve to your data by regressing your dependent variable by using this basis for the corresponding design matrix columns. In this context, such a spline is known as a regression spline. The EFFECT statement provides a simple mechanism for obtaining such a basis.

If you remove the restriction that the knots of a spline must be distinct and allow repeated knots, then you can obtain functions with less smoothness and even discontinuities at the repeated knot location. For a spline of degree d and a repeated knot with multiplicity $m \le d$, the piecewise polynomials that join such a knot are required to have only d-m matching derivatives. Note that this increases the number of free parameters by m-1 but also decreases the number of distinct knots by m-1. Hence the dimension of the vector space of splines of degree d with n knots is still n+d+1, provided that any repeated knot has a multiplicity less than or equal to d.

The EFFECT statement provides support for the commonly used truncated power function basis and B-spline basis. With exact arithmetic and by using the complete basis, you obtain the same fit with either of these bases. The following sections provide details about constructing spline bases for the space of splines of degree d with n knots that satisfies $k_1 \le k_2 \le k_3 < \cdots \le k_n$.


Truncated Power Function Basis

A truncated power function for a knot k_i is a function defined by

$$t_i(x) = \begin{cases} 0 & x < k_i \\ (x - k_i)^d & x \ge k_i \end{cases}$$

Figure 19.1 shows such functions for d = 1 and d = 3 with a knot at x = 1.

Figure 19.1 Truncated Power Functions with Knot at x = 1

The name is derived from the fact that these functions are shifted power functions that get truncated to zero to the left of the knot. These functions are piecewise polynomial functions with two pieces whose function values and derivatives of all orders up to d-1 are zero at the defining knot. Hence these functions are splines of degree d. It is easy to see that these n functions are linearly independent. However, they do not form a basis, because such a basis requires n+d+1 functions. The usual way to add d+1 additional basis functions is to use the polynomials $1, x, x^2, \ldots, x^d$. These d+1 functions together with the n truncated power functions $t_i(x)$, $i=1,2,\ldots,n$ form the truncated power basis.

Note that each time a knot is repeated, the associated exponent used in the corresponding basis function is reduced by 1. For example, for splines of degree d with three repeated knots $k_i = k_{i+1} = k_{i+2}$ the corresponding basis functions are $t_i(x) = (x - k_i)_+^d$, $t_{i+1}(x) = (x - k_i)_+^{d-1}$, and $t_{i+2}(x) = (x - k_i)_+^{d-2}$. Provided that the multiplicity of each repeated knot is less than or equal to the degree, this construction continues to yield a basis for the associated space of splines.

The main advantage of the truncated power function basis is the simplicity of its construction and the ease of interpreting the parameters in a model that corresponds to these basis functions. However, there are two weaknesses when you use this basis for regression. These functions grow rapidly without bound as x increases, resulting in numerical precision problems when the x data span a wide range. Furthermore, many or even all of these basis functions can be nonzero when evaluated at some x value, resulting in a design matrix with few zeros that precludes the use of sparse matrix technology to speed up computation. This weakness can be addressed by using a B-spline basis.

B-Spline Basis

A B-spline basis can be built by starting with a set of Haar basis functions, which are functions that are 1 between adjacent knots and 0 elsewhere, and then applying a simple linear recursion relationship d times, yielding the n+d+1 needed basis functions. For the purpose of building the B-spline basis, the n prespecified knots are referred to as internal knots. This construction requires d additional knots, known as boundary knots, to be positioned to the left of the internal knots, and MAX(d,1) boundary knots to be positioned to the right of the internal knots. The actual values of these boundary knots can be arbitrary. The EFFECT statement provides several methods for placing the needed boundary knots, including the common method of using repeated values of the data extremes as the boundary knots. The boundary knot placement affects the precise form of the basis functions that are generated, but it does not affect the following two desirable properties:

- 1. The B-spline basis functions are nonzero over an interval that spans at most d + 2 knots. This yields design matrix columns each of whose rows contain at most d + 2 adjacent nonzero entries.
- 2. The computation of the basis functions at any x value is numerically stable and does not require evaluating powers of this value.

The following figures show the B-spline bases defined on [0, 1] with four equally spaced internal knots at 0.2, 0.4, 0.6, and 0.8.

Figure 19.2 shows a linear B-spline basis. Note that this basis consists of six functions each of which is nonzero over an interval that spans at most three knots.

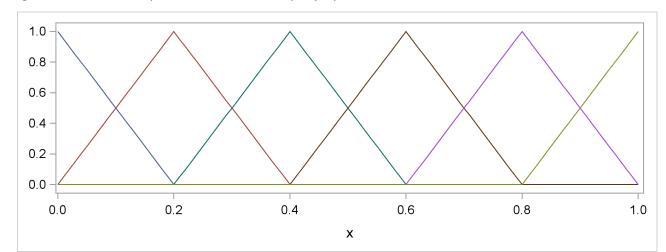


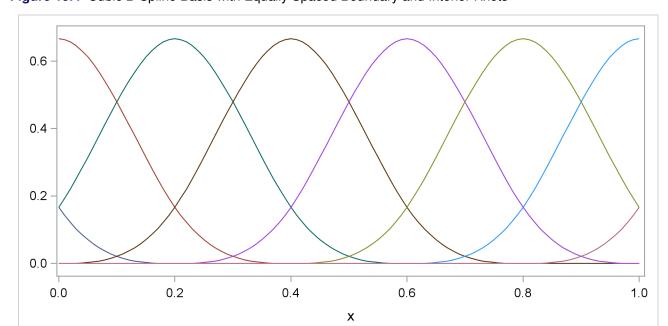
Figure 19.2 Linear B-Spline Basis with Four Equally Spaced Interior Knots

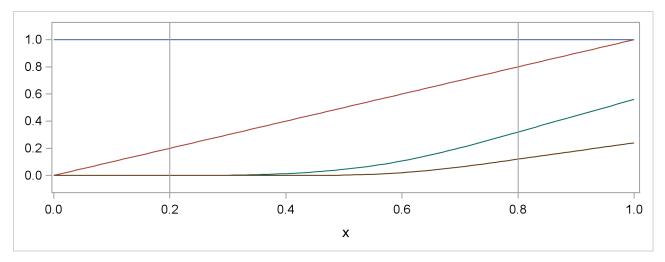
Figure 19.3 shows a cubic B-spline basis where the needed boundary knots are positioned at x = 0 and x = 1. Note that this basis consists of eight functions, each of which is nonzero over an interval spanning at most five knots.

Figure 19.3 Cubic B-Spline Basis with Four Equally Spaced Interior Knots

Figure 19.4 shows a different cubic B-spline basis where the needed left-side boundary knots are positioned at -0.6, -0.4, -0.2, and 0. The right-side boundary knots are positioned at 1, 1.2, 1.4, and 1.6. Note that, as in the basis shown in Figure 19.3, this basis consists of eight functions, each of which is nonzero over an interval spanning at most five knots. The different positioning of the boundary knots has merely changed the shape of the individual basis functions.

Χ




Figure 19.4 Cubic B-Spline Basis with Equally Spaced Boundary and Interior Knots

You can find details about this construction in Hastie, Tibshirani, and Friedman (2001).

Natural Cubic Spline Basis

Natural cubic splines are cubic splines with the additional restriction that the splines are required to be linear beyond the extreme knots. Some authors use the terminology "restricted cubic splines" in preference to the terminology "natural cubic splines." The space of unrestricted cubic splines on n knots has dimension n+4. Imposing the restrictions that the cubic polynomials beyond the first and last knot reduce to linear polynomials reduces the number of degrees of freedom by 4, and so a basis for the natural cubic splines consists of n functions. Starting from the truncated power function basis for the unrestricted cubic splines, you can obtain a reduced basis by imposing linearity constraints. You can find details about this construction in Hastie, Tibshirani, and Friedman (2001). Figure 19.5 shows this natural cubic spline basis defined on [0,1] with four equally spaced internal knots at 0.2, 0.4, 0.6, and 0.8. Note that this basis consists of four basis functions that are all linear beyond the extreme knots at 0.2 and 0.8.

Figure 19.5 Natural Cubic Spline Basis with Four Equally Spaced Knots

EFFECTPLOT Statement

This statement applies to the following procedures: GENMOD, LOGISTIC, ORTHOREG, and PLM.

The EFFECTPLOT statement produces a display (*effect plot*) of a complex fitted model and provides options for changing and enhancing the displays. One simple effect plot is the display for a linear regression of the response Y on a single predictor X: the regression line is drawn with the predicted response on the Y axis and the covariate on the X axis. The regression line can be enhanced by displaying the observations and adding confidence and prediction limits. When your model is more complicated—with more continuous and categorical covariates, nestings and interactions, and link functions—the effect plots display the behavior of some covariates over their ranges while fixing other covariates at some fixed values; this can enable easier interpretation and explanation of the resulting model.

By default, a single plot is produced based on the type of response variable and the number of continuous and classification covariates in the model. You can also specify options to do the following:

- select the variables to display on the plots
- produce multiple plots based on the following: the levels of classification covariates; the minimum, maximum, mean or middle (midrange) value of continuous covariates; and specified values of the covariates
- specify different fixed values for continuous and classification covariates that are not displayed on the plot
- panel and unpanel plots
- select variables to slice or group by
- display (or remove from display) observations and confidence limits

Syntax: EFFECTPLOT Statement

EFFECTPLOT < plot-type< (plot-definition-options) >>< / options>;

The available *plot-types* and their *plot-definition-options* are described in Table 19.11. Table 19.13 lists the *options* that can be specified after a slash (/) for any *plot-type*, and Table 19.14 lists additional *options* that enhance specific *plot-types*. Full descriptions of the *plot-definition-options* and the other *options* are provided in the section "Dictionary of Options" on page 425.

Table 19.11 Plot-Types and Plot-Definition-Options

Plot-Type and Description	Plot-Definition-Options	
BOX Displays a box plot of continuous response data at each level of a CLASS effect, with predicted values superimposed and connected by a line. This is an alternative to the INTERACTION plot-type.	PLOTBY= variable or CLASS effect X= CLASS variable or effect	
CONTOUR Displays a contour plot of predicted values against two continuous covariates.	PLOTBY= variable or CLASS effect X= continuous variable Y= continuous variable	
FIT Displays a curve of predicted values versus a continuous variable.	PLOTBY= variable or CLASS effect X= continuous variable	
INTERACTION Displays a plot of predicted values (possibly with error bars) versus the levels of a CLASS effect. The predicted values are connected with lines and can be grouped by the levels of another CLASS effect.	PLOTBY= variable or CLASS effect SLICEBY= variable or CLASS effect X= CLASS variable or effect	
SLICEFIT Displays a curve of predicted values versus a continuous variable grouped by the levels of a CLASS effect.	PLOTBY= variable or CLASS effect SLICEBY= variable or CLASS effect X= continuous variable	

By default, a single plot is produced based on the type of response variable and the number of continuous and classification covariates in the model as shown in Table 19.12. If you have a polytomous response model, then the response variable is treated as the grouping classification variable in this table. If your model does not fit into Table 19.12, then a default plot is not produced; however, specifying the *plot-type* argument displays a plot with the extra continuous covariates fixed at their mean values and the extra classification covariates fixed at their reference levels.

Table 19.12 Default Plot-Types

Number of Covariates		Type of Response Variable	
Classification	Continuous	Continuous or Binary	Polytomous
1	0	INTERACTION	INTERACTION with groups
2	0	INTERACTION with groups	None
0	1	FIT	SLICEFIT
0	2	CONTOUR	None
1	1	SLICEFIT	None

Table 19.13 and Table 19.14 list the *options* that can be specified after a slash (/) to enhance the effect plots.

Table 19.13	Available	Options for	· All	Plot-	·Types
--------------------	-----------	-------------	-------	-------	--------

AT< args>	ATLEN=	ATORDER=	ILINK	INDIVIDUAL*
LINK	MOFF	NCOLS=*	NOOBS*	NROWS=*
OBS<(options)>	PLOTBYLEN=	PREDLABEL=	UNPACK	

^{*} Not available for the BOX *plot-type*

NOTE: If your model contains an offset variable and the MOFF option is not specified or not valid, then the predicted values are computed only at the observations. In this case, the FIT and SLICEFIT *plot-types* display scatter plots of the predicted values, the CONTOUR *plot-type* displays the residuals against two continuous covariates but with no fitted surface, the INTERACTION *plot-type* does not connect the predicted values with lines, and the BOX *plot-type* is unchanged.

Table 19.14 Additional *Options* for Each *Plot-Type*

Plot-Type	Options			
BOX	CLUSTER	YRANGE=		
CONTOUR	EXTEND=	GRIDSIZE=		
FIT	ALPHA= NOCLM	EXTEND= NOLIMITS	GRIDSIZE= SMOOTH	NOCLI YRANGE=
INTERACTION	ALPHA= POLYBAR	CLI YRANGE=	CLM	LIMITS
SLICEFIT	ALPHA= GRIDSIZE=	CLI LIMITS	CLM YRANGE=	EXTEND=

Dictionary of Options

This section describes the EFFECTPLOT *options* in alphabetical order.

ALPHA=value

specifies the significance level, $0 \le value \le 1$, for producing 100(1 - value/2)% prediction and confidence limits. By default, value = 0.05.

AT < contopt > < classopt > < variable1=varopt < variable2=varopt... >>

where contopt= MEAN | MIN | MAX | MIDRANGE

classopt= ALL | REF

varopt= contopts | number-list | classopts | 'class-level'...' class-level' specifies values at which to fix continuous and class variables when they are not used in X=, Y=, SLICEBY=, or PLOTBY= effects. The *contopt* keyword fixes continuous variables at their mean, minimum, maximum, or midrange= $\frac{1}{2}$ (minimum + maximum); the default is to use the mean. The *classopt* keyword either fixes a CLASS variable at its reference (last) level or indicates that all levels of the CLASS variable should be processed; the default is to use the reference level. The *varopt* values

enable you to specify *contopt* and *classopt* keywords, or to specify lists of numbers or class levels. You can specify a CLASS variable only once in the AT specification, but you can specify a continuous variable multiple times; for example, the following syntax is valid when X is a continuous variable:

effectplot / at(x=min max x=0 to 2 by 1 x=2 5 7);

Duplicate AT values are suppressed, so the last X=2 value is ignored.

You can also specify *plug-in values* for CLASS variable levels when computing the predicted values $x'\beta$. For example, suppose a CLASS variable A with two levels= $\{0,1\}$ is in the model. Then instead of using the coding for A in the x vector by specifying \mathbf{AT} ($\mathbf{A}=\mathbf{al1}$), \mathbf{AT} ($\mathbf{A}=\mathbf{ref}$) or \mathbf{AT} ($\mathbf{A}=\mathbf{rof}$), you can specify a numeric list to plug in. For example, if the proportion of A's that equal 0 in the data set is 0.3, then you can input the proportions for all levels of the variable by specifying \mathbf{AT} ($\mathbf{A}=\mathbf{0.3}$ 0.7). Under GLM coding, $\mathbf{A}=\mathbf{0}$ is coded as "10" and $\mathbf{A}=\mathbf{1}$ is coded as "01", so the plug-in specification replaces both of these codings with "0.3" followed as "1" and $\mathbf{A}=\mathbf{1}$ is coded as "0", so this specification replaces both of these codings with "0.3" followed by "0.7"; however, if another variable is nested within A, then only "0.3" is used. To plug in values, you must specify a multiple of the number of parameters used for the CLASS variable or, if a variable is nested within the CLASS variable, a multiple of the number of levels of the CLASS variable.

The plug-in values are distributed through the rest of the model effects in the following fashion. If a variable is nested within a plug-in variable, then its coding is multiplied by the plug-in value for the level it is nested in. If a variable interacts with a plug-in variable, its coding is multiplied by the appropriate plug-in value for the level it is interacting with. Lag, multimember, polynomial, and spline constructed effects are affected only by interactions and nestings. If the plug-in variable is part of a collection effect, then its values are replaced by the plug-in values; collection effects are also affected by interactions and nestings.

The AT levels are used for computing the predicted values. If the OBS option is also specified, then all observations are still displayed on all of the plots. For example, if you specify the options AT (A='1') OBS, then the fitted values are computed with A=1, but all of the observations are displayed with their predicted values computed at their observed level of A. If you want to display only a subset of the observations based on the levels of a CLASS variable, then you must specify either the PLOTBY= option or the OBS(BYAT) option.

ATLEN=n

specifies the maximum length $(1 \le n \le 256)$ of the levels of the AT variables that are displayed in footnotes and headers. By default, up to 256 characters of the CLASS levels are displayed, and the continuous AT levels are displayed with a BEST format that has a width greater than or equal to 5, which distinguishes each level. **CAUTION:** If the levels of your AT variables are not unique when the first n characters are displayed, then the levels are combined in the plots but not in the underlying computations. Also, at most n characters for continuous AT variables are displayed.

ATORDER=ASCENDING | DESCENDING

uses the AT values for continuous variables in ascending or descending order as specified. By default, values are used in the order of their first appearance in the AT option.

CLI

displays normal (Wald) prediction limits. This option is available only for normal distributions with identity links. If your model is from a Bayesian analysis, then sampling-based intervals are computed; see the section "Analysis Based on Posterior Estimates" on page 5609 in Chapter 68, "The PLM Procedure," for more information.

CLM

displays confidence limits. These are computed as the normal (Wald) confidence limits for the linear predictor, and if the ILINK option is specified, the limits are also back-transformed by the inverse link function. If your model is from a Bayesian analysis, then sampling-based intervals are computed; see the section "Analysis Based on Posterior Estimates" on page 5609 in Chapter 68, "The PLM Procedure," for more information.

CLUSTER

modifies the BOX *plot-type* by displaying a box plot for each level of the SLICEBY= classification variable.

EXTEND=DATA | value

extends continuous covariate axes by $value \times \frac{1}{2} range$ in both directions, where range is the range of the X axis. Specifying the DATA keyword displays curves to the range of the data within the appropriate SLICEBY=, PLOTBY=, and AT level. For the CONTOUR plot-type, value=0.05 by default; other plot-types set the default value to 0. When constructed effects are present, only the EXTEND=DATA option is available.

GRIDSIZE=n

specifies the resolution of curves by computing the predicted values at n equally spaced x-values and specifies the resolution of surfaces by computing the predicted values on an $n \times n$ grid of points. Default values are n=200 for curves and bands, n=50 for surfaces, and n=2 for lines. If results of a Bayesian or bootstrap analysis are being displayed, then the defaults are n=500000/B, where B is the number of samples, the upper limit is equal to the usual defaults, and the lower limit equal to 20.

ILINK

displays the fit on the scale of the inverse link function. In particular, the results are displayed on the probability scale for logistic regression. By default, a procedure displays the fit on either the link or inverse link scale.

INDIVIDUAL

displays individual probabilities for polytomous response models with cumulative links on the scale of the inverse link function. This option is not available when the LINK option is specified, and confidence limits are not available with this option.

LIMITS

invokes the CLI and CLM options.

LINK

displays the fit on the scale of the link function; that is, the linear predictor. Note that probabilities or observed proportions near 0 and 1 are transformed to ± 20 . By default, a procedure displays the fit on either the link or inverse link scale.

MOFF

moves the offset for a Poisson regression model to the response side of the equation. If the ILINK option is also in effect, then the rate is displayed on the Y axis, while the LINK option displays the log of the rate on the Y axis. Without this option, the predicted values are computed and displayed only for the observations.

NCOLS=n

specifies the maximum number of columns in a paneled plot. This option is not available with the BOX *plot-type*.

The default choice of NROWS= and NCOLS= is based on the number of PLOTBY= and AT levels. If there is only one plot being displayed in a panel, then NROWS=1 and NCOLS=1 and the plots are produced as if you specified only the UNPACK option. If only two plots are displayed in a panel, then NROWS=1 and NCOLS=2. For all other cases, a 2x2, 2x3, or 3x3 panel is chosen based on how much of the last panel is used, with ties going to the larger panels. For example, if 14 plots are being created, then this requires either four 2x2 panels with 50% of the last panel filled, three 2x3 panels with 33% of the last panel filled, or two 3x3 panels with 55% of the last panel filled; in this case, the 3x3 panels are chosen.

If you specify both of the NROWS= and NCOLS= options, then those are the values used. However, if you only specify one of the options but have fewer plots, then the panel size is reduced; for example, if you specify NROWS=6 but only have four plots, then a plot with four rows and one column is produced.

NOCLI

suppresses the prediction limits.

NOCLM

suppresses the confidence limits.

NOLIMITS

invokes the NOCLI and NOCLM options.

NOOBS

suppresses the display of observations and overrides the specification of the OBS= option.

NROWS=n

specifies the maximum number of rows in a paneled plot. This option is not available with the BOX *plot-type*. See the NCOLS= option for more details.

OBS<(options)>

displays observations on the effect plots. An input data set is required; hence the OBS option is not available with PROC PLM. The OBS option is overridden by the NOOBS option. When the ILINK option is specified with binary response variables, then either the observed proportions or a coded value of the response is displayed. For polytomous response variables, the observed values are overlaid onto the fitted curves unless the LOCATION= option is specified. Whether observations are displayed by default or not depends upon the procedure. If the PLOTBY= option is specified, then the observations displayed on each plot are from the corresponding PLOTBY= level for classification effects; for continuous effects, all observations are displayed on every plot.

The following *options* are available:

- subsets the observations by AT level and by the PLOTBY= level. If you specify the PLOTBY= option without specifying this option, the observations are displayed on the plots that correspond to their PLOTBY= level without regard to any classification variables specified in the AT option. However, for FIT *plot-types* a distance can be computed and displayed (see the DISTANCE option for more information). This option is ignored when there are no AT variables.
- **CDISPLAY=NONE | OUTLINE | GRADIENT | OUTLINEGRADIENT** controls the display of observations on contour plots. The keyword OUTLINE displays the observations as circles, GRADIENT displays gradient-colored dots, OUTLINEGRADIENT displays gradient-filled-circles, and NONE suppresses the display of the observations. The default is CDISPLAY=OUTLINEGRADIENT.
- **CGRADIENT=RESIDUAL** | **DEPENDENT** specifies what the gradient-shading of the observed values on the CONTOUR *plot-type* represents. The RESIDUAL keyword shades the observations by the raw residual value and displays the fitted surface as a line contour plot. The DEPENDENT keyword shades the observations by the response variable value and displays the fitted surface as a contour shaded on the same scale. The default is CGRADIENT=DEPENDENT.
- **DEPTH**=depth specifies the number of overlapping observations that can be distinguished by adjusting their transparency; you can specify $1 \le depth \le 100$. By default, DEPTH=1. The DEPTH= option is available with FIT, SLICEFIT, and INTERACTION plot-types.
- **DISTANCE** displays observations on FIT *plot-types* with a color-gradient that indicates how far the observation is from the AT and PLOTBY= level. This option is ignored unless an AT or PLOTBY= option is specified.

The distance is computed as the square root of the following number: for each continuous AT and PLOTBY= variable, add the square of the difference from the observed value divided by the range of the variable; for each CLASS AT and PLOTBY= variable, add 1 if the CLASS levels are different. Thus the largest possible distance is the square root of the number of AT and PLOTBY= variables. Observations at zero distance are displayed with the darkest color, and the color fades as the distance increases.

Note that the UNPACKed panels compute the maximum distance within each panel and hence do not use the same gradient across all panels. Also, the PANELS *panel-type* computes the maximum distance within each PLOTBY= level, so a different gradient is used for each PLOTBY= level. All other *panel-types* compute the maximum distance across all observations and therefore use the same gradient on every plot.

- **FITATCLASS** computes fitted values only for class levels that are observed in the data set. This option is ignored when the GLM parameterization is used.
- **FRINGE** displays observations in a fringe (rug) plot at the bottom of the plot. This option is available only with FIT and SLICEFIT *plot-types*.
- **JITTER**<(options)> shifts (jitters) the observations. By default, the jittering in the X direction is achieved by adding a random number that is generated according to a normal distribution with mean=0 and standard deviation=jitter/2 and truncating at $\pm jitter$, where jitter=0.01 times the range of the X axis; the jittering in the Y direction is performed independently

- FACTOR=factor sets the jitter to factor times the range of the axis, and jitters in both the X and Y directions. You can specify $0 \le factor \le 1$.
- SEED=*seed* specifies an integer to use as the initial seed for the random number generator. If you do not specify a seed, or if you specify a value less than or equal to zero, then the time of day from the computer clock is used to generate an initial seed.
- X=x-jitter sets the jitter to x-jitter for the X direction; the jitter in the Y direction is assumed to be 0 unless the Y= option is also specified. You can specify x-jitter \geq 0. The X= option is not available for the INTERACTION plot-type. This option is ignored if the FACTOR= option is also specified.
- Y=y-jitter sets the jitter to y-jitter for the Y direction; the jitter in the X direction is assumed to be 0 unless the X= option is also specified. You can specify y-jitter \geq 0. This option is ignored if the FACTOR= option is also specified.

LABEL<=**OBS**> labels markers with their observation number.

- **LOCATION**=*location* specifies where the observed values for polytomous response models are displayed when the SLICEBY= variable is the response. This option is available only with the SLICEFIT and INTERACTION *plot-types*. The observations are always displayed at their appropriate X-axis value, but their Y-axis location can depend on the specification of the YRANGE= option or on the minimum and maximum computed predicted values in addition to the specified *location*. The following *locations* are available:
 - BOTTOM<=factor> displays the first response level at the minimum predicted value, and displays succeeding response levels above the first level at $factor \times range$ intervals, where range is the range of the predicted values. You can specify $0 \le factor \le 1$, but the largest usable value, which corresponds to LOCATION=SPREAD, is $factor = \frac{1}{k}$, where k+1 is the number of response levels that are displayed. By default, factor = 0.03.
 - CURVE displays the observations for polytomous response models at their predicted values. For displays on the LINK scale, the reference level is displayed at the maximum value. This method is the default.
 - FIRST displays the observations for a response level at the first displayed predicted value for that response level.
 - MAX displays the observations for a response level at the maximum displayed predicted value for that response level.
 - MIDDLE displays the observations for a response level at the middle of the displayed predicted values for that response level.
 - MIN displays the observations for a response level at the minimum displayed predicted value for that response level.
 - SPREAD displays the observations with the response levels evenly spread across the Y axis.

TOP<=factor> displays the last response level at the maximum predicted value, and displays preceding response levels below the last level at $factor \times range$ intervals, where range is the range of the predicted values. You can specify $0 \le factor \le 1$, but the largest usable value, which corresponds to LOCATION=SPREAD, is $factor = \frac{1}{k}$, where k + 1 is the number of response levels that are displayed. By default, factor = 0.03.

PLOTBY< (panel-type) >= effect <= numeric-list >

specifies a variable or CLASS effect at whose levels the predicted values are computed and the plots are displayed. You can specify the response variable as the *effect* for polytomous response models. The *panel-type* argument specifies the method in which the plots are grouped for the display. The following *panel-types* are available.

COLUMNS specifies that the columns within each panel correspond to different levels of the PLOTBY= effect and hence the rows correspond to different AT levels.

PACK specifies that plots be displayed in the panels as they are produced with no control over the placement of the PLOTBY= and AT levels.

PANELS | **LEVELS** specifies that each level of the PLOTBY= effect begin a new panel of plots and the AT levels define the plots within the panels.

ROWS specifies that the rows within each panel correspond to different levels of the PLOTBY= effect and hence the columns correspond to different AT levels.

This option is ignored with the BOX *plot-type*; box plots are always displayed in an unpacked fashion, grouped by the PLOTBY= and AT levels. If you specify a continuous variable as the *effect*, then you can either specify a *numeric-list* of values at which to display that variable or, by default, five equally spaced values from the minimum variable value to its maximum are displayed.

The default *panel-type* is based on the number of PLOTBY= and AT levels as shown in the following table.

Number of PLOTBY Levels	Number of AT Levels	Resulting panel-type
1	1	(UNPACK)
>1	1	PACK
1	>1	PACK
2	>1	ROWS
3	>1	COLUMNS
>3	>1	PANELS

The default dimensions of the panels are also based on the number of PLOTBY= and AT levels; see the NCOLS= option for details.

Specification of the *panel-type* is honored except in the following cases. If you specify a *panel-type* but produce only one plot, specify the NROWS=1 and NCOLS=1 options, or specify the UNPACK option, then the plots are produced as if you specified only the UNPACK option. If you specify the PANELS *panel-type* with only one AT level, then the plots are produced with the UNPACK option.

However, if you specify the PANELS *panel-type* but the PLOTBY= effect has only one level, then the *panel-type* is changed to PACK.

PLOTBYLEN=n

specifies the maximum length $(1 \le n \le 256)$ of the levels of the PLOTBY= variables, which are displayed in footnotes and headers. By default, up to 256 characters of the CLASS levels are displayed. **CAUTION:** If the levels of your PLOTBY= variables are not unique when the first n characters are displayed, then the levels are combined in the plots but not in the underlying computations.

POLYBAR

displays polytomous response data as a stacked histogram with bar heights defined by the individual predicted value. Your response variable must be the *effect* specified in the SLICEBY= option. If you specify the INDIVIDUAL option, then the histogram bars are displayed in a side-by-side fashion. If you specify the CLM option, then error bars are displayed on the side-by-side histogram bars.

PREDLABEL='label'

specifies a label to be displayed on the Y axis. The default Y axis label is determined by your model. For the CONTOUR *plot-type*, this option changes the title to "*label* for Y."

SHOWCLEGEND

displays the gradient-legend for the CONTOUR *plot-type*. This option has no effect when the OBS(CGRADIENT=RESIDUAL) option is also specified.

SLICEBY=NONE | effect< =numeric-list>

displays the fitted values at the different levels of the specified variable or CLASS effect. You can specify the response variable as the *effect* for polytomous response models. Use this option to modify SLICEFIT, INTERACTION, and BOX *plot-types*. If you specify a continuous variable as the *effect*, then you can either specify a *numeric-list* of values at which to display that variable or, by default, five equally spaced values from the minimum variable value to its maximum are displayed. The NONE keyword is available for preventing the INTERACTION *plot-type* from slicing by a second class covariate. Note that the SLICEBY=NONE option is not available for the SLICEFIT *plot-type*, since that is the same as the FIT *plot-type*. The BOX *plot-type* accepts only classification effects.

SMOOTH

overlays a loess smooth on the FIT *plot-type* for models that have only one continuous predictor. This option is not available for binary or polytomous response models.

UNPACK

suppresses paneling. By default, multiple plots can appear in some output *panels*. Specify UNPACK to display each plot separately.

X=effect

specifies values to display on the X axis. For BOX and INTERACTION *plot-types*, *effect* can be a CLASS effect in the MODEL statement. For FIT, SLICEFIT, and CONTOUR *plot-types*, *effect* can be any continuous variable in the model.

Y=args

specifies values to display on the Y axis for the CONTOUR *plot-type*. The Y= argument can be any continuous variable in the model.

YRANGE=CLIP | (< min >< ,max >)

displays the predicted values on the Y axis in the range [min,max]. The YRANGE=CLIP option has the same effect as specifying the minimum predicted value as min and the maximum predicted value as max. The axis might extend beyond your specified values. By default, when the Y axis displays predicted probabilities, the entire Y axis, [0,1], is displayed. This option is useful if your predicted probabilities are all contained in some subset of this range. This option is not available with the CONTOUR plot-type.

ODS Graphics: EFFECTPLOT Statement

To produce the EFFECTPLOT displays, ODS Graphics must be enabled. For more information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS." The available graph names are provided in Table 19.15.

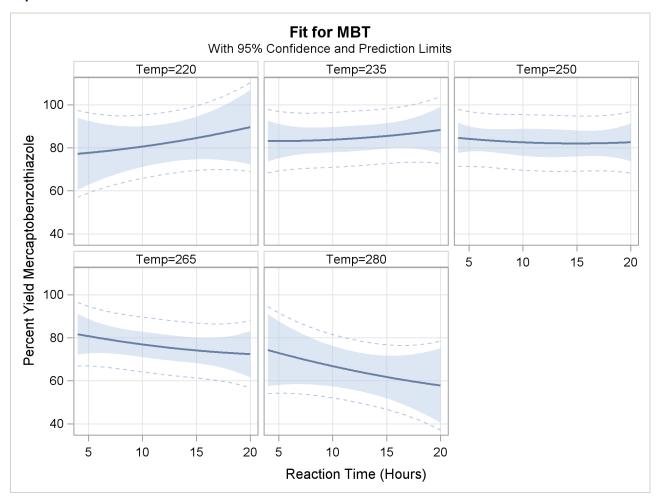
Table 19.15 Graphs Produced by the EFFECTPLOT Statement

ODS Graph Name	Plot Description
BoxFitPlot	A box plot of the responses at each level of one classification effect, over-
	laid with a plot of the predicted values
ContourFitPlot	A contour plot of the fitted surface against two continuous covariates
ContourFitPanel	A panel of ContourFitPlots
FitPlot	A curve of the predicted values plotted against one continuous covariate
FitPanel	A panel of FitPlots
InteractionPlot	A plot of the predicted values (connected by a line) against one classifica-
	tion effect, possibly for each level of a second classification effect
InteractionPanel	A panel of InteractionPlots
SliceFitPlot	A curve of the predicted values against one continuous covariate for each
	level of a second classification covariate
SliceFitPanel	A panel of SliceFitPlots

Examples: EFFECTPLOT Statement

Example 19.1: A Saddle Surface

Myers (1976) analyzes an experiment reported by Frankel (1961) which is aimed at maximizing the yield of mercaptobenzothiazole (MBT) by varying processing time and temperature. Myers uses a two-factor model in which the estimated surface does not have a unique optimum. The objective is to find the settings of time and temperature in the processing of a chemical that maximize the yield. The following statements create the data set d:

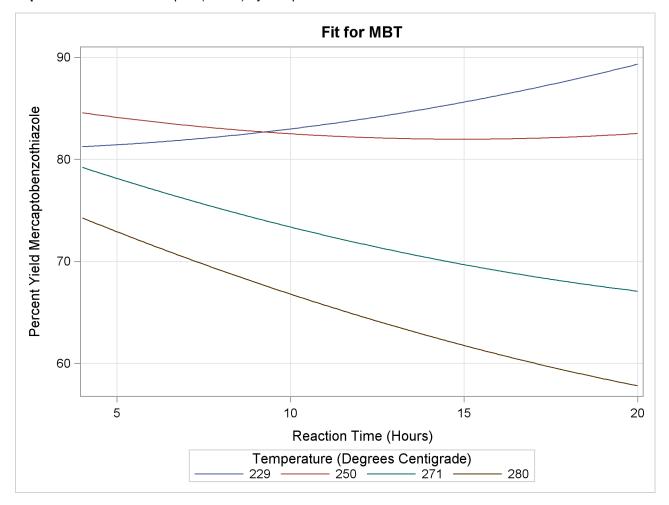

```
data d;
  input Time Temp MBT @@;
  label Time = "Reaction Time (Hours)"
        Temp = "Temperature (Degrees Centigrade)"
        MBT = "Percent Yield Mercaptobenzothiazole";
  datalines;
4.0 250 83.8
                 20.0 250 81.7
                                  12.0 250 82.4
12.0 250 82.9
                 12.0 220 84.7
                                  12.0 280 57.9
12.0 250 81.2
                 6.3 229 81.3
                                   6.3 271 83.1
17.7 229 85.3
                 17.7 271 72.7
                                   4.0 250 82.0
```

In the following statements, the ORTHOREG procedure fits a response surface regression model to the data and uses the EFFECTPLOT statement to create a slice of the response surface. The FIT *plot-type* requests plots of the predicted yield against the Time variable, and the PLOTBY= option specifies that the Temp variable is fixed at five equally spaced values so that five fitted regression curves are displayed in Output 19.1.1.

```
ods graphics on;
proc orthoreg data=d;
  model MBT=Time|Time|Temp|Temp@2;
  effectplot fit(x=time plotby=temp);
run;
ods graphics off;
```

The displays in Output 19.1.1 show that the slope of the surface changes as the temperature increases.

Output 19.1.1 Panel of Fit Plots

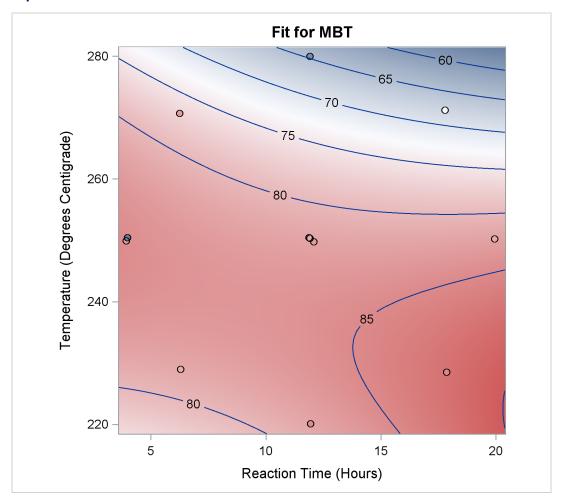


It might be more informative to see these results in one graphic, so the following statements specify the SLICEFIT *plot-type* to overlay plots of the predicted yield versus time, fixed at several values of temperature. In this case, the SLICEBY= option is specified to explicitly use the same four temperatures as used in the experiment.

```
ods graphics on;
proc orthoreg data=d;
   model MBT=Time|Time|Temp|Temp@2;
   effectplot slicefit(x=time sliceby=temp=229 250 271 280);
run;
ods graphics off;
```

Output 19.1.2 shows that you should choose either low temperatures and long times to optimize the yield, or maybe high temperatures and short times.

Output 19.1.2 Fit Plot Grouped (Sliced) by Temp



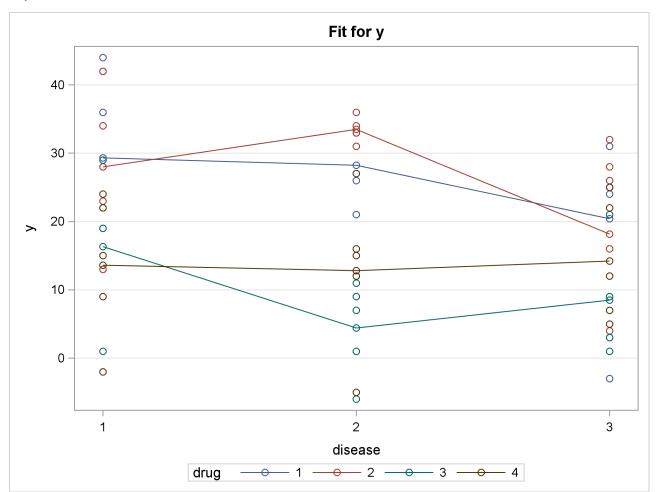
Another plot might explain the reason for this more clearly. The following statements produces the default EFFECTPLOT statement display, enhanced by the OBS(JITTER) option to jitter the observations so that you can see the replicated points.

```
ods graphics on;
proc orthoreg data=d;
  model MBT=Time|Time|Temp|Temp@2;
  effectplot / obs(jitter);
run;
ods graphics off;
```

Output 19.1.3 shows the reason for the changing slopes is that the surface is at a saddle point. This surface does not have an optimum point.

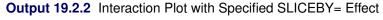
Output 19.1.3 Contour Fit Plot with Jittered Observations

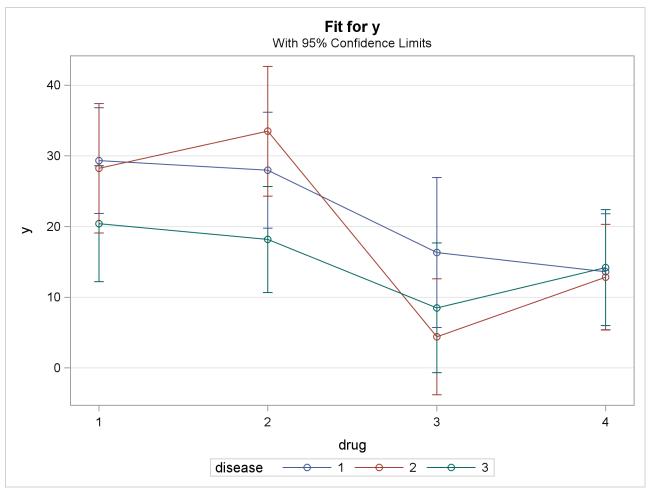
Example 19.2: Unbalanced Two-Way ANOVA


This example uses data from Kutner (1974, p. 98) to illustrate a two-way analysis of variance. The original data source is Afifi and Azen (1972, p. 166). The following statements create the data set a:

```
data a;
   input drug disease @;
  do i=1 to 6;
     input y @;
     output;
  end;
  datalines;
1 1 42 44 36 13 19 22
1 2 33 . 26 . 33 21
1 3 31 -3 . 25 25 24
2 1 28 . 23 34 42 13
2 2 . 34 33 31 . 36
2 3 3 26 28 32 4 16
3 1 . . 1 29 . 19
3 2 . 11 9 7 1 -6
3 3 21 1 . 9 3 .
4 1 24 . 9 22 -2 15
4 2 27 12 12 -5 16 15
4 3 22 7 25 5 12
```

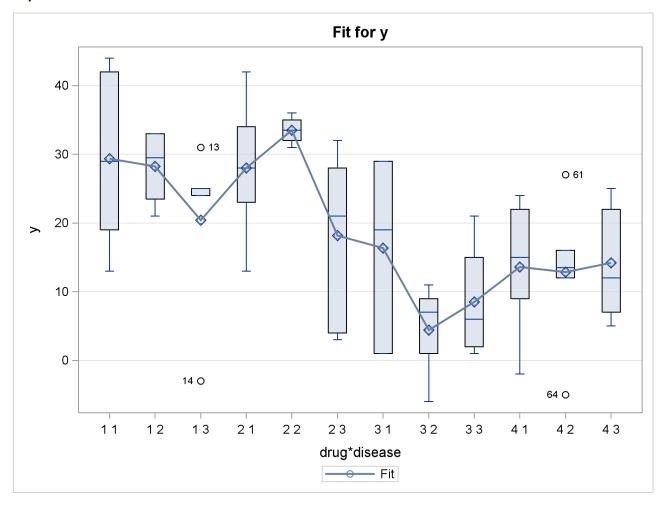
In the following statements, PROC GENMOD fits two classification variables and their interaction to Y. The first EFFECTPLOT statement displays the default graphic, which plots the predicted values against Disease for each of the three Drug levels. The OBS option also displays the observations on the plot. The second EFFECTPLOT statement modifies the default to plot the predicted values against Drug for each of the three Disease levels. The CLM option is specified to produce 95% confidence bars for the means.


```
ods graphics on;
proc genmod data=a;
   class drug disease;
   model y=disease drug disease*drug / d=n;
   effectplot / obs;
   effectplot interaction(sliceby=disease) / clm;
run;
ods graphics off;
```


In Output 19.2.1, the default interaction plot is produced, and the observations are also displayed. From this plot, you can compare the performance of the drugs for a given disease. The predicted values are connected with a line to provide something for your eye to follow—obviously a line has no intrinsic meaning in this graphic. Drugs 3 and 4 are consistently outperformed by the first two drugs.

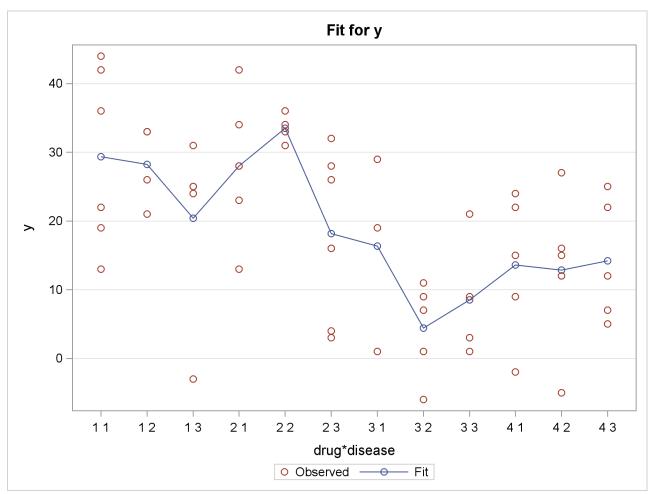
Output 19.2.1 Interaction Plot: Default with Observations

By default, the first classification variable is displayed on the X axis and the second classification variable is used for grouping. Specifying the SLICEBY=DISEASE option in the second EFFECTPLOT statement reverses this, displays the classification variable with the most levels on the X axis, and slices by fewer levels, resulting in a more readable display. Output 19.2.2 shows how well a given drug performs on each disease.

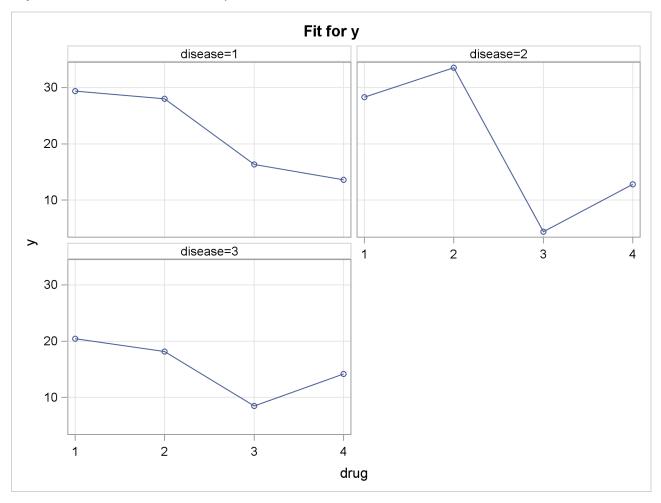


In the following statements, the BOX *plot-type* is requested to display box plots of the predictions by each drug and disease combination. The second EFFECTPLOT statement displays the same information by using an INTERACTION *plot-type* and specifies the OBS option to display the individual observations. The third EFFECTPLOT statement creates an interaction plot of predictions versus drug for each of the Disease levels, and displays them in a panel.

```
ods graphics on;
proc genmod data=a;
   class drug disease;
   model y=drug disease drug*disease / d=n;
   effectplot box;
   effectplot interaction(x=drug*disease) / obs;
   effectplot interaction(plotby=disease);
run;
ods graphics off;
```


In the box plot in Output 19.2.3, the predicted values are displayed as circles; they coincide with the mean of the data at each level which are displayed as diamonds. The predicted values are again connected by lines. It is difficult to make any conclusions from this graphic.

Output 19.2.3 Box Fit Plot


Output 19.2.4 shows the interaction plot at every combination of Drug and Disease. This plot is identical to the preceding box plot, except the boxes are replaced by the actual observations. Again, it is difficult to see any pattern in the plot.

Output 19.2.4 Interaction Plot with Specified X= Effect

Output 19.2.5 groups the observations by Disease, and for each disease displays the effectiveness of the four drugs in a panel of plots.

Output 19.2.5 Interaction Plot with Specified PLOTBY= Effect

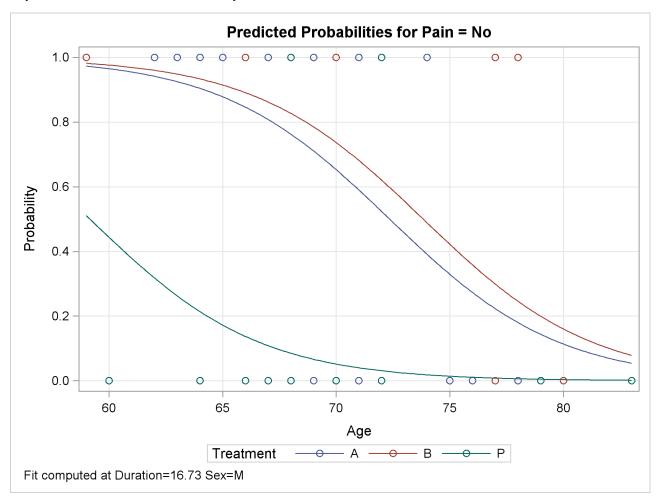
Example 19.3: Logistic Regression

Consider a study of the analgesic effects of treatments on elderly patients with neuralgia. Two test treatments and a placebo are compared. The response variable is whether the patient reported pain or not. Researchers recorded the age and gender of 60 patients and the duration of complaint before the treatment began. The following DATA step creates the data set Neuralgia:

```
Data Neuralgia;
   input Treatment $ Sex $ Age Duration Pain $ @@;
   datalines;
P
  F
      68
           1
              No
                    В
                      M
                          74
                              16
                                  No
                                       Ρ
                                          F
                                             67
                                                 30
                                                      No
P
  M
      66
          26
              Yes
                    В
                       F
                          67
                              28
                                  No
                                       В
                                          F
                                             77
                                                 16
                                                      No
  F
      71
          12
                    B F
                          72
                              50
                                       B F
                                             76
                                                  9
Α
              No
                                  No
                                                      Yes
  М
      71
          17
              Yes
                   A F
                          63
                              27
                                  No
                                       A F
                                             69
                                                 18
                                                      Yes
R
  F
      66
          12
                          62
                              42
                                  No
                                       P F
                                             64
              No
                    A M
                                                  1
                                                      Yes
                                  No
   F
      64
          17
              No
                    Р
                       М
                          74
                               4
                                       Α
                                          F
                                             72
                                                 25
                                                      No
   М
      70
                   B M
                          66
                              19
                                       в м
                                             59
                                                 29
P
           1
              Yes
                                  No
                                                     No
      64
                          70
                              28
                                             69
A
  F
          30
              No
                    A M
                                  No
                                       A M
                                                  1
                                                      No
                          83
  F
      78
                    Ρ
                       M
                               1
                                  Yes B
                                         F
                                             69
                                                 42
В
           1
              No
                                                     No
      75
                          77
                                             79
В
  М
          30
              Yes
                   Ρ
                       М
                              29
                                  Yes P
                                          F
                                                 20
                                                      Yes
      70
                       F
                          69
                                             65
                                                 14
Α
  М
          12
              No
                    Α
                              12
                                  No
                                       В
                                          F
                                                     No
В
  М
      70
           1
              No
                    B M
                          67
                              23
                                  No
                                       Α
                                         M
                                             76
                                                 25
                                                      Yes
      78
                          77
  М
          12
                               1
                                  Yes B
                                          F
                                             69
                                                 24
Ρ
              Yes
                    В
                      М
                                                     No
P
   М
      66
           4
              Yes
                    Ρ
                       F
                          65
                              29
                                  No
                                       P
                                          М
                                             60
                                                 26
                                                     Yes
                          75
      78
                              21
                                          F
                                                 11
Α
  М
          15
              Yes
                    B M
                                  Yes A
                                             67
                                                     No
P
  F
      72
          27
              No
                    P F
                          70
                              13
                                  Yes A M
                                             75
                                                 6
                                                     Yes
В
  F
      65
           7
              No
                    Ρ
                       F
                          68
                              27
                                  Yes P
                                          М
                                             68
                                                 11
                                                      Yes
P
      67
          17
              Yes B
                          70
                              22
                                      A M
                                             65
                                                 15
  M
                       M
                                  No
                                                     No
  F
                                          F
Ρ
      67
           1
              Yes
                   A
                       М
                          67
                              10
                                  No
                                       P
                                             72
                                                 11
                                                      Yes
  F
      74
           1
                      М
                          80
                              21
                                  Yes A
                                          F
                                             69
                                                  3
Α
              No
                    в
                                                     No
```

The Neuralgia data set contains five variables. The Pain variable is the response. A specification of Pain=Yes indicates that the patient felt pain, and Pain=No indicates that the patient did not feel pain. The variable Treatment is a categorical variable with three levels: A and B represent the two test treatments, and P represents the placebo treatment. The gender of the patients is given by the categorical variable Sex. The variable Age is the age of the patients, in years, when treatment began. The duration of complaint, in months, before the treatment began is given by the variable Duration.

In the following statements, a complex model that includes classification and continuous covariates and an interaction term is fit to the Neuralgia data. When you try to create a default effect plot from this model, computations stop because the best type of plot cannot easily be determined.

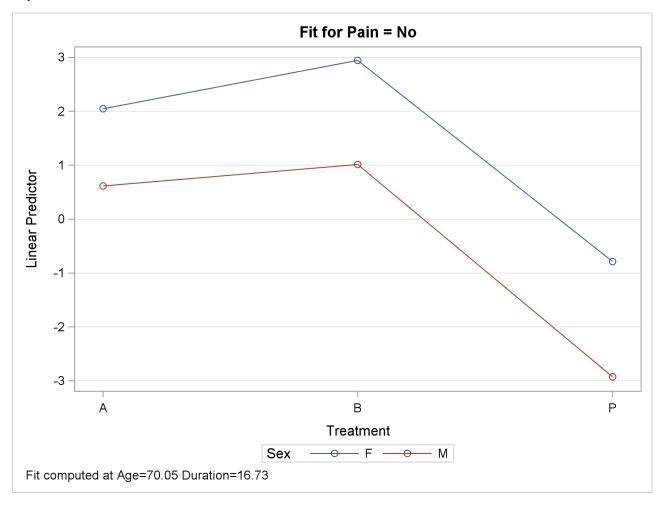

```
ods graphics on;
proc logistic data=Neuralgia;
   class Treatment Sex / param=ref;
   model Pain= Treatment|Sex Age Duration;
   effectplot;
run;
ods graphics off;
```

To produce an effect plot for this model, you need to first choose the type of plot to be created. In this case, since there are both classification and continuous covariates on the model, a SLICEFIT *plot-type* displays the first continuous covariate (Age) on the X axis and displays fit curves that correspond to each level of the first classification covariate (Treatment). The following statements produce Output 19.3.1.

```
ods graphics on;
proc logistic data=Neuralgia;
   class Treatment Sex / param=ref;
   model Pain= Treatment|Sex Age Duration;
   effectplot slicefit;
run;
ods graphics off;
```

By default, effect plots from PROC LOGISTIC are displayed on the probability scale. The predicted values are computed at the mean of the Duration variable, 16.73, and at the reference level of the Sex variable, M. Observations are also displayed on the sliced-fit plot in Output 19.3.1. While the display of binary responses can give you a feel for the spread of the data, it does not enable you to evaluate the fit of the model.

Output 19.3.1 Default Fit Plot Sliced by Treatment

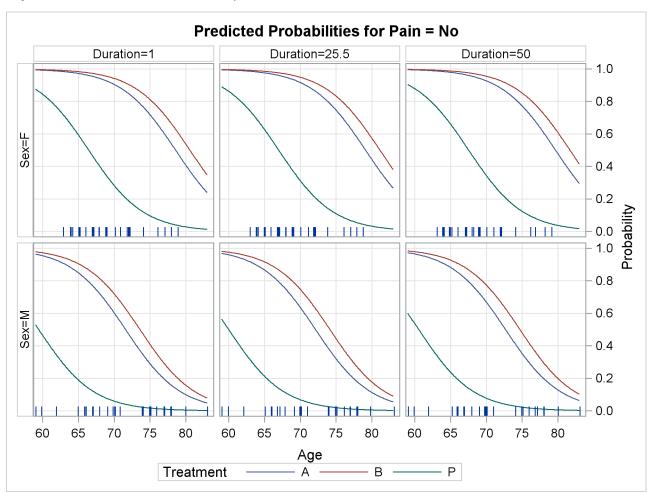


In the following statements, an INTERACTION *plot-type* is specified for the Treatment variable, with the Sex effect chosen for grouping the fits. The Age and Duration variables are set to their mean values for computing the predicted values. The NOOBS option suppresses the display of the binary observations on this plot. The LINK option is specified to display the fit on the LOGIT scale; if there is no interaction between Treatment and Sex, then the resulting curves shown in Output 19.3.2 will have similar slopes across the treatments.

```
ods graphics on;
proc logistic data=Neuralgia;
   class Treatment Sex / param=ref;
   model Pain= Treatment|Sex Age Duration;
   effectplot interaction(x=Treatment sliceby=Sex) / noobs link;
run;
ods graphics off;
```

In Output 19.3.2, the slopes of the lines seem "parallel" across the treatments, corroborating the nonsignificance of the interaction terms.

Output 19.3.2 Interaction Plot of an Interaction Effect

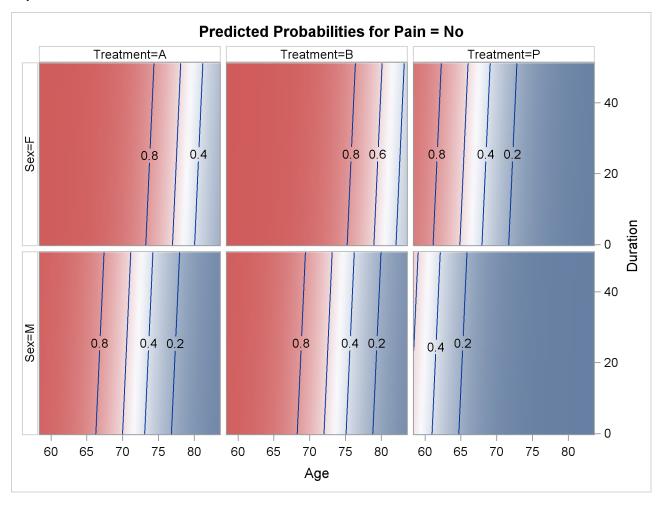


In the following statements, the interaction effect is removed, and the Duration variable is investigated further. The PLOTBY(ROWS)= option displays the Sex levels in the rows of a panel of plots, and the AT option computes the fits for several values of the Duration main effect in the columns of the panel. The OBS(FRINGE) option moves the observations to a fringe (rug) plot at the bottom of the plot, the observations are subsetted and displayed according to the value of the PLOTBY= variable, and the JITTER option makes overlaid fringes more visible. A STORE statement is also specified to save the model information for a later display. These statements produce Output 19.3.3.

```
ods graphics on;
proc logistic data=Neuralgia;
  class Treatment Sex / param=ref;
  model Pain= Treatment Sex Age Duration;
  effectplot slicefit(sliceby=Treatment plotby(rows)=Sex)
     / at(Duration=min midrange max) obs(fringe jitter);
  store logimodel;
run;
ods graphics off;
```

The predicted probability curves in Output 19.3.3 look very similar across the different values of the Duration variable, which agrees with the nonsignificance of Duration in this model. The fringe plot displays only female patients in the SEX=F row of the panel and displays only male patients in the SEX=M row, because the PLOTBY=SEX option subsets the observations.

Output 19.3.3 Sliced-Fit Plot with AT Option



The following statements use the stored model and the PLM procedure to display a panel of contour plots:

```
ods graphics on;
proc plm source=logimodel;
   effectplot contour(plotby=Treatment) / at(Sex=all);
run;
ods graphics off;
```

Output 19.3.4 again confirms that Duration is not significant.

Output 19.3.4 Contour Fit Panel

ESTIMATE Statement

This statement documentation applies to the following procedures:

LOGISTIC, ORTHOREG, PHREG, PLM, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG. The ESTIMATE statement in the GENMOD, GLIMMIX, GLM, and MIXED procedures are documented in the respective procedure chapters.

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. Estimates are formed as linear estimable functions of the form $L\beta$. You can perform hypothesis tests for the estimable functions, construct confidence limits, and obtain specific nonlinear transformations.

Syntax: ESTIMATE Statement

The basic element of the ESTIMATE statement is the *estimate-specification*, which consists of model effects and their coefficients. A *estimate-specification* takes the general form

```
effect name < effect values ... >
```

The following variables can appear in the ESTIMATE statement:

label is an optional label that identifies the particular row of the estimate in the output.

effect identifies an effect that appears in the MODEL statement. The keyword INTERCEPT

can be used as an effect when an intercept is fitted in the model. You do not need to

include all effects that are in the MODEL statement.

values are constants that are elements of the L matrix and are associated with the fixed and

random effects. There are two basic methods of specifying the entries of the L matrix. The traditional representation—also known as the positional syntax—relies on entering coefficients in the position they assume in the L matrix. For example, in the following statements the elements of L that are associated with the b main effect receive a 1 in the

first position and a -1 in the second position:

```
class a b;
model y = a b a*b;
estimate 'B at A2' b 1 -1 a*b 0 0 1 -1;
```

The elements that are associated with the interaction receive a 1 in the third position and a -1 in the fourth position. In order to specify coefficients correctly for the interaction

term, you need to know how the levels of a and b vary in the interaction, which is governed by the order of the variables in the CLASS statement. The nonpositional syntax is designed to make it easier to enter coefficients for interactions and is necessary to enter coefficients for effects that are constructed with the EFFECT statement. In square brackets you enter the coefficient followed by the associated levels of the CLASS variables. If B has two levels and A has three levels, the previous ESTIMATE statement, by using nonpositional syntax for the interaction term, becomes the following statement:

```
estimate 'B at A2' b 1 -1 a*b [1, 2 1] [-1, 2 2];
```

The previous statement assigns value 1 to the interaction where A is at level 2 and B is at level 1, and it assigns -1 to the interaction where both classification variables are at level 2. The comma that separates the entry for the L matrix from the level indicators is optional. Further details about the nonpositional contrast syntax and its use with constructed effects can be found in the section "Positional and Nonpositional Syntax for Coefficients in Linear Functions" on page 460.

Based on the *estimate-specifications* in your ESTIMATE statement, the procedure constructs the matrix \mathbf{L} to test the hypothesis $H: \mathbf{L}\boldsymbol{\beta} = \mathbf{0}$. The procedure supports nonpositional syntax for the coefficients of model effects in the ESTIMATE statement. For details see the section "Positional and Nonpositional Syntax for Coefficients in Linear Functions" on page 460.

The procedure then produces for each row \mathbf{l} of \mathbf{L} an approximate t test of the hypothesis $H: \mathbf{l}\boldsymbol{\beta} = 0$. You can also obtain multiplicity-adjusted p-values and confidence limits for multirow estimates with the ADJUST= option.

Note that multirow estimates are permitted. Unlike releases prior to SAS 9.22, you do not need to specify a *'label'* for every row of the estimate; the procedure constructs a default label if a label is not specified.

If the procedure finds the estimate to be nonestimable, then it displays "Non-est" for the estimate entry.

Table 19.16 summarizes important options in the ESTIMATE statement. All ESTIMATE options are subsequently discussed in alphabetical order.

Table 19.16 Important ESTIMATE Statement Options

Option	Description	
Construction and Computation of Estimable Functions		
DIVISOR=	Specifies a list of values to divide the coefficients	
NOFILL	Suppresses the automatic fill-in of coefficients for higher-order effects	
SINGULAR=	Tunes the estimability checking difference	

Table 19.16 continued

Option	Description			
Degrees of Freedom and p-values				
ADJUST=	Determines the method for multiple comparison adjustment of es-			
	timates			
ALPHA= α	Determines the confidence level $(1 - \alpha)$			
LOWER	Performs one-sided, lower-tailed inference			
STEPDOWN	Adjusts multiplicity-corrected p-values further in a step-down			
	fashion			
TESTVALUE=	Specifies values under the null hypothesis for tests			
UPPER	Performs one-sided, upper-tailed inference			
Statistical Output				
CL	Constructs confidence limits			
CORR	Displays the correlation matrix of estimates			
COV	Displays the covariance matrix of estimates			
E	Prints the L matrix			
JOINT	Produces a joint F or chi-square test for the estimable functions			
PLOTS=	Requests ODS statistical graphics if the analysis is sampling-based			
SEED=	Specifies the seed for computations that depend on random			
	numbers			
Generalized Linear N	Modeling			
CATEGORY=	Specifies how to construct estimable functions with multinomial			
	data			
EXP	Exponentiates and displays estimates			
ILINK	Computes and displays estimates and standard errors on the in-			
	verse linked scale			

You can specify the following options in the ESTIMATE statement after a slash (/).

ADJDFE=SOURCE

ADJDFE=ROW

specifies how denominator degrees of freedom are determined when *p*-values and confidence limits are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for multiplicity-adjusted results are the denominator degrees of freedom for the final effect that is listed in the ESTIMATE statement from the "Type III" table.

The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that denominator degrees of freedom are not constant across estimates. For example, this can be the case when the denominator degrees of freedom are computed by the Satterthwaite method or according to Kenward and Roger (1997).

The ADJDFE= option has an effect only in mixed models that use these degree-of-freedom methods. It is not supported by the procedures that perform chi-square-based inference (LOGISTIC, PHREG, and SURVEYLOGISTIC).

ADJUST=BON
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE<(simoptions)>
ADJUST=T

requests a multiple comparison adjustment for the *p*-values and confidence limits for the estimates. The adjusted quantities are produced in addition to the unadjusted quantities. Adjusted confidence limits are produced if the CL or ALPHA= option is in effect. For a description of the adjustments, see Chapter 41, "The GLM Procedure," and Chapter 60, "The MULTTEST Procedure," and the documentation for the ADJUST= option in the LSMEANS statement.

If the STEPDOWN option is in effect, the *p*-values are further adjusted in a step-down fashion.

ALPHA=number

requests that a t type confidence interval be constructed with confidence level 1 - number. The value of number must be between 0 and 1; the default is 0.05. If the "Estimates" table shows infinite degrees of freedom, then the confidence interval is a z type interval.

CATEGORY=category-options

specifies how to construct estimates and multiplicity corrections for models with multinomial data (ordinal or nominal). This option is also important for constructing sets of estimable functions for F or chi-square tests with the JOINT option.

The *category-options* are used to indicate how response variable levels are treated in constructing the estimable functions. Possible values for the *category-options* are the following:

JOINT

computes the estimable functions for every nonredundant category and treats them as a set. For example, a three-row ESTIMATE statement in a model with three response categories leads to six estimable functions.

SEPARATE

computes the estimable functions for every nonredundant category in turn. For example, a three-row ESTIMATE statement in a model with three response categories leads to two sets of three estimable functions.

quoted-value-list

computes the estimable functions only for the list of values given. The list must consist of formatted values of the response categories.

Consider the following ESTIMATE statements in the LOGISTIC procedure for an ordinal model with response categories 'vg', 'g', 'm', 'b', and 'vb'. Because there are five response categories, there are four nonredundant categories for the cumulative link model.

The first ESTIMATE statement requests a two-row estimable function. The result is produced for two of the four nonredundant response categories. The second ESTIMATE statement produces four *t* tests, one for each nonredundant category. The multiplicity adjustment with *p*-value computation by simulation treats the four estimable functions as a unit for family-wise Type I error protection. The third ESTIMATE statement computes a two-row estimable function and reports its results separately for all nonredundant categories. The Bonferroni adjustment in this statement applies to a family of two tests that correspond to the two-row estimable function. Four Bonferroni adjustments for sets of size two are performed.

The CATEGORY= option is supported only by the procedures that support generalized linear modeling (LOGISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical analyses on item stores created by these procedures.

CHISQ

requests that chi-square tests be performed in addition to F tests, when you request an F test with the JOINT option. This option has no effect in procedures that produce chi-square statistics by default.

CL

requests that t type confidence limits be constructed. If the procedure shows the degrees of freedom in the "Estimates" table as infinite, then the confidence limits are z intervals. The confidence level is 0.95 by default, and you can change the confidence level with the ALPHA= option. The confidence intervals are adjusted for multiplicity when you specify the ADJUST= option. However, if a step-down p-value adjustment is requested with the STEPDOWN option, only the p-values are adjusted for multiplicity.

CORR

displays the estimated correlation matrix of the linear combination of the parameter estimates.

COV

displays the estimated covariance matrix of the linear combination of the parameter estimates.

DF=number

specifies the degrees of freedom for the *t* test and confidence limits. This option is not supported by the procedures that perform chi-square-based inference (LOGISTIC, PHREG, and SUVEYLOGISTIC).

DIVISOR=value-list

specifies a list of values by which to divide the coefficients so that fractional coefficients can be entered as integer numerators. If you do not specify *value-list*, a default value of 1.0 is assumed. Missing values in the *value-list* are converted to 1.0.

If the number of elements in *value-list* exceeds the number of rows of the estimate, the extra values are ignored. If the number of elements in *value-list* is less than the number of rows of the estimate, the last value in *value-list* is copied forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multiplies the corresponding divisor that is implied by the *value-list*. For example, the following statement divides the coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

Coefficients in the second row are not altered.

Ε

requests that the L matrix coefficients be displayed.

EXP

requests exponentiation of the estimate. When you model data with the logit, cumulative logit, or generalized logit link functions, and the estimate represents a log odds ratio or log cumulative odds ratio, the EXP option produces an odds ratio. In proportional hazards model, this option produces estimates of hazard ratios. If you specify the CL or ALPHA= option, the (adjusted) confidence bounds are also exponentiated.

The EXP option is supported only by PROC PHREG, PROC SURVEYPHREG, the procedures that support generalized linear modeling (LOGISTIC and SURVEYLOGISTIC), and by PROC PLM when it is used to perform statistical analyses on item stores created by these procedures.

ILINK

requests that the estimate and its standard error also be reported on the scale of the mean (the inverse linked scale). The computation of the inverse linked estimate depends on the estimation mode. For example, if the analysis is based on a posterior sample when a BAYES statement is present, the inversely linked estimate is the average of the inversely linked values across the sample of posterior parameter estimates. If the analysis is not based on a sample of parameter estimates, the procedure computes the value on the mean scale by applying the inverse link to the estimate. The interpretation of this quantity depends on the *effect values* specified in your ESTIMATE statement and on the link function. For example, in a model for binary data with logit link the following statements compute

$$\frac{1}{1 + \exp\{-(\alpha_1 - \alpha_2)\}}$$

where α_1 and α_2 are the fixed-effects solutions that are associated with the first two levels of the classification effect A:

```
class A;
model y = A / dist=binary link=logit;
estimate 'A one vs. two' A 1 -1 / ilink;
```

This quantity is not the difference of the probabilities that are associated with the two levels,

$$\pi_1 - \pi_2 = \frac{1}{1 + \exp\{-\beta_0 - \alpha_1\}} - \frac{1}{1 + \exp\{-\beta_0 - \alpha_2\}}$$

The standard error of the inversely linked estimate is based on the delta method. If you also specify the CL option, the procedure computes confidence limits for the estimate on the mean scale. In multinomial models for nominal data, the limits are obtained by the delta method. In other models they are obtained from the inverse link transformation of the confidence limits for the estimate. The ILINK option is specific to an ESTIMATE statement.

The ILINK option is supported only by the procedures that support generalized linear modeling (LO-GISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical analyses on item stores created by these procedures.

JOINT<(joint-test-options)>

requests that a joint F or chi-square test be produced for the rows of the estimate. The JOINT option in the ESTIMATE statement essentially replaces the CONTRAST statement.

When the LOWERTAILED or the UPPERTAILED options are in effect, or if the BOUNDS option described below is in effect, the JOINT option produces the chi-bar-square statistic according to Silvapulle and Sen (2004). This statistic uses a simulation-based approach to compute *p*-values in situations where the alternative hypotheses of the estimable functions are not simple two-sided hypotheses. See the section "Joint Hypothesis Tests with Complex Alternatives, the Chi-Bar-Square Statistic" on page 463 for more information about this test statistic.

You can specify the following *joint-test-options* in parentheses:

$ACC = \gamma$

specifies the accuracy radius for determining the necessary sample size in the simulation-based approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of γ must be strictly between 0 and 1; the default value is 0.005.

$EPS=\epsilon$

specifies the accuracy confidence level for determining the necessary sample size in the simulation-based approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of ϵ must be strictly between 0 and 1; the default value is 0.01.

LABEL='label'

assigns an identifying label to the joint test. If you do not specify a label, the first non-default label for the ESTIMATE rows is used to label the joint test.

NOEST

ONLY

performs only the F or chi-square test and suppresses other results from the ESTIMATE statement. This option is useful for emulating the CONTRAST statement that is available in other procedures.

NSAMP=n

specifies the number of samples for the simulation-based method of Silvapulle and Sen (2004). If n is not specified, it is constructed from the values of the ALPHA= α , the ACC= γ , and the EPS= ϵ options. With the default values for γ , ϵ , and α (0.005, 0.01, and 0.05, respectively), NSAMP=12,604 by default.

CHISQ

adds a chi-square test if the procedure produces an F test by default.

BOUNDS=*value*-list

specifies boundary values for the estimable linear function. The null value of the hypothesis is always zero. If you specify a positive boundary value z, the hypotheses are $H:\theta=0$, H_a : $\theta>0$ with the added constraint that $\theta< z$. The same is true for negative boundary values. The alternative hypothesis is then H_a : $\theta<0$ subject to the constraint $\theta>-|z|$. If you specify a missing value, the hypothesis is assumed to be two-sided. The BOUNDS option enables you to specify sets of one- and two-sided joint hypotheses. If all values in *value-list* are set to missing, the procedure performs a simulation-based p-value calculation for a two-sided test.

LOWER

LOWERTAILED

requests that the p-value for the t test be based only on values that are less than the test statistic. A two-tailed test is the default. A lower-tailed confidence limit is also produced if you specify the CL or ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted p-values are the same as the corresponding two-sided statistics, because this adjustment is based on only the right tail of the F distribution.

If you request a joint test with the JOINT option, then a one-sided left-tailed order restriction is applied to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004) is computed in addition to the two-sided, standard, *F* or chi-square statistic. See the JOINT option for how to control the computation of the simulation-based chi-bar-square statistic.

NOFILL

suppresses the automatic fill-in of coefficients of higher-order effects.

PLOTS=plot-options

produces ODS statistical graphics of the distribution of estimable functions if the procedure performs the analysis in a sampling-based mode. For example, this is the case when procedures support a BAYES statement and perform a Bayesian analysis. The estimable functions are then computed for each of the posterior parameter estimates, and the "Estimates" table reports simple descriptive statistics for the evaluated functions. The PLOTS= option enables you in this situation to visualize the distribution of the estimable function. The following *plot-options* are available:

ALL

produces all possible plots with their default settings.

BOXPLOT<(boxplot-options)>

produces box plots of the distribution of the estimable function across the posterior sample. A separate box is generated for each estimable function, and all boxes appear on a single graph by default. You can affect the appearance of the box plot graph with the following options:

ORIENTATION=VERTICAL | HORIZONTAL

ORIENT=VERT | HORIZ specifies the orientation of the boxes. The default is vertical orientation of the box plots.

NPANELPOS=number specifies how to break the series of box plots across multiple panels. If the NPANELPOS option is not specified, or if *number* equals zero, then all box plots are displayed in a single graph; this is the default. If a negative number is specified, then exactly up to |number| of box plots are displayed per panel. If number is positive, then the number of boxes per panel is balanced to achieve small variation in the number of box plots per graph.

DISTPLOT< (distplot-options) >

DIST<(distplot-options)>

generates panels of histograms with a kernel density overlaid. A separate plot in each panel contains the results for each estimable function. You can specify the following *distplot-options* in parentheses:

BOX | NOBOX controls the display of a horizontal box plot of the estimable function's dis-

tribution across the posterior sample below the graph. The BOX option is

enabled by default.

HIST | NOHIST controls the display of the histogram of the estimable function's distribution

across the posterior sample. The HIST option is enabled by default.

NORMAL | **NONORMAL** controls the display of a normal density estimate on the graph. The NONORMAL option is enabled by default.

1

KERNEL | **NOKERNEL** controls the display of a kernel density estimate on the graph. The KERNEL option is enabled by default.

NROWS=*number* specifies the highest number of rows in a panel. The default is 3.

NCOLS=*number* specifies the highest number of columns in a panel. The default is 3.

UNPACK unpacks the panel into separate graphics.

NONE

does not produce any plots.

SEED=number

specifies the seed for the sampling-based components of the computations for the ESTIMATE statement (for example, chi-bar-square statistics and simulated *p*-values). *number* specifies an integer that is used to start the pseudo-random number generator for the simulation. If you do not specify a seed, or if you specify a value less than or equal to zero, the seed is generated from reading the time of day from the computer clock. There could be multiple ESTIMATE statements with SEED= specifications and there could be other statements that can supply a random number seed. Since the procedure has only one random number stream, the initial seed is shown in the SAS log.

SINGULAR=number

tunes the estimability checking. If \mathbf{v} is a vector, define ABS(\mathbf{v}) to be the largest absolute value of the elements of \mathbf{v} . If ABS($\mathbf{L} - \mathbf{L}\mathbf{T}$) is greater than c*number for any row of \mathbf{L} in the contrast, then $\mathbf{L}\boldsymbol{\beta}$ is declared nonestimable. Here, \mathbf{T} is the Hermite form matrix $(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}$, and c is ABS(\mathbf{L}), except when it equals 0, and then c is 1. The value for *number* must be between 0 and 1; the default is 1E-4.

STEPDOWN< (step-down-options)>

requests that multiplicity adjustments for the *p*-values of estimates be further adjusted in a step-down fashion. Step-down methods increase the power of multiple testing procedures by taking advantage of the fact that a *p*-value is never declared significant unless all smaller *p*-values are also declared significant. The STEPDOWN adjustment combined with ADJUST=BON corresponds to the methods of Holm (1979) and "Method 2" of Shaffer (1986); this is the default. Using step-down-adjusted *p*-values combined with ADJUST=SIMULATE corresponds to the method of Westfall (1997).

If the ESTIMATE statement is applied with a STEPDOWN option in a mixed model where the degrees-of-freedom method is that of Kenward and Roger (1997) or of Satterthwaite, then step-down-adjusted *p*-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only *p*-values, not confidence limits. For AD-JUST=SIMULATE, the generalized least squares hybrid approach of Westfall (1997) is used to increase Monte Carlo accuracy. You can specify the following *step-down-options* in parentheses after the STEPDOWN option:

MAXTIME=n

specifies the time (in seconds) to be spent computing the maximal logically consistent sequential subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can try increasing the MAXTIME value. However, note that there are common multiple comparisons problems for which this computation requires a huge amount of time—for example, all pairwise comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default) or TYPE=LOGICAL(n) for small n.

ORDER=PVALUE

ORDER=ROWS

specifies the order in which the step-down tests to be performed. ORDER=PVALUE is the default, with estimates being declared significant only if all estimates with smaller (unadjusted) *p*-values are significant. If you specify ORDER=ROWS, then significances are evaluated in the order in which they are specified in the syntax.

REPORT

specifies that a report on the step-down adjustment be displayed, including a listing of the sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation results.

TYPE=LOGICAL<(n)>

TYPE=FREE

specifies how step-down adjustment are made. If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal logically consistent sequential subsets of equality hypotheses (Shaffer 1986, Westfall 1997). Alternatively, for TYPE=FREE, sequential subsets are computed ignoring logical constraints. The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but they can be much more efficient to produce for many estimates. For example, it is not feasible to take logical constraints between all pairwise comparisons of more than about 10 groups. For this reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account by limiting the depth of the search tree used to compute them, specifying the optional depth parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results. But even for TYPE=LOGICAL(0) they can be appreciably less conservative than TYPE=FREE, and they are computationally feasible for much larger numbers of estimates. If you do not specify n or if n = -1, the full search tree is used.

TESTVALUE=value-list

TESTMEAN=*value*-list

specifies the value under the null hypothesis for testing the estimable functions in the ESTIMATE statement. The rules for specifying the *value-list* are very similar to those for specifying the divisor list in the DIVISOR= option. If no TESTVALUE= is specified, all tests are performed as $H: \mathbf{L}\boldsymbol{\beta} = 0$. Missing values in the *value-list* also are translated to zeros. If you specify fewer values than rows in the ESTIMATE statement, the last value in *value-list* is carried forward.

The TESTVALUE= option affects only *p*-values from individual, joint, and multiplicity-adjusted tests. It does not affect confidence intervals.

The TESTVALUE option is not available for the multinomial distribution, and the values are ignored when you perform a sampling-based (Bayesian) analysis.

UPPER

UPPERTAILED

requests that the *p*-value for the *t* test be based only on values that are greater than the test statistic. A two-tailed test is the default. An upper-tailed confidence limit is also produced if you specify the CL or ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted p-values are the same as the corresponding two-sided statistics, because this adjustment is based on only the right tail of the F distribution.

If you request a joint test with the JOINT option, then a one-sided right-tailed order restriction is applied to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004) is computed in addition to the two-sided, standard, F or chi-square statistic. See the JOINT option for how to control the computation of the simulation-based chi-bar-square statistic.

Positional and Nonpositional Syntax for Coefficients in Linear Functions

When you define custom linear hypotheses with the ESTIMATE statement, the procedure sets up an L vector or matrix that conforms to the model effect solutions. (Note that the following remarks also apply to the LSMESTIMATE statement, where you specify coefficients of the matrix K which is then converted into a coefficient matrix that conforms to the model effects solutions.)

There are two methods for specifying the entries in a coefficient matrix (hereafter simply referred to as the L matrix); they are called the positional and nonpositional methods. In the positional form, which is the traditional method, you provide a list of values that occupy the elements of the L matrix that is associated with the effect in question in the order in which the values are listed. For traditional model effects that consist of continuous and classification variables, the positional syntax is simpler in some cases (main effects) and more cumbersome in others (interactions). When you work with effects that are constructed through the EFFECT statement, the nonpositional syntax is essential.

For example, consider the following two-way model with interactions where factors A and B have three and two levels, respectively:

```
proc logistic;
   class a b;
   model y = a b a*b;
run;
```

To test the difference of the B levels at the second level of A with an ESTIMATE statement (a slice), you need to assign coefficients 1 and -1 to the levels of B and to the levels of the interaction where A is at the second level. Two examples of equivalent ESTIMATE statements that use positional and nonpositional syntax are as follows:

```
estimate 'B at A2' b 1 -1 a*b 0 0 1 -1 ; estimate 'B at A2' b 1 -1 a*b [1 2 1] [-1 2 2];
```

Because A precedes B in the CLASS statement, the levels of the interaction are formed as $\alpha_1\beta_1, \alpha_1\beta_2, \alpha_2\beta_1, \alpha_2\beta_2, \cdots$. If B precedes A in the CLASS statement, you need to modify the coefficients accordingly:

```
proc logistic;
  class b a;
  model y = a b a*b;
  estimate 'B at A2' b 1 -1 a*b 0 1 0 0 -1 ;
  estimate 'B at A2' b 1 -1 a*b [1 1 2] [-1 2 2];
  estimate 'B at A2' b 1 -1 a*b [1, 1 2] [-1, 2 2];
run;
```

You can optionally separate the L value entry from the level indicators with a comma, as in the last ESTI-MATE statement.

The general syntax for defining coefficients with the nonpositional syntax is as follows:

```
effect-name [multiplier <,> level-values] ... < [multiplier <,> level-values] >
```

The *level-values* are organized in a specific form:

- The number of entries should equal the number of terms that are needed to construct the effect. For
 effects that do not contain any constructed effects, this number is simply the number of terms in the
 name of the effect.
- Values of continuous variables that are needed for the construction of the L matrix precede the level indicators of CLASS variables.
- If the effect involves constructed effects, then you need to provide as many continuous and classification variables as are needed for the effect formation. For example, if a collection effect is defined as

```
class c;
effect v = collection(x1 x2 c);
```

then a proper nonpositional syntax would be

```
v [0.5, 0.2 0.3 3]
```

• If an effect contains both regular terms (old-style effects) and constructed effects, then the order of the coefficients is as follows: continuous values for old-style effects, class levels for classification variables in old-style effects, continuous values for constructed effects, and finally class levels that are needed for constructed effects. Assume that C has four levels so that effect v contributes six elements to the L matrix. When the procedure resolves this syntax, the values 0.2 and 0.3 are assigned to the positions for x1 and x2 and a 1 is associated with the third level of C. The resulting vector is then multiplied by 0.5 to produce

```
[0.1 \quad 0.15 \quad 0 \quad 0 \quad 0.5 \quad 0]
```

Note that you enter the **levels** of the classification variables in the square brackets, not their formatted values. The ordering of the levels of classification variables can be gleaned from the "Class Level Information" table.

To specify values for continuous variables, simply give their value as one of the terms in the effect. The nonpositional syntax in the following ESTIMATE statement is read as "1 times the value 0.4 in the column that is associated with level 2 of A"

```
proc phreg;
  class a / param=glm;
  model y = a a*x / s;
  lsmeans a / e at x=0.4;
  estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [1,0.4 2] / e;
run;
```

Because the value before the comma serves as a multiplier, the same estimable function could also be constructed with the following statements:

```
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 4, 0.1 2]; estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 2, 0.2 2]; estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [-1, -0.4 2];
```

Note that continuous variables that are needed to construct an effect are always listed before any CLASS variables.

When you work with constructed effects, the nonpositional syntax works in the same way. For example, the following model contains a classification effect and a B-spline. The first two ESTIMATE statements produce predicted values for level 1 of C when the continuous variable x takes on the values 20 and 10, respectively.

In this example, the ORTHOREG procedure computes the spline coefficients for the first ESTIMATE statement based on x=20, and similarly in the second statement for x=10. The third ESTIMATE statement computes the difference of the predicted values. Because the spline effect does not interact with the classification variable, this difference does not depend on the level of C. If such an interaction is present, you can estimate the difference in predicted values for a given level of C by using the nonpositional syntax. Because the effect C*spl contains both old-style terms (C) and a constructed effect, you specify the values for the old-style terms before assigning values to constructed effects.

```
proc orthoreg;
  class c;
  effect spl = spline(x / knotmethod=equal(5));
  model y = spl*c;
  estimate 'C2 = 1, x=20' intercept 1 c*spl [1,1 20];
  estimate 'C2 = 2, x=20' intercept 1 c*spl [1,2 20];
  estimate 'C diff at x=20' c*spl [1,1 20] [-1,2 20];
run;
```

It is recommended that you add the E option to the ESTIMATE or LSMESTIMATE statement to verify that the L matrix is formed according to your expectations.

In any row of an ESTIMATE statement you can choose positional and nonpositional syntax separately for each effect. However, you cannot mix the two forms of syntax for coefficients of a single effect. For example, the following statement is not proper because both forms of syntax are used for the interaction effect:

```
estimate 'A1B1 - A1B2' b 1 -1 a*b 0 1 [-1, 1 2];
```

Silvapulle and Sen (2004) propose a test statistic for testing hypotheses where the null or the alternative hypothesis or both involve inequalities. You can test special cases of these hypotheses with the JOINT option in the ESTIMATE and the LSMESTIMATE statement. Consider the k estimable functions $L\beta$ and the hypotheses $H_0: L\beta = 0$ and $H_a: L\beta \geq 0$. The alternative hypothesis defines a convex cone \mathcal{C} at the origin. Suppose that under the null hypothesis $L\widehat{\beta}$ follows a multivariate normal distribution with mean 0 and variance V. The restricted alternative prevents you from using the usual F or chi-square test machinery, since the distribution of the test statistic under the alternative might not follow the usual rules. Silvapulle and Sen (2004) coined a statistic that takes into account the projection of the observed estimate onto the convex cone formed by the alternative parameter space. This test statistic is called the chi-bar-square statistic, and p-values are obtained by simulation; see, in particular, Chapter 3.4 in Silvapulle and Sen (2004).

Briefly, let U be a multivariate normal random variable with mean $\mathbf{0}$ and variance matrix \mathbf{V} . The chi-bar-square statistic is the random variable

$$\overline{\chi}^{2} = \mathbf{U}'\mathbf{V}^{-1}\mathbf{U} - Q$$

$$Q = \min_{\boldsymbol{\theta} \in C} (\mathbf{U} - \boldsymbol{\theta})'\mathbf{V}^{-1}(\mathbf{U} - \boldsymbol{\theta})$$

and it can be motivated by a geometric argument. The quadratic form in Q is the V-projection of U onto the cone C. Suppose that this projected point is \tilde{U} . If $U \in C$, then Q = 0 and $\tilde{U} = U$. If U is completely outside of the cone C, then \tilde{U} is a point on the surface of the cone. Similarly, $U'V^{-1}U$ is the length of the segment from the origin to U in the V-space with norm $||x|| = (x'V^{-1}x)^{1/2}$. If you apply the Pythagorean theorem, you can see that the chi-bar-square statistic measures the length of the segment from the origin to the projected point \tilde{U} in C.

To calculate *p*-values for chi-bar-square statistics, a simulation-based approach is taken. Consider again the set of k estimable functions $\mathbf{L}\boldsymbol{\beta}$ with estimate $\mathbf{L}\widehat{\boldsymbol{\beta}} = \mathbf{U}$ and variance $\mathbf{L}\text{Var}[\widehat{\boldsymbol{\beta}}]\mathbf{L}' = \mathbf{V}$.

First, the observed value of the statistic is computed as

$$\overline{\chi}_{obs}^2 = \mathbf{U}'\mathbf{V}^{-1}\mathbf{U} - Q$$

Then, n independent random samples $\mathbf{Z}_1, \dots, \mathbf{Z}_n$ are drawn from an $N(\mathbf{0}, \mathbf{V})$ distribution and the following chi-bar-statistics are computed for the sample:

$$\overline{\chi}_1^2 = \mathbf{Z}_1' \mathbf{V}^{-1} \mathbf{Z}_1 - \min_{\boldsymbol{\theta} \in C} (\mathbf{Z}_1 - \boldsymbol{\theta})' \mathbf{V}^{-1} (\mathbf{Z}_1 - \boldsymbol{\theta})$$
:

$$\overline{\chi}_n^2 = \mathbf{Z}_n' \mathbf{V}^{-1} \mathbf{Z}_n - \min_{\boldsymbol{\theta} \in C} (\mathbf{Z}_n - \boldsymbol{\theta})' \mathbf{V}^{-1} (\mathbf{Z}_n - \boldsymbol{\theta})$$

The *p*-value is estimated by the fraction of simulated statistics that are greater than or equal to the observed value $\overline{\chi}_{obs}^2$.

Notice that unless U is interior to the cone C, finding the value of Q requires the solution to a quadratic optimization problem. When k is large, or when many simulations are requested, the computation of p-values for chi-bar-square statistics might require considerable computing time.

ODS Table Names: ESTIMATE Statement

Each table created by the ESTIMATE statement has a name associated with it, and you can use this name to refer to the table when you use the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 19.17. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

 Table 19.17
 ODS Tables Produced by the ESTIMATE statement

Table Name	Description	Required Option
Coef	L matrix coefficients	E
Estimates	ESTIMATE statement results	Default
Contrasts	Joint test results	JOINT

ODS Graphics: ESTIMATE Statement

This section describes the use of ODS Graphics for creating statistical graphs of the distribution of estimable functions with the ESTIMATE statement. The plots can be produced only in association with the PHREG procedure, which can perform Bayesian analysis. The plots are available via these procedures directly, and also via PROC PLM when it is run using an item store that was created by these procedures.

To request these graphs you must do the following:

- ensure that ODS Graphics is enabled
- use a BAYES statement with PROC PHREG, or use PROC PLM to perform statistical analysis on an item store that was saved from a Bayesian analysis
- request plots with the PLOTS= option in the ESTIMATE statement

For more information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS." The available graphs are summarized in Table 19.18.

Table 19.18 Graphs Produced by the ESTIMATE statement

ODS Graph Name	Plot Description	Required Option
BoxPlot	Displays box plots of estimable functions across a posterior sample.	PLOTS=BOXPLOT
	tions across a posterior sample.	

Table 19.18 continued

ODS Graph Name	Plot Description	Required Option
DistPanel	Displays panels of histograms with kernel density curves overlaid. Each plot contains the results for the pos- terior sample of each estimable func- tion.	PLOTS=DISTPLOT
DistPlot	Displays a histogram with a kernel density curve overlaid. The plot contains the results for the posterior sample of the estimable function.	PLOTS=DISTPLOT(UNPACK)

For details about the *plot-options* of the ESTIMATE statement, see the PLOTS= option in the section "ESTIMATE Statement" on page 449.

LSMEANS Statement

This statement documentation applies to the following procedures:

GENMOD, LOGISTIC, ORTHOREG, PHREG, PLM, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG.

The GLIMMIX, GLM, and MIXED procedures also support LSMEANS statements. The relevant statement documentation for these procedures can be found in the specific procedure chapter.

The LSMEANS statement computes least squares means (LS-means) of fixed effects. In the GLM, MIXED, and GLIMMIX procedures, LS-means are *predicted population margins*—that is, they estimate the marginal means over a balanced population. In a sense, LS-means are to unbalanced designs as class and subclass arithmetic means are to balanced designs.

Thus it is important not to interpret the name with a strict association with least squares estimation. Least squares is the predominant estimation technique for the type of models in which LS-means were first applied. Their interpretation and importance reaches beyond the least squares principle, however. A more appropriate approach to LS-means views them as linear combinations of the parameter estimates that are constructed in such a way that they correspond to average predicted values in a population where the levels of classification variables are balanced.

This contemporary—and historically correct—interpretation of the concept of least squares means underlines their importance in all classes of models where predicted values are reasonably formed as linear combinations of the parameter estimates. LS-means distinguish themselves from general estimable functions in that they take the structure for the model and data into account through the structure of the \mathbf{X} and $\mathbf{X}'\mathbf{X}$ matrix in your model. For example, in a generalized linear model the structure of the \mathbf{X} matrix informs the analysis about the possible levels of classification variables and predictions on the linear (the linked) scale are computed as $\mathbf{x}'\boldsymbol{\beta}$. LS-means are thus meaningful quantities in such models when the linear estimable

function that corresponds to an averaged prediction is constructed on the linked scale. For example, in a binomial model with logit link, the least squares means are predicted population margins of the logits. You can then transform the least squares means to the data scale with the ILINK option, and you can display differences of least squares means in terms of odds ratios with the ODDSRATIO option. The underlying principle—unless you perform a Bayesian analysis—is to construct the estimates or their differences on the linked scale and to apply appropriate transformations in a second step.

Least squares means computations are also supported for multinomial models.

LS-means are computed as $L\beta$ where the L matrix that is constructed to compute the predicted values is the same as the L matrix that is formed in PROC GLM.

Each LS-mean is computed as $L\hat{\beta}$, where L is the coefficient matrix that is associated with the least squares mean and $\hat{\beta}$ is the estimate of the fixed-effects parameter vector. The approximate standard error for the LS-mean is computed as the square root of $\widehat{\mathbf{LVar}}[\widehat{\boldsymbol{\beta}}]\mathbf{L}'$. The approximate variance matrix of the fixed-effects estimates depends on the estimation method.

Syntax: LSMEANS Statement

LSMEANS < model-effects > < / options > ;

LS-means can be computed for any effect in the statistical model that involves only CLASS variables. You can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all LSMEANS statements must appear after the MODEL statement. If you do not specify model-effects, the options in the LSMEANS statement are applied to all suitable model effects.

As in the ESTIMATE statement, the L matrix is tested for estimability; if this test fails, the procedure displays "Non-est" for the LS-means entries. Note that linear functions of LS-means, such as differences, can be estimable, even if the means themselves are not estimable. Estimability checks for differences are thus applied separately from checks for the means.

Assuming the LS-mean is estimable, the procedure constructs an approximate t test to test the null hypothesis that the associated population quantity equals zero.

Table 19.19 summarizes important options in the LSMEANS statement. All LSMEANS options are subsequently discussed in alphabetical order.

Table 19.19 Important LSMEANS Statement Options

Option	Description
Construction and Com	putation of LS-Means
AT	Modifies the covariate value in computing LS-means
BYLEVEL	Computes separate margins
DIFF	Requests differences of LS-means
OM=	Specifies the weighting scheme for LS-means computation as de-
	termined by the input data set
SINGULAR=	Tunes estimability checking

Table 19.19 continued

Option	Description	
Degrees of Freedom and	d p-values	
ADJUST=	Determines the method for multiple comparison adjustment of LS-means differences	
$ALPHA=\alpha$	Determines the confidence level $(1 - \alpha)$	
STEPDOWN	Adjusts multiple comparison <i>p</i> -values further in a step-down fashion	
Statistical Output		
CL	Constructs confidence limits for means and mean differences	
CORR	Displays the correlation matrix of LS-means	
COV	Displays the covariance matrix of LS-means	
E	Prints the L matrix	
LINES	Produces a "Lines" display for pairwise LS-means differences	
MEANS	Prints the LS-means	
PLOTS=	Requests ODS statistical graphics of means and mean comparisons	
SEED=	Specifies the seed for computations that depend on random numbers	
Generalized Linear Mo	deling	
EXP	Exponentiates and displays estimates of LS-means or LS-means differences	
ILINK	Computes and displays estimates and standard errors of LS-means (but not differences) on the inverse linked scale	
ODDSRATIO	Reports (simple) differences of least squares means in terms of odds ratios if permitted by the link function	

You can specify the following options in the LSMEANS statement after a slash (/):

ADJDFE=ROW

ADJDFE=SOURCE

specifies how denominator degrees of freedom are determined when *p*-values and confidence limits are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the ADJDFE= option or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the "Type III Tests of Fixed Effects" table. When you specify ADJDFE=ROW, the denominator degrees of freedom for multiplicity-adjusted results correspond to the degrees of freedom that are displayed in the DF column of the "Differences of Least Squares Means" table.

The ADJDFE=ROW setting is particularly useful if you want multiplicity adjustments to take into account that denominator degrees of freedom are not constant across LS-mean differences.

In one-way models with heterogeneous variance, combining certain ADJUST= options with the AD-JDFE=ROW option corresponds to particular methods of performing multiplicity adjustments in the presence of heteroscedasticity. For example, the following statements fit a heteroscedastic one-way

model and perform Dunnett's T3 method (Dunnett 1980), which is based on the studentized maximum modulus (ADJUST=SMM):

```
proc glimmix;
   class A;
   model y = A / ddfm=satterth;
   random _residual_ / group=A;
   lsmeans A / adjust=smm adjdfe=row;
run;
```

If you combine the ADJDFE=ROW option with ADJUST=SIDAK, the multiplicity adjustment corresponds to the T2 method of Tamhane (1979), and ADJUST=TUKEY corresponds to the method of Games-Howell (Games and Howell 1976). Note that ADJUST=TUKEY gives the exact results for the case of fractional degrees of freedom in the one-way model, but it does not take into account that the degrees of freedom are subject to variability. A more conservative method, such as ADJUST=SMM, might protect the overall error rate better.

Unless the ADJUST= option is specified in the LSMEANS statement, the ADJDFE= option has no effect. The option is not supported by the procedures that perform chi-square-based inference (GENMOD, LOGISTIC, PHREG, and SURVEYLOGISTIC).

ADJUST=BON
ADJUST=DUNNETT
ADJUST=NELSON
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE<(simoptions)>
ADJUST=SMM | GT2
ADJUST=TUKEY

requests a multiple comparison adjustment for the *p*-values and confidence limits for the differences of LS-means. The adjusted quantities are produced in addition to the unadjusted quantities. By default, the procedure performs all pairwise differences. If you specify ADJUST=DUNNETT, the procedure analyzes all differences with a control level. If you specify ADJUST=NELSON, ANOM differences are taken. The ADJUST= option implies the DIFF option.

The BON (Bonferroni) and SIDAK adjustments involve correction factors described in Chapter 41, "The GLM Procedure," and Chapter 60, "The MULTTEST Procedure"; also see Westfall and Young (1993) and Westfall et al. (1999). When you specify ADJUST=TUKEY and your data are unbalanced, the procedure uses the approximation described in Kramer (1956) and identifies the adjustment as "Tukey-Kramer" in the results. Similarly, when you specify ADJUST=DUNNETT or ADJUST=NELSON and the LS-means are correlated, the procedure uses the factor-analytic covariance approximation described in Hsu (1992) and identifies the adjustment in the results as "Dunnett-Hsu" or "Nelson-Hsu," respectively. The approximation derives an approximate "effective sample sizes" for which exact critical values are computed. Computing the exact adjusted *p*-values and critical values for unbalanced designs can be computationally intensive, in particular for ADJUST=NELSON. A simulation-based approach, as specified by the ADJUST=SIM option, while nondeterministic, can provide inferences that are sufficiently accurate in much less time. The preceding references also describe the SCHEFFE and SMM adjustments.

Nelson's adjustment applies only to the analysis of means (Ott 1967; Nelson 1982, 1991, 1993), where LS-means are compared against an average LS-mean. It does not apply to all pairwise differences of least squares means. See the DIFF=ANOM option for more details regarding the analysis of means with the procedure.

The SIMULATE adjustment computes adjusted p-values and confidence limits from the simulated distribution of the maximum or maximum absolute value of a multivariate t random vector. All covariance parameters, except the residual scale parameter, are fixed at their estimated values throughout the simulation, potentially resulting in some underdispersion. The simulation estimates q, the true $(1-\alpha)$ th quantile, where $1-\alpha$ is the confidence coefficient. The default α is 0.05, and you can change this value with the ALPHA= option in the LSMEANS statement.

The number of samples is set so that the tail area for the simulated q is within γ of $1 - \alpha$ with $100(1 - \epsilon)\%$ confidence. In equation form,

$$\Pr(|F(\widehat{q}) - (1 - \alpha)| \le \gamma) = 1 - \epsilon$$

where \hat{q} is the simulated q and F is the true distribution function of the maximum; see Edwards and Berry (1987) for details. By default, $\gamma = 0.005$ and $\epsilon = 0.01$, placing the tail area of \hat{q} within 0.005 of 0.95 with 99% confidence. You can specify the following *simoptions* in parentheses after the ADJUST=SIMULATE option:

ACC= value specifies the target accuracy radius γ of a $100(1-\epsilon)\%$ confidence interval for the

true probability content of the estimated $(1 - \alpha)$ th quantile. The default value is

ACC=0.005.

EPS=value specifies the value ϵ for a $100 \times (1-\epsilon)\%$ confidence interval for the true probability

content of the estimated $(1 - \alpha)$ th quantile. The default value for the accuracy

confidence is 99%, which corresponds to EPS=0.01.

NSAMP=*n* specifies the sample size for the simulation. By default, *n* is set based on the

values of the target accuracy radius γ and accuracy confidence $100 \times (1 - \epsilon)\%$ for an interval for the true probability content of the estimated $(1 - \alpha)$ th quantile. With the default values for γ , ϵ , and α (0.005, 0.01, and 0.05, respectively),

NSAMP=12,604 by default.

SEED=*number* specifies an integer that is used to start the pseudo-random number generator for

the simulation. If you do not specify a seed, or specify a value less than or equal to zero, the seed is by default generated from reading the time of day from the

computer's clock.

THREADS specifies that the computational work for the simulation be divided into parallel threads, where the number of threads is the value of the SAS system option

CPUCOUNT=. For large simulations (as specified directly using the NSAMP= *simoption* or indirectly using the ACC= or EPS= *simoptions*), parallel processing can markedly speed up the computation of adjusted *p*-values and confidence intervals. However, because the parallel processing has different pseudo-random number streams, the precise results are different from the default ones, which are computed in sequence rather than in parallel. This option overrides the SAS sys-

tem option THREADS | NOTHREADS.

NOTHREADS

specifies that the computational work for the simulation be performed in sequence rather than in parallel. NOTHREADS is the default. This option overrides the SAS system option THREADS | NOTHREADS.

If the STEPDOWN option is in effect, the *p*-values are further adjusted in a step-down fashion. For certain options and data, this adjustment is exact under an *iid* $N(0, \sigma^2)$ model for the dependent variable, in particular for the following:

- for ADJUST=DUNNETT when the means are uncorrelated
- for ADJUST=TUKEY with STEPDOWN(TYPE=LOGICAL) when the means are balanced and uncorrelated.

The first case is a consequence of the nature of the successive step-down hypotheses for comparisons with a control; the second uses an extension of the maximum studentized range distribution appropriate for partition hypotheses (Royen 1989). Finally, for STEPDOWN(TYPE=FREE), ADJUST=TUKEY employs the Royen (1989) extension in such a way that the resulting *p*-values are conservative.

ALPHA=number

requests that a t type confidence interval be constructed for each of the LS-means with confidence level 1 - number. The value of *number* must be between 0 and 1; the default is 0.05.

AT variable=value

AT (variable-list)=(value-list)

AT MEANS

modifies the values of the covariates that are used in computing LS-means. By default, all covariate effects are set equal to their mean values for computation of standard LS-means. The AT option enables you to assign arbitrary values to the covariates. Additional columns in the output table indicate the values of the covariates.

If there is an effect that contains two or more covariates, the AT option sets the effect equal to the product of the individual means rather than the mean of the product (as with standard LS-means calculations). The AT MEANS option sets covariates equal to their mean values (as with standard LS-means) and incorporates this adjustment to crossproducts of covariates.

As an example, consider the following statements:

```
class A;
model Y = A x1 x2 x1*x2;
lsmeans A;
lsmeans A / at means;
lsmeans A / at x1=1.2;
lsmeans A / at (x1 x2) = (1.2 0.3);
```

For the first two LSMEANS statements, the LS-means coefficient for x1 is \overline{x}_1 (the mean of x1) and for x2 is \overline{x}_2 (the mean of x2). However, for the first LSMEANS statement, the coefficient for x1*x2 is $\overline{x}_1\overline{x}_2$, but for the second LSMEANS statement, the coefficient is $\overline{x}_1 \times \overline{x}_2$. The third LSMEANS statement sets the coefficient for x1 equal to 1.2 and leaves it at \overline{x}_2 for x2, and the final LSMEANS statement sets these values to 1.2 and 0.3, respectively.

Even if you specify a WEIGHT variable, the unweighted covariate means are used for the covariate coefficients if there is no AT specification. If you specify the AT option, WEIGHT or FREQ variables are taken into account as follows. The weighted covariate means are then used for the covariate coefficients for which no explicit AT values are given, or if you specify AT MEANS. Observations that do not contribute to the analysis because of a missing dependent variable are included in computing the covariate means. Use the E option in conjunction with the AT option to check that the modified LS-means coefficients are the ones you want.

The AT option is disabled if you specify the BYLEVEL option.

BYLEVEL

requests that separate margins be computed for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option changes these coefficients to be proportional to the observed margins. This adjustment is reasonable when you want your inferences to apply to a population that is not necessarily balanced but has the margins observed in the input data set. In this case, the resulting LS-means are actually equal to raw means for fixed-effects models and certain balanced random-effects models, but their estimated standard errors account for the covariance structure that you have specified. If a WEIGHT statement is specified, the procedure uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.

CL

requests that *t* type confidence limits be constructed for each of the LS-means. The confidence level is 0.95 by default; this can be changed with the ALPHA= option. If you specify an ADJUST= option, then the confidence limits are adjusted for multiplicity. But if you also specify STEPDOWN, then only *p*-values are step-down adjusted, not the confidence limits.

CORR

displays the estimated correlation matrix of the least squares means as part of the "Least Squares Means" table.

COV

displays the estimated covariance matrix of the least squares means as part of the "Least Squares Means" table.

DF=number

specifies the degrees of freedom for the *t* test and confidence limits. The default is the denominator degrees of freedom taken from the "Type III Tests" table that corresponds to the LS-means effect. The option is not supported by the procedures that perform chi-square-based inference (GENMOD, LOGISTIC, PHREG and SURVEYLOGISTIC).

DIFF<=difftype>

PDIFF<=difftype>

requests that differences of the LS-means be displayed. You can use one of the following optional *difftype* values to specify which differences to produce:

ALL requests all pairwise differences; this is the default.

ANOM

requests differences between each LS-mean and the average LS-mean, as in the analysis of means (Ott 1967). The average is computed as a weighted mean of the LS-means, the weights being inversely proportional to the diagonal entries of the $L(X'X)^-L'$ matrix. If LS-means are nonestimable, this design-based weighted mean is replaced with an equally weighted mean. Note that the ANOM procedure in SAS/QC software implements both tables and graphics for the analysis of means with a variety of response types. For one-way designs and normal data with identity link, the DIFF=ANOM computations are equivalent to the results of PROC ANOM. If the LS-means being compared are uncorrelated, exact adjusted p-values and critical values for confidence limits can be computed in the analysis of means; see Nelson (1982, 1991, 1993) and Guirguis and Tobias (2004) in addition to the documentation for the ADJUST=NELSON option.

CONTROL

requests differences with a control, which, by default, is the first valid level of each of the specified LSMEANS effects. For example, suppose the effects A and B are classification variables, both of them have two levels 1 and 2, and the A=1, B=1 cell is missing. Unless the procedure supports a MISSING option in the CLASS statement and the option is in effect, the following LSMEANS statement uses the level (1,2) of A*B as the control:

lsmeans A*B / diff=control;

Nevertheless, you can still specify a valid level as the control—for example, (2,1) of A*B. To specify which levels of the effects are the controls, list the quoted formatted values in parentheses after the CONTROL keyword. For example, if the effects A, B, and C are classification variables, each having two levels, 1 and 2, the following LSMEANS statement specifies the (1,2) level of A*B and the (2,1) level of B*C as controls:

lsmeans A*B B*C / diff=control('1' '2' '2' '1');

For multiple effects, the results depend upon the order of the list, and so you should check the output to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL *difftype*. For one-tailed results, use either the CONTROLL or CONTROLU *difftype*.

CONTROLL

tests whether the noncontrol levels are significantly smaller than the control; the upper confidence limits for the control minus the noncontrol levels are considered to be infinity and are displayed as missing.

CONTROLU

tests whether the noncontrol levels are significantly larger than the control; the upper confidence limits for the noncontrol levels minus the control are considered to be infinity and are displayed as missing.

If you want to perform multiple comparison adjustments on the differences of LS-means, you must specify the ADJUST= option.

The differences of the LS-means are displayed in a table titled "Differences of Least Squares Means."

Ε

requests that the L matrix coefficients for the LSMEANS effects be displayed.

EXP

requests exponentiation of the LS-means or LS-mean differences. When you model data with the logit, cumulative logit, or generalized logit link functions, and the estimate represents a log odds ratio or log cumulative odds ratio, the EXP option produces an odds ratio. In proportional hazards model, the exponentiation of the LS-mean differences produces estimates of hazard ratios. If you specify the CL or ALPHA= option, the (adjusted) confidence bounds are also exponentiated.

The EXP option is supported only by PROC PHREG, PROC SURVEYPHREG, the procedures that support generalized linear modeling (GENMOD, LOGISTIC, and SURVEYLOGISTIC), and PROC PLM when it is used to perform statistical analyses on item stores that are created by these procedures.

ILINK

requests that estimates and their standard errors in the "Least Squares Means" table also be reported on the scale of the mean (the inverse linked scale). This enables you to obtain estimates of predicted probabilities and their standard errors in logistic models, for example. The option is specific to an LSMEANS statement. If you also specify the CL option, the procedure computes confidence intervals for the predicted means by applying the inverse link transform to the confidence limits on the linked (linear) scale. Standard errors on the inverse linked scale are computed by the delta method.

The ILINK option is supported only by the procedures that support generalized linear modeling (GENMOD, LOGISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical analyses on item stores that are created by these procedures.

LINES

presents results of comparisons between all pairs of least squares means by listing the means in descending order and indicating nonsignificant subsets by line segments beside the corresponding LS-means. When all differences have the same variance, these comparison lines are guaranteed to accurately reflect the inferences that are based on the corresponding tests, which are made by comparing the respective *p*-values to the value of the ALPHA= option (0.05 by default). However, equal variances might not be the case for differences between LS-means. If the variances are not all the same, then the comparison lines might be conservative, in the sense that if you base your inferences on the lines alone, you will detect fewer significant differences than the tests indicate. If there are any such differences, the procedure lists the pairs of means that are inferred to be significantly different by the tests but not by the comparison lines. However, even though the variances in many cases are unequal, they are similar enough that the comparison lines accurately reflect the test inferences.

MEANS | NOMEANS

determines whether to print the least squares means themselves. For most procedure, MEANS is the default behavior. For example, the NOMEANS option is the default for the PHREG procedure. You can then use the MEANS option to produce the table of least squares means, if desired.

ODDSRATIO

OR

requests that LS-mean differences (DIFF, ADJUST= options) are also reported in terms of odds ratios. The ODDSRATIO option is ignored unless you use either the logit, cumulative logit, or generalized logit link function. If you specify the CL or ALPHA= option, confidence intervals for the odds ratios are also computed. These intervals are adjusted for multiplicity when you specify the ADJUST= option.

The ODDSRATIO option is supported only by the procedures that support generalized linear modeling (GENMOD, LOGISTIC and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical analyses on item stores created by these procedures.

OBSMARGINS< = OM-data-set >

OM<=OM-data-set>

specifies a potentially different weighting scheme for the computation of LS-means coefficients. The standard LS-means have equal coefficients across classification effects; however, the OM option changes these coefficients to be proportional to those found in the *OM-data-set*. This adjustment is reasonable when you want your inferences to apply to a population that is not necessarily balanced but has the margins that are observed in *OM-data-set*.

By default, *OM-data-set* is the same as the analysis data set. You can optionally specify another data set that describes the population for which you want to make inferences. This data set must contain all model variables except for the dependent variable (which is ignored if it is present). In addition, the levels of all CLASS variables must be the same as those that occur in the analysis data set. If a level of a classification effect in the original data set is not present in the *OM-data-set*, the LS-means for that level are undefined. The corresponding rows of the LSMeans table are displayed as missing. Specifying an *OM-data-set* enables you to construct arbitrarily weighted LS-means.

In computing the observed margins, the procedure uses all observations for which there are no missing or invalid independent variables, including those for which there are missing dependent variables. Also, if you use a WEIGHT statement, the procedure computes weighted margins to construct the LS-means coefficients. If your data are balanced, the LS-means are unchanged by the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of computing the margins across all of the *OM-data-set*, the procedure computes separate margins for each level of the LSMEANS effect in question. In this case the resulting LS-means are actually equal to raw means for fixed-effects models and certain balanced random-effects models, but their estimated standard errors account for the covariance structure that you have specified.

You can use the E option in conjunction with either the OM or BYLEVEL option to verify that the modified LS-means coefficients are the ones you want. It is possible that the modified LS-means are not estimable when the standard ones are estimable, or vice versa.

PDIFF

is the same as the DIFF option.

PLOT | PLOTS< =plot-request< (options) >>

PLOT | PLOTS<=(plot-request<(options)> < ... plot-request<(options)> >)>

requests that graphics related to least squares means be produced via ODS Graphics, provided that ODS Graphics is enabled and the *plot-request* does not conflict with other options in the LSMEANS statement. For general information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS."

The available options and suboptions are as follows:

ALL

requests that the default plots that correspond to this LSMEANS statement be produced. The default plot depends on the options in the statement.

ANOMPLOT

ANOM

requests an analysis-of-means display in which least squares means are compared to an average least squares mean. Least squares mean ANOM plots are produced only for those model effects that are listed in LSMEANS statements and have options that do not contradict with the display. For example, the following statements produce analysis-of-mean plots for effects A and C:

The DIFF option in the second LSMEANS statement implies all pairwise differences.

BOXPLOT< boxplot-options >

produces box plots of the distribution of the least squares mean or least squares mean differences across a posterior sample. For example, this plot is available in procedures that support a Bayesian analysis through the BAYES statement.

A separate box is generated for each estimable function, and all boxes appear on a single graph by default. You can affect the appearance of the box plot graph with the following options:

ORIENTATION=VERTICAL | HORIZONTAL

ORIENT=VERT | HORIZ specifies the orientation of the boxes. The default is vertical orientation of the box plots.

NPANELPOS=*number* specifies how to break the series of box plots across multiple panels. If the NPANELPOS option is not specified, or if *number* equals zero, then all box plots are displayed in a single graph; this is the default. If a negative number is specified, then exactly up to |*number*| of box plots are displayed per panel. If *number* is positive, then the number of boxes per panel is balanced to achieve small variation in the number of box plots per graph.

CONTROLPLOT CONTROL

requests a display in which least squares means are visually compared against a reference level. These plots are produced only for statements with options that are compatible with control differences. For example, the following statements produce control plots for effects A and C:

```
lsmeans A / diff=control('1') plot=control;
lsmeans B / diff plot=control;
lsmeans C plot=control;
```

The DIFF option in the second LSMEANS statement implies all pairwise differences.

```
DIFFPLOT< (diffplot-options) >
DIFFOGRAM< (diffplot-options) >
DIFF< (diffplot-options) >
```

requests a display of all pairwise least squares mean differences and their significance. The display is also known as a "mean-mean scatter plot" when it is based on arithmetic means

(Hsu 1996 and Hsu and Peruggia 1994). For each comparison a line segment, centered at the LS-means in the pair, is drawn. The length of the segment corresponds to the projected width of a confidence interval for the least squares mean difference. Segments that fail to cross the 45-degree reference line correspond to significant least squares mean differences.

LS-mean difference plots are produced only for statements with options that are compatible with the display. For example, the following statements request differences against a control level for the A effect, all pairwise differences for the B effect, and the least squares means for the C effect:

The DIFF= type in the first statement is incompatible with a display of all pairwise differences.

You can specify the following *diffplot-options*:

ABS determines the positioning of the line segments in the plot. This is the default

diffplot-options. When the ABS option is in effect, all line segments are

shown on the same side of the reference line.

NOABS determines the positioning of the line segments in the plot. The NOABS

option separates comparisons according to the sign of the difference.

CENTER marks the center point for each comparison. This point corresponds to the

intersection of two least squares means.

NOLINES suppresses the display of the line segments that represent the confidence

bounds for the differences of the least squares means. The NOLINES option implies the CENTER option. The default is to draw line segments in the

upper portion of the plot area without marking the center point.

DISTPLOT< distplot-options>

DIST< distplot-options>

generates panels of histograms with a kernel density overlaid if the analysis has access to a set of posterior parameter estimates. For example, this plot is available in procedures that support a Bayesian analysis through the BAYES statement. A separate plot in each panel contains the results for each least squares mean or least squares mean differences. You can sepcify the following *distplot-options* in parentheses:

BOX | NOBOX controls the display of a horizontal box plot of the estimable function's dis-

tribution across the posterior sample below the graph. The BOX option is

enabled by default.

HIST | NOHIST controls the display of the histogram of the estimable function's distribution

across the posterior sample. The HIST option is enabled by default.

NORMAL | NONORMAL controls the display of a normal density estimate on the graph. The

NONORMAL option is enabled by default.

KERNEL | **NOKERNEL** controls the display of a kernel density estimate on the graph. The KERNEL option is enabled by default.

NROWS=*number* specifies the highest number of rows in a panel. The default is 3.

NCOLS=*number* specifies the highest number of columns in a panel. The default is 3.

UNPACK unpacks the panel into separate graphics.

MEANPLOT< (meanplot-options) >

requests displays of the least squares means.

The following *meanplot-options* control the display of the least squares means.

ASCENDING

displays the least squares means in ascending order. This option has no effect if means are displayed in separate plots.

CL

displays upper and lower confidence limits for the least squares means. By default, 95% limits are drawn. You can change the confidence level with the ALPHA= option. Confidence limits are drawn by default if the CL option is specified in the LSMEANS statement.

CLBAND

displays confidence limits as bands. This option implies the JOIN option.

DESCENDING

displays the least squares means in descending order. This option has no effect if means are displayed in separate plots.

ILINK

requests that means (and confidence limits) be displayed on the inverse linked scale.

JOIN

CONNECT

connects the least squares means with lines. This option is implied by the CLBAND option. If the effect contains nested variables and a SLICEBY= effect contains classification variables that appear as crossed effects, this option is ignored.

SLICEBY=fixed-effect

specifies an effect by which to group the means in a single plot. For example, the following statement requests a plot in which the levels of A are placed on the horizontal axis and the means that belong to the same level of B are joined by lines:

lsmeans A*B / plot=meanplot(sliceby=b join);

Unless the LS-mean effect contains at least two classification variables, the SLICEBY= option has no effect. The *fixed-effect* does not have to be an effect in your MODEL statement, but it must consist entirely of classification variables and it must be contained in the LS-mean effect.

PLOTBY=fixed-effect

specifies an effect by which to break interaction plots into separate displays. For example, the following statement requests for each level of C one plot of the A*B cell means that are associated with that level of C:

lsmeans A*B*C / plot=meanplot(sliceby=b plotby=c clband);

In each plot, levels of A are displayed on the horizontal axis, and confidence bands are drawn around the means that share the same level of B.

The PLOTBY= option has no effect unless the LS-mean effect contains at least three classification variables. The *fixed-effect* does not have to be an effect in the MODEL statement, but it must consist entirely of classification variables and it must be contained in the LS-mean effect.

NONE

requests that no plots be produced.

When LS-mean calculations are adjusted for multiplicity by using the ADJUST= option, the plots are adjusted accordingly.

SEED=number

specifies the seed for the sampling-based components of the computations for the LSMEANS statement (for example, chi-bar-square statistics and simulated *p*-values). *number* specifies an integer that is used to start the pseudo-random-number generator for the simulation. If you do not specify a seed, or if you specify a value less than or equal to zero, the seed is generated from reading the time of day from the computer clock. Note that there could be multiple LSMEANS statements with SEED= specifications and there could be other statements that can supply a random number seed. Since the procedure has only one random number stream, the initial seed is shown in the SAS log.

SINGULAR=number

tunes the estimability checking. If \mathbf{v} is a vector, define $ABS(\mathbf{v})$ to be the largest absolute value of the elements of \mathbf{v} . If $ABS(\mathbf{K}' - \mathbf{K}'\mathbf{T})$ is greater than c*number for any row of \mathbf{K}' in the contrast, then $\mathbf{K}'\boldsymbol{\beta}$ is declared nonestimable. Here, \mathbf{T} is the Hermite form matrix $(\mathbf{X}'\mathbf{X})^{-}\mathbf{X}'\mathbf{X}$, and c is $ABS(\mathbf{K}')$, except when it equals 0, and then c is 1. The value for *number* must be between 0 and 1; the default is 1E-4.

STEPDOWN<(step-down-options)>

requests that multiple comparison adjustments for the *p*-values of LS-mean differences be further adjusted in a step-down fashion. Step-down methods increase the power of multiple comparisons by taking advantage of the fact that a *p*-value is never declared significant unless all smaller *p*-values are also declared significant. The STEPDOWN adjustment combined with ADJUST=BON corresponds to the methods of Holm (1979) "Method 2" of Schaffer (1986); this is the default. Using step-down-adjusted *p*-values combined with ADJUST=SIMULATE corresponds to the method of Westfall (1997).

If the denominator degrees of freedom are computed by the Kenward-Roger (Kenward and Roger 1997) or Satterthwaite method in a mixed model, then step-down-adjusted *p*-values are produced only if the ADJDFE=ROW option is in effect.

Also, STEPDOWN affects only *p*-values, not confidence limits. For ADJUST=SIMULATE, the generalized least squares hybrid approach of Westfall (1997) is used to increase Monte Carlo accuracy.

You can specify the following *step-down-options* in parentheses:

MAXTIME=n

specifies the time (in seconds) to be spent computing the maximal logically consistent sequential subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can try increasing the MAXTIME value. However, note that there are common multiple comparisons problems for which this computation requires a huge amount of time—for example, all pairwise comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default) or TYPE=LOGICAL(n) for small n.

REPORT

specifies that a report on the step-down adjustment be displayed, including a listing of the sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation results

TYPE=LOGICAL<(n)>

TYPE=FREE

specifies how step-down adjustment are made. If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal logically consistent sequential subsets of equality hypotheses (Shaffer 1986, Westfall 1997). Alternatively, for TYPE=FREE, sequential subsets are computed ignoring logical constraints. The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but they can be much more efficient to produce for many comparisons. For example, it is not feasible to take logical constraints between all pairwise comparisons of more than 10 groups. For this reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account by limiting the depth of the search tree used to compute them, specifying the optional depth parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results. But even for TYPE=LOGICAL(n) they can be appreciably less conservative than TYPE=FREE, and they are computationally feasible for much larger numbers of comparisons. If you do not specify n or if n = -1, the full search tree is used.

ODS Table Names: LSMEANS Statement

Each table created by the LSMEANS statement has a name associated with it, and you can use this name to refer to the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 19.20. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

Table 19.20 ODS Tables Produced by the LSMEANS statement

Table Name	Description	Required Option
Coef Diffs	L matrix coefficients Differences of LS-means	E DIFF or ADJUST= or STEPDOWN

Table 19.20 continued

Table Name	Description	Required Option
LSMeans	LS-means	Default
LSMLines	Lines display for LS-means	LINES

ODS Graphics: LSMEANS Statement

This section describes the use of ODS Graphics for creating graphics that are related to LS-means in procedures that support the common LSMEANS or SLICE statement. There are two groups of available plots: those that can be produced by all procedures that support these two statements, and those that can be produced only in association with the two procedures that can perform Bayesian analysis (PROC GENMOD and PROC PHREG). Plots that are associated with the Bayesian analysis are available via these procedures directly, and also by using PROC PLM with an item store that was created by these procedures.

Plots in the first group depict the LS-means and their differences; when LS-mean comparisons are adjusted for multiplicity by using the ADJUST= option, the plots are adjusted accordingly. To request plots in this group, ODS Graphics must be enabled and you must request plots with the appropriate PLOTS= option in the LSMEANS or SLICE statement. Plots in the second group depict the posterior sample distribution of LS-means and their differences. To request plots in this group, you must also use a BAYES statement with PROC GENMOD or PROC PHREG, or use PROC PLM to perform statistical analysis on an item store that was saved from a Bayesian analysis.

For more information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS." The available graphs are summarized in Table 19.21 and Table 19.22.

Table 19.21 Graphs Produced by All Procedures That Support the Common LSMEANS or SLICE Statement

ODS Graph Name	Plot Description	Required Option
AnomPlot	Requests an analysis of means dis- play in which least squares means are compared to an average least squares mean.	PLOTS=ANOM
ControlPlot	Requests a display in which least squares means are compared to a reference level.	PLOTS=CONTROL
DiffPlot	Displays all pairwise least squares mean differences and their signifi- cance. This plot is also known as a "mean-mean scatter plot" when based on arithmetic means.	PLOTS=DIFF
MeanPlot	Displays least squares means.	PLOTS=MEANPLOT

Table 19.22 Graphs Produced by Procedures That Support the LSMEANS or SLICE Statement and Bayesian Analysis

ODS Graph Name	Plot Description	Required Option
BoxPlot	Displays box plots of LS-means or LS-mean differences across a posterior sample.	PLOTS=BOXPLOT
DistPanel	Displays panels of histograms with kernel density curves overlaid. Each plot contains the results for the poste- rior sample of each LS-mean or LS- mean difference.	PLOTS=DISTPLOT
DistPlot	Displays a histogram with a kernel density curve overlaid. The plot contains the results for the posterior sample of the LS-mean or LS-mean difference.	PLOTS=DISTPLOT(UNPACK)

You can supply the same *plot-options* to the SLICE statement to produce these graphs. For details about the *plot-options* of the LSMEANS or SLICE statement, see the PLOTS= option in the section "LSMEANS Statement" on page 465. For more details about the DIFFPLOT in particular, see the section "Graphics for LS-Mean Comparisons" on page 2991 in Chapter 40, "The GLIMMIX Procedure."

LSMESTIMATE Statement

This statement documentation applies to the following procedures: GENMOD, LOGISTIC, MIXED, ORTHOREG, PHREG, PLM, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG. The LSMESTIMATE statement in the GLIMMIX procedure is documented in Chapter 40, "The GLIMMIX Procedure."

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among least squares means. In contrast to the LSMEANS statement, the LSMESTIMATE statement does not produce the least squares means or their differences; instead, you can estimate any linear function of the least squares means (including the means themselves or their differences). In contrast to the linear functions that are constructed with the ESTIMATE statement, you do not specify coefficients for the individual parameter estimates. Instead, with the LSMESTIMATE statement you specify coefficients for the least squares means; these are then converted for you into estimable functions for the parameter estimates.

The LSMESTIMATE statement thus combines important and convenient features of the LSMEANS and the ESTIMATE statement. As with the LSMEANS statement, the following conditions are true:

- You need to specify only a single effect; the mapping into linear estimable functions in terms of the parameter estimates is performed by the procedure.
- You can use the AT=, BYLEVEL, and OBSMARGINS options to affect the computation of the underlying least squares means.

As with the ESTIMATE statement you can do the following:

- specify multiple-row linear combinations.
- perform multiplicity corrections to control the familywise Type I error probability with the ADJUST= option.
- construct general linear functions of the least squares means.
- perform joint F or chi-square tests with or without order restrictions through the JOINT option.
- rely on positional or nonpositional syntax to specify coefficients for linear functions. For details about using nonpositional syntax, see the section "Positional and Nonpositional Syntax for Coefficients in Linear Functions" on page 460.

The computation of an LSMESTIMATE involves two coefficient matrices. Suppose that there are n_l levels for a valid least squares means effect (an effect that is part of your model and consists of classification variables only). Then the LS-means are formed as $\mathbf{L}_1 \widehat{\boldsymbol{\beta}}$, where \mathbf{L}_1 is a $(n_l \times p)$ coefficient matrix. The $(k \times n_l)$ coefficient matrix \mathbf{K} is formed from the *values* that you supply in the k rows of the LSMESTIMATE statement. The least squares means estimates then represent the $(k \times 1)$ vector

$$KL_1\beta = L\beta$$

Because the analytic features and capabilities of the LSMESTIMATE statement are an amalgam of the LSMEANS and the ESTIMATE statement, the syntax of the statement follows the same pattern.

Syntax: LSMESTIMATE Statement

```
LSMESTIMATE model-effect < 'label' > values < divisor=n > < , < 'label' > values < divisor=n > > < , ... > < / options > ;
```

In contrast to a multirow estimate in the ESTIMATE statement, you specify only a single effect in the LSMESTIMATE statement. The row labels are optional and follow the *model-effect* specification. For example, the following statements fit a split-split-plot design and compare the average of the third and fourth LS-mean of the whole-plot factor A to the first LS-mean of the factor:

```
proc glimmix;
  class a b block;
  model y = a b a*b / s;
  random int a / sub=block;
  lsmestimate A 'al vs avg(a3,a4)' 2 0 -1 -1 divisor=2;
run;
```

The order in which coefficients are assigned to the least squares means corresponds to the order in which they are displayed in the "Least Squares Means" table. You can use the ELSM option to see how coefficients are matched to levels of the fixed effect.

The optional *divisor=n* specification enables you to assign a separate divisor to each row of the LSMES-TIMATE. You can also assign divisor values through the DIVISOR= option. See the description of the DIVISOR= option that follows for the interaction between the two ways of specifying divisors.

Table 19.23 summarizes important options in the LSMESTIMATE statement. All LSMESTIMATE options are subsequently discussed in alphabetical order.

Table 19.23 Important LSMESTIMATE Statement Options

Option	Description		
Construction and Comp	Construction and Computation of LS-Means		
AT	Modifies covariate values in computing LS-means		
BYLEVEL	Computes separate margins		
DIVISOR=	Specifies a list of values to divide the coefficients		
OM=	Specifies the weighting scheme for LS-means computation as de-		
	termined by a data set		
SINGULAR=	Tunes estimability checking		
Degrees of Freedom and	Degrees of Freedom and p-values		
ADJUST=	Determines the method for multiple comparison adjustment of LS-means differences		
$ALPHA=\alpha$	Determines the confidence level $(1 - \alpha)$		
LOWER	Performs one-sided, lower-tailed inference		
STEPDOWN	Adjusts multiple comparison p-values further in a step-down fash-		
	ion		
TESTVALUE=	Specifies values under the null hypothesis for tests		
UPPER	Performs one-sided, upper-tailed inference		

Table 19.23 continued

Option	Description	
Statistical Output		
CL	Constructs confidence limits for means and mean differences	
CORR	Displays the correlation matrix of LS-means	
COV	Displays the covariance matrix of LS-means	
E	Prints the L matrix	
ELSM	Prints the K matrix	
JOINT	Produces a joint F or chi-square test for the LS-means and LS-means differences	
PLOTS=	Requests ODS statistical graphics of means and mean comparisons	
SEED=	Specifies the seed for computations that depend on random numbers	
Generalized Linear	Modeling	
CATEGORY=	Specifies how to construct estimable functions with multinomial data	
EXP	Exponentiates and displays LS-means estimates	
ILINK	Computes and displays estimates and standard errors of LS-means (but not differences) on the inverse linked scale	

You can specify the following options in the LSMESTIMATE statement after a slash (/):

ADJDFE=SOURCE

ADJDFE=ROW

specifies how denominator degrees of freedom are determined when *p*-values and confidence limits are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the ADJDFE= option or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the "Type III Tests of Fixed Effects" table.

The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that denominator degrees of freedom are not constant across estimates. For example, this can be the case when the denominator degrees of freedom are computed by the Satterthwaite or Kenward-Roger method (Kenward and Roger 1997) in a mixed model.

The ADJDFE= option is not supported by the procedures that perform chi-square-based inference (GENMOD, LOGISTIC, PHREG and SURVEYLOGISTIC).

ADJUST=BON
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE<(simoptions)>

requests a multiple comparison adjustment for the *p*-values and confidence limits for the LS-mean estimates. The adjusted quantities are produced in addition to the unadjusted *p*-values and confidence limits. Adjusted confidence limits are produced if the CL or ALPHA= option is in effect. For a description of the adjustments, see Chapter 41, "The GLM Procedure," and Chapter 60, "The MULTTEST Procedure," in addition to the documentation for the ADJUST= option in the LSMEANS statement.

Not all adjustment methods of the LSMEANS statement are available for the LSMESTIMATE statement. Multiplicity adjustments in the LSMEANS statement are designed specifically for differences of least squares means.

If you specify the STEPDOWN option, the p-values are further adjusted in a step-down fashion.

ALPHA=number

ADJUST=T

requests that a t type confidence interval be constructed for each of the LS-means with confidence level 1 - number. The value of *number* must be between 0 and 1; the default is 0.05.

AT variable=value

AT (variable-list)=(value-list)

AT MEANS

modifies the values of the covariates used in computing LS-means. See the AT option in the LSMEANS statement for details.

BYLEVEL

requests that the procedure compute separate margins for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option changes these coefficients to be proportional to the observed margins. This adjustment is reasonable when you want your inferences to apply to a population that is not necessarily balanced but has the margins observed in the input data set. In this case, the resulting LS-means are actually equal to raw means for fixed-effects models and certain balanced random-effects models, but their estimated standard errors account for the covariance structure that you have specified. If a WEIGHT statement is specified, the procedure uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.

CATEGORY=category-options

specifies how to construct estimates and multiplicity corrections for models with multinomial data (ordinal or nominal). This option is also important for constructing sets of estimable functions for F tests with the JOINT option.

The *category-options* indicate how response variable levels are treated in constructing the estimable functions. Possible value for the *category-options* are the following:

JOINT

computes the estimable functions for every nonredundant category and treats them as a set. For example, a three-row LSMESTIMATE statement in a model with three response categories leads to six estimable functions.

SEPARATE

computes the estimable functions for every nonredundant category in turn. For example, a three-row LSMESTIMATE statement in a model with three response categories leads to two sets of three estimable functions.

quoted-value-list

computes the estimable functions only for the list of values given. The list must consist of formatted values of the response categories.

For further details about using the CATEGORY= option in models for multinomial data, see the documentation for the CATEGORY= option in the ESTIMATE statement.

The CATEGORY= option is supported only by the procedures that support generalized linear modeling (GENMOD, LOGISTIC, and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical analyses on item stores that were created by these procedures.

CHISQ

requests that chi-square tests be performed in addition to F tests, when you request an F test with the JOINT option. This option has no effect in procedures that produce chi-square statistics by default.

CL

requests that *t* type confidence limits be constructed for each of the LS-means. The confidence level is 0.95 by default; this can be changed with the ALPHA= option. If you specify an ADJUST= option, then the confidence limits are adjusted for multiplicity. But if you also specify STEPDOWN, then only *p*-values are step-down adjusted, not the confidence limits.

CORR

displays the estimated correlation matrix of the linear combination of the least squares means.

COV

displays the estimated covariance matrix of the linear combination of the least squares means.

DF=number

specifies the degrees of freedom for the tests and confidence limits. The option is not supported by the procedures that perform chi-square-based inference (GENMOD, LOGISTIC, PHREG, and SURVEYLOGISTIC).

DIVISOR=value-list

specifies a list of values by which to divide the coefficients so that fractional coefficients can be entered as integer numerators. If you do not specify *value-list*, a default value of 1.0 is assumed. Missing values in the *value-list* are converted to 1.0.

If the number of elements in *value-list* exceeds the number of rows of the estimate, the extra values are ignored. If the number of elements in *value-list* is less than the number of rows of the estimate, the last value in *value-list* is carried forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multiplies the corresponding value in the *value-list*. For example, the following statement divides the coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

Coefficients in the second row are not altered.

Ε

requests that the **L** coefficients of the estimable function be displayed. These are the coefficients that apply to the fixed-effect parameter estimates. The E option displays the coefficients that you would need to enter in an equivalent ESTIMATE statement.

ELSM

requests that the K matrix coefficients be displayed. These are the coefficients that apply to the LS-means. This option is useful to ensure that you assigned the coefficients correctly to the LS-means.

EXP

requests exponentiation of the least squares means estimate. When you model data with the logit link function and the estimate represents a log odds ratio, the EXP option produces an odds ratio. If you specify the CL or ALPHA= option, the (adjusted) confidence limits for the estimate are also exponentiated.

The EXP option is supported only by PROC PHREG, PROC SURVEYPHREG, the procedures that support generalized linear modeling (GENMOD, LOGISTIC, and SURVEYLOGISTIC), and by PROC PLM when it is used to perform statistical analyses on item stores that were created by these procedures.

ILINK

requests that the estimate and its standard error also be reported on the scale of the mean (the inverse linked scale). The computation of the inverse linked estimate depends on the estimation mode. For example, if the analysis is based on a posterior sample when a BAYES statement is present, the inversely linked estimate is the average of the inversely linked values across the sample of posterior parameter estimates. If the analysis is not based on a sample of parameter estimates, the procedure computes the value on the mean scale by applying the inverse link to the estimate.

The interpretation of the inversely linked quantity depends on the coefficients that are specified in your LSMESTIMATE statement and the link function. For example, in a model for binary data with logit link the following LSMESTIMATE statement computes

$$q = \frac{1}{1 + \exp\{-(\tau_1 - \tau_2)\}}$$

where τ_1 and τ_2 are the least squares means that are associated with the first two levels of the classification effect A:

The quantity q is not the difference of the probabilities associated with the two levels,

$$\pi_1 - \pi_2 = \frac{1}{1 + \exp\{-\tau_1\}} - \frac{1}{1 + \exp\{-\tau_2\}}$$

The standard error of the inversely linked estimate is based on the delta method. If you also specify the CL or ALPHA= option, the procedure computes confidence intervals for the inversely linked estimate. These intervals are obtained by applying the inverse link to the confidence intervals on the linked scale.

The ILINK option is supported only by the procedures that support generalized linear modeling (GENMOD, LOGISTIC, and SURVEYLOGISTIC) and by PROC PLM when it is used to perform statistical analyses on item stores that were created by these procedures.

JOINT<(joint-test-options)>

requests that a joint *F* or chi-square test be produced for the rows of the estimate. For more information about the simulation-based *p*-value calculation, see the section "Joint Hypothesis Tests with Complex Alternatives, the Chi-Bar-Square Statistic" on page 463. You can specify the following *joint-test-options* in parentheses:

$ACC = \gamma$

specifies the accuracy radius for determining the necessary sample size in the simulation-based approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of γ must be strictly between 0 and 1; the default value is 0.005.

EPS=€

specifies the accuracy confidence level for determining the necessary sample size in the simulation-based approach of Silvapulle and Sen (2004) for F tests with order restrictions. The value of ϵ must be strictly between 0 and 1; the default value is 0.01.

LABEL='label'

assigns an identifying label to the joint test. If you do not specify a label, the first non-default label for the ESTIMATE rows is used to label the joint test.

NOEST

ONLY

performs only the joint test and suppresses other results from the ESTIMATE statement. This option is useful for emulating the CONTRAST statement that is available in other procedures.

NSAMP=n

specifies the number of samples for the simulation-based method of Silvapulle and Sen (2004). If n is not specified, it is constructed from the values of the ALPHA= α , the ACC= γ , and the EPS= ϵ options. With the default values for γ , ϵ , and α (0.005, 0.01, and 0.05, respectively), NSAMP=12,604 by default.

CHISQ

adds a chi-square test if the procedure produces an F test by default.

BOUNDS=value-list

specifies boundary values for the estimable linear function. The null value of the hypothesis is always zero. If you specify a positive boundary value z, the hypotheses are $H:\theta=0$, H_a : $\theta>0$ with the added constraint that $\theta< z$. The same is true for negative boundary values. The alternative hypothesis is then H_a : $\theta<0$ subject to the constraint $\theta>-|z|$. If you specify a missing value, the hypothesis is assumed to be two-sided. The BOUNDS option enables you to specify sets of one- and two-sided joint hypotheses. If all values in *value-list* are set to missing, the procedure performs a simulation-based p-value calculation for a two-sided test.

LOWER

LOWERTAILED

requests that the p-value for the t test be based only on values that are less than the test statistic. A two-tailed test is the default. A lower-tailed confidence limit is also produced if you specify the CL or ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted *p*-values are the same as the corresponding two-sided statistics, because this adjustment is based on only the right tail of the *F* distribution.

If you request an *F* test with the JOINT option, then a one-sided left-tailed order restriction is applied to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004) is computed in addition to the two-sided, standard, *F* or chi-square statistic. See the JOINT option for how to control the computation of the simulation-based chi-bar-square statistic.

OBSMARGINS< = OM-data-set >

OM<=OM-data-set>

specifies a potentially different weighting scheme for the computation of LS-means coefficients. The standard LS-means have equal coefficients across classification effects; however, the OM option changes these coefficients to be proportional to those found in the *OM-data-set*. This adjustment is reasonable when you want your inferences to apply to a population that is not necessarily balanced but has the margins observed in *OM-data-set*. See the OBSMARGINS option in the LSMEANS statement for further details.

PLOTS=plot-options

produces ODS statistical graphics of the distribution of estimable functions if the procedure performs the analysis in a sampling-based mode. For example, this is the case when procedures support a BAYES statement and perform a Bayesian analysis. The estimable functions are then computed for each of the posterior parameter estimates, and the "Least Squares Means Estimates" table reports simple descriptive statistics for the evaluated functions. In this situation, the PLOTS= option enables you to visualize the distribution of the estimable function. The following *plot-options* are available:

ALL

produces all possible plots with their default settings.

BOXPLOT< (boxplot-options) >

produces box plots of the distribution of the estimable function across the posterior sample.

A separate box plot is generated for each estimable function and all box plots appear on a single graph by default. You can affect the appearance of the box plot graph with the following options:

ORIENTATION=VERTICAL | HORIZONTAL

ORIENT=VERT | HORIZ specifies the orientation of the boxes. The default is vertical orientation of the box plots.

NPANELPOS=*number* specifies how to break the series of box plots across multiple panels. If the NPANELPOS option is not specified, or if *number* equals zero, then all box plots are displayed in a single graph; this is the default. If a negative number is specified, then exactly up to |*number*| of box plots are displayed per panel. If *number* is positive, then the number of boxes per panel is balanced to achieve small variation in the number of box plots per graph.

DISTPLOT< (distplot-options) >

DIST<(distplot-options)>

generates panels of histograms with a kernel density overlaid. A separate plot in each panel contains the results for each estimable function. You can specify the following *distplot-options* in parentheses:

BOX | NOBOX controls the display of a horizontal box plot below the histogram. The BOX

option is enabled by default.

HIST | NOHIST controls the display of the histogram of the estimable function's distribution

across the posterior sample. The HIST option is enabled by default.

NORMAL | NONORMAL controls the display of a normal density estimate on the graph. The

NONORMAL option is enabled by default.

KERNEL | **NOKERNEL** controls the display of a kernel density estimate on the graph. The

KERNEL option is enabled by default.

NROWS=*number* specifies the highest number of rows in a panel. The default is 3.

NCOLS=*number* specifies the highest number of columns in a panel. The default is 3.

UNPACK unpacks the panel into separate graphics.

NONE

does not produce any plots.

SEED=number

specifies the seed for the sampling-based components of the computations for the LSMESTIMATE statement (for example, chi-bar-square statistics and simulated *p*-values). *number* specifies an integer that is used to start the pseudo-random-number generator for the simulation. If you do not specify a seed, or if you specify a value less than or equal to zero, the seed is generated from reading the time of day from the computer clock. Note that there could be multiple LSMESTIMATE statements with SEED= specifications and there could be other statements that can supply a random number seed. Since the procedure has only one random number stream, the initial seed is shown in the SAS log.

SINGULAR=number

tunes the estimability checking as documented for the SINGULAR= option in the ESTIMATE statement.

STEPDOWN<(step-down-options)>

requests that multiplicity adjustments for the *p*-values of estimable functions be further adjusted in a step-down fashion. Step-down methods increase the power of multiple testing procedures by taking advantage of the fact that a *p*-value is never declared significant unless all smaller *p*-values are also declared significant. The STEPDOWN adjustment combined with ADJUST=BON corresponds to the methods of Holm (1979) and "Method 2" of Shaffer (1986); this is the default. Using step-down-adjusted *p*-values combined with ADJUST=SIMULATE corresponds to the method of Westfall (1997).

If the ESTIMATE statement is applied with a STEPDOWN option in a mixed model where the degrees-of-freedom method is that of Kenward and Roger (1997) or of Satterthwaite, then step-down-adjusted *p*-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only *p*-values, not confidence limits. For ADJUST=SIMULATE, the generalized least squares hybrid approach of Westfall (1997) is used to increase Monte Carlo accuracy.

You can specify the following *step-down-options* in parentheses:

MAXTIME=n

specifies the time (in seconds) to be spent computing the maximal logically consistent sequential subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can try increasing the MAXTIME value. However, note that there are common multiple comparisons problems for which this computation requires a huge amount of time—for example, all pairwise comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the default) or TYPE=LOGICAL(n) for small n.

ORDER=PVALUE

ORDER=ROWS

specifies the order in which the step-down tests are performed. ORDER=PVALUE is the default, with LS-mean estimates being declared significant only if all LS-mean estimates with smaller (unadjusted) *p*-values are significant. If you specify ORDER=ROWS, then significances are evaluated in the order in which they are specified.

REPORT

specifies that a report on the step-down adjustment be displayed, including a listing of the sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation results.

TYPE=LOGICAL<(n)>

TYPE=FREE

specifies how step-down adjustment are made. If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal logically consistent sequential subsets of equality hypotheses (Shaffer 1986, Westfall 1997). Alternatively, for TYPE=FREE, sequential subsets are computed ignoring logical constraints. The TYPE=FREE results are more conservative than

those for TYPE=LOGICAL, but they can be much more efficient to produce for many estimates. For example, it is not feasible to take logical constraints between all pairwise comparisons of more than about 10 groups. For this reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into account by limiting the depth of the search tree used to compute them, specifying the optional depth parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE, results for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results. But even for TYPE=LOGICAL(0), they can be appreciably less conservative than TYPE=FREE, and they are computationally feasible for much larger numbers of estimates. If you do not specify n or if n = -1, the full search tree is used.

TESTVALUE=*value*-list

TESTMEAN=*value*-list

specifies the value under the null hypothesis for testing the estimable functions in the LSMESTIMATE statement. The rules for specifying the *value-list* are very similar to those for specifying the divisor list in the DIVISOR= option. If no TESTVALUE= is specified, all tests are performed as $H: \mathbf{L}\boldsymbol{\beta} = 0$. Missing values in the *value-list* also are translated to zeros. If you specify fewer values than rows in the LSMESTIMATE statement, the last value in *value-list* is carried forward.

The TESTVALUE= option affects only *p*-values from individual, joint, and multiplicity-adjusted tests. It does not affect confidence intervals.

The TESTVALUE option is not available for the multinomial distribution, and the values are ignored when you perform a sampling-based (Bayesian) analysis.

UPPER

UPPERTAILED

requests that the *p*-value for the *t* test be based only on values that are greater than the test statistic. A two-tailed test is the default. An upper-tailed confidence limit is also produced if you specify the CL or ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted *p*-values are the same as the corresponding two-sided statistics, because this adjustment is based on only the right tail of the *F* distribution.

If you request a joint test with the JOINT option, then a one-sided right-tailed order restriction is applied to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004) is computed in addition to the two-sided, standard, F or chi-square statistic. See the JOINT option for how to control the computation of the simulation-based chi-bar-square statistic.

ODS Table Names: LSMESTIMATE Statement

Each table created by the LSMESTIMATE statement has a name associated with it, and you can use this name to refer to the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 19.24. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

Table 19.24 ODS Tables Produced by the LSMESTIMATE statement

Table Name	Description	Required Option
Coef	L matrix coefficients or K matrix coefficients	E or ELSM
LSMEstimates	Estimates among LS-means	Default
Contrasts	Joint test results for LS-means estimates	JOINT

ODS Graphics: LSMESTIMATE Statement

This section describes the use of ODS for creating statistical graphs of the distribution of LS-means and LS-mean differences with the LSMESTIMATE statement. The plots can be produced only in association with the two procedures that can perform Bayesian analysis (PROC GENMOD and PROC PHREG). The plots are available via these procedures directly, and also via PROC PLM when run using an item store that was created by these procedures. To request these graphs, you must do the following:

- ensure that ODS Graphics is enabled
- use a BAYES statement with PROC GENMOD or PROC PHREG, or use PROC PLM to perform statistical analysis on an item store that was saved from a Bayesian analysis
- request plots with the PLOTS= option in the LSMESTIMATE statement

For more information about ODS Graphics, see Chapter 21, "Statistical Graphics Using ODS." The available graphs are summarized in Table 19.25.

 Table 19.25
 Graphs Produced by the LSMESTIMATE statement

ODS Graph Name	Plot Description	Required Option
BoxPlot	Displays box plots of LS-means or LS-mean differences across a posterior sample.	PLOTS=BOXPLOT
DistPanel	Displays panels of histograms with kernel density curves overlaid. Each plot contains the results for the posterior sample of each LS-mean or LS-mean difference.	PLOTS=DISTPLOT
DistPlot	Displays a histogram with a kernel density curve overlaid. The plot contains the results for the posterior sample of the LS-mean or LS-mean difference.	PLOTS=DISTPLOT(UNPACK)

For details about the *plot-options* of the LSMESTIMATE statement, see the PLOTS= option in the section "LSMESTIMATE Statement" on page 481.

NLOPTIONS Statement

This section applies to the following procedures:

CALIS, GLIMMIX, HPMIXED, PHREG, SURVEYPHREG, and VARIOGRAM. See the individual procedure chapters for deviations from the common syntax and defaults shown here.

Syntax: NLOPTIONS Statement

The NLOPTIONS statement provides you with syntax to control aspects of the nonlinear optimizations in the CALIS, GLIMMIX, HPMIXED, PHREG, SURVEYPHREG, and VARIOGRAM procedures.

NLOPTIONS < options > ;

The nonlinear optimization options are described in alphabetical order after Table 19.26, which summarizes the options by category. The notation used in describing the options is generic in the sense that ψ denotes the $p \times 1$ vector of parameters for the optimization and ψ_i is its ith element. The objective function being minimized, its $p \times 1$ gradient vector, and its $p \times p$ Hessian matrix are denoted as $f(\psi)$, $g(\psi)$, and $H(\psi)$, respectively. The gradient with respect to the ith parameter is denoted as $g_i(\psi)$. Superscripts in parentheses denote the iteration count; for example, $f(\psi)^{(k)}$ is the value of the objective function at iteration k. In the mixed model procedures, the parameter vector ψ might consist of fixed effects only, covariance parameters only, or fixed effects and covariance parameters. In the CALIS procedure, ψ consists of all independent parameters that are defined in the models and in the PARAMETERS statement.

Table 19.26 Options to Control Aspects of the Optimization

Option	Description
Optimization	
HESCAL=	Determines the type of Hessian scaling
INHESSIAN=	Specifies the start for approximated Hessian
LINESEARCH=	Specifies the line-search method
LSPRECISION=	Specifies the line-search precision
RESTART=	Specifies the iteration number for update restart
TECHNIQUE=	Determines the minimization technique
UPDATE=	Determines the update technique
Termination Criteria	
ABSCONV=	Tunes an absolute function convergence criterion
ABSFCONV=	Tunes an absolute function difference convergence criterion
ABSGCONV=	Tunes the absolute gradient convergence criterion
ABSXCONV=	Tunes the absolute parameter convergence criterion
FCONV=	Tunes the relative function convergence criterion
FCONV2=	Tunes another relative function convergence criterion
FSIZE=	Specifies the value used in the FCONV and GCONV criteria

Table 19.26 continued

Option	Description	
GCONV=	Tunes the relative gradient convergence criterion	
GCONV2=	Tunes another relative gradient convergence criterion	
MAXFUNC=	Specifies the maximum number of function calls	
MAXITER=	Specifies the maximum number of iterations	
MAXTIME=	Specifies the upper limit for seconds of CPU time	
MINITER=	Specifies the minimum number of iterations	
XCONV=	Specifies the relative parameter convergence criterion	
XSIZE=	Specifies the value used in the XCONV criterion	
Step Length		
DAMPSTEP=	Dampens steps in a line search	
INSTEP=	Specifies the initial trust region radius	
MAXSTEP=	Specifies the maximum trust region radius	
Printed Output		
PALL	Displays (almost) all printed output	
PHISTORY	Displays optimization history	
NOPRINT	Suppresses all printed output	
Covariance Matrix Tolerances		
ASINGULAR=	Specifies the absolute singularity for inertia	
MSINGULAR=	Specifies the relative M singularity for inertia	
VSINGULAR=	Specifies the relative V singularity for inertia	
Constraint Specification	s	
LCEPSILON=	Specifies the range for active constraints	
LCDEACT=	Specifies the LM tolerance for deactivating	
LCSINGULAR=	Specifies the tolerance for dependent constraints	
Remote Monitoring		
SOCKET=	Specifies the fileref for remote monitoring	

ABSCONV=r

ABSTOL=r

specifies an absolute function convergence criterion: for minimization, termination requires $f(\psi^{(k)}) \leq r$. The default value of r is the negative square root of the largest double-precision value, which serves only as a protection against overflows.

ABSFCONV = r < n >

ABSFTOL=r<n>

specifies an absolute function difference convergence criterion:

• For all techniques except NMSIMP (specified by the TECHNIQUE= option), termination requires a small change of the function value in successive iterations,

$$|f(\boldsymbol{\psi}^{(k-1)}) - f(\boldsymbol{\psi}^{(k)})| \le r$$

• The same formula is used for the NMSIMP technique, but $\psi(k)$ is defined as the vertex with the lowest function value, and $\psi^{(k-1)}$ is defined as the vertex with the highest function value in the simplex.

The default value is r = 0. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

ABSGCONV=r < n>

ABSGTOL=r<n>

specifies an absolute gradient convergence criterion:

• For all techniques except NMSIMP (specified by the TECHNIQUE= option), termination requires the maximum absolute gradient element to be small:

$$\max_{j} |g_{j}(\boldsymbol{\psi}^{(k)})| \leq r$$

• This criterion is not used by the NMSIMP technique.

The default value is r = 1E-5. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

ABSXCONV=r < n>

ABSXTOL=r<n>

specifies an absolute parameter convergence criterion:

• For all techniques except NMSIMP, termination requires a small Euclidean distance between successive parameter vectors,

$$\parallel \boldsymbol{\psi}^{(k)} - \boldsymbol{\psi}^{(k-1)} \parallel_2 \leq r$$

• For the NMSIMP technique, termination requires either a small length $\alpha^{(k)}$ of the vertices of a restart simplex,

$$\alpha^{(k)} \leq r$$

or a small simplex size,

$$\delta^{(k)} \leq r$$

where the simplex size $\delta^{(k)}$ is defined as the L1 distance from the simplex vertex $\boldsymbol{\xi}^{(k)}$ with the smallest function value to the other p simplex points $\boldsymbol{\psi}_{l}^{(k)} \neq \boldsymbol{\xi}^{(k)}$:

$$\delta^{(k)} = \sum_{\boldsymbol{\psi}_l \neq y} \| \boldsymbol{\psi}_l^{(k)} - \boldsymbol{\xi}^{(k)} \|_1$$

The default is r = 1E-8 for the NMSIMP technique and r = 0 otherwise. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

ASINGULAR=r

ASING=r

specifies an absolute singularity criterion for the computation of the inertia (number of positive, negative, and zero eigenvalues) of the Hessian and its projected forms. The default value is the square root of the smallest positive double-precision value.

DAMPSTEP < = r >

specifies that the initial step length value $\alpha^{(0)}$ for each line search (used by the QUANEW, CONGRA, or NEWRAP technique) cannot be larger than r times the step length value used in the former iteration. If the DAMPSTEP option is specified but r is not specified, the default is r=2. The DAMPSTEP= option can prevent the line-search algorithm from repeatedly stepping into regions where some objective functions are difficult to compute or where they could lead to floating-point overflows during the computation of objective functions and their derivatives. The DAMPSTEP= option can save time-consuming function calls during the line searches of objective functions that result in very small steps.

FCONV=r<n>

FTOL=*r*<*n*>

specifies a relative function convergence criterion:

 For all techniques except NMSIMP, termination requires a small relative change of the function value in successive iterations,

$$\frac{|f(\boldsymbol{\psi}^{(k)}) - f(\boldsymbol{\psi}^{(k-1)})|}{\max(|f(\boldsymbol{\psi}^{(k-1)})|, \text{FSIZE})} \le r$$

where FSIZE is defined by the FSIZE= option.

• The same formula is used for the NMSIMP technique, but $\psi^{(k)}$ is defined as the vertex with the lowest function value and $\psi^{(k-1)}$ is defined as the vertex with the highest function value in the simplex.

The default is $r=10^{-\text{FDIGITS}}$, where FDIGITS is by default $-\log_{10}\{\epsilon\}$ and ϵ is the machine precision. Some procedures, such as the GLIMMIX procedure, enable you to change the value with the FDIGITS= option in the PROC statement. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

FCONV2=r<n>

FTOL2=*r*<*n*>

specifies a second function convergence criterion:

• For all techniques except NMSIMP, termination requires a small predicted reduction,

$$df^{(k)} \approx f(\boldsymbol{\psi}^{(k)}) - f(\boldsymbol{\psi}^{(k)} + \mathbf{s}^{(k)})$$

of the objective function. The predicted reduction

$$df^{(k)} = -\mathbf{g}^{(k)'}\mathbf{s}^{(k)} - \frac{1}{2}\mathbf{s}^{(k)'}\mathbf{H}^{(k)}\mathbf{s}^{(k)}$$
$$= -\frac{1}{2}\mathbf{s}^{(k)'}\mathbf{g}^{(k)} \le r$$

is computed by approximating the objective function f by the first two terms of the Taylor series and substituting the Newton step,

$$\mathbf{s}^{(k)} = -[\mathbf{H}^{(k)}]^{-1}\mathbf{g}^{(k)}$$

• For the NMSIMP technique, termination requires a small standard deviation of the function values of the p+1 simplex vertices $\psi_l^{(k)}$, $l=0,\ldots,p$,

$$\sqrt{\frac{1}{n+1} \sum_{l} \left[f(\boldsymbol{\psi}_{l}^{(k)}) - \overline{f}(\boldsymbol{\psi}^{(k)}) \right]^{2}} \leq r$$

where $\overline{f}(\psi^{(k)}) = \frac{1}{p+1} \sum_{l} f(\psi_{l}^{(k)})$. If there are p_{act} boundary constraints active at $\psi^{(k)}$, the mean and standard deviation are computed only for the $n+1-p_{act}$ unconstrained vertices.

The default value is r = 1E-6 for the NMSIMP technique and r = 0 otherwise. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

FSIZE=r

specifies the FSIZE parameter of the relative function and relative gradient termination criteria. The default value is r = 0. For more details, see the FCONV= and GCONV= options.

GCONV=r<n>

GTOL=r < n >

specifies a relative gradient convergence criterion:

 For all techniques except CONGRA and NMSIMP, termination requires that the normalized predicted function reduction be small,

$$\frac{\mathbf{g}(\boldsymbol{\psi}^{(k)})'[\mathbf{H}^{(k)}]^{-1}\mathbf{g}(\boldsymbol{\psi}^{(k)})}{\max(|f(\boldsymbol{\psi}^{(k)})|, \text{FSIZE})} \leq r$$

where FSIZE is defined by the FSIZE= option. For the CONGRA technique (where a reliable Hessian estimate **H** is not available), the following criterion is used:

$$\frac{\| \mathbf{g}(\boldsymbol{\psi}^{(k)}) \|_{2}^{2} \| \mathbf{s}(\boldsymbol{\psi}^{(k)}) \|_{2}}{\| \mathbf{g}(\boldsymbol{\psi}^{(k)}) - \mathbf{g}(\boldsymbol{\psi}^{(k-1)}) \|_{2} \max(|f(\boldsymbol{\psi}^{(k)})|, \text{FSIZE})} \le r$$

• This criterion is not used by the NMSIMP technique.

The default value is r = 1E-8. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

GCONV2=r<n>

GTOL2=*r*<*n*>

specifies another relative gradient convergence criterion:

• For least squares problems and the TRUREG, LEVMAR, NRRIDG, and NEWRAP techniques, the following criterion of Browne (1982) is used:

$$\max_{j} \frac{|\mathbf{g}_{j}(\boldsymbol{\psi}^{(k)})|}{\sqrt{f(\boldsymbol{\psi}^{(k)})\mathbf{H}_{j,j}^{(k)}}} \leq r$$

• This criterion is not used by the other techniques.

The default value is r = 0. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can terminate.

HESCAL=0 | 1 | 2 | 3

HS=0 | 1 | 2 | 3

specifies the scaling version of the Hessian (or crossproduct Jacobian) matrix used in NRRIDG, TRUREG, LEVMAR, NEWRAP, or DBLDOG optimization.

If HS is not equal to 0, the first iteration and each restart iteration set the diagonal scaling matrix $D^{(0)} = \text{diag}(d_i^{(0)})$:

$$d_i^{(0)} = \sqrt{\max(|H_{i,i}^{(0)}|, \epsilon)}$$

where $H_{i,i}^{(0)}$ are the diagonal elements of the Hessian (or crossproduct Jacobian). In every other iteration, the diagonal scaling matrix $D^{(0)} = \text{diag}(d_i^{(0)})$ is updated depending on the HS option:

HS=0 specifies that no scaling be done.

HS=1 specifies the Moré (1978) scaling update:

$$d_i^{(k+1)} = \max \left[d_i^{(k)}, \sqrt{\max(|H_{i,i}^{(k)}|, \epsilon)} \right]$$

HS=2 specifies the Dennis, Gay, and Welsch (1981) scaling update:

$$d_i^{(k+1)} = \max \left[0.6 * d_i^{(k)}, \sqrt{\max(|H_{i,i}^{(k)}|, \epsilon)} \right]$$

HS=3 specifies that d_i be reset in each iteration:

$$d_i^{(k+1)} = \sqrt{\max(|H_{i,i}^{(k)}|, \epsilon)}$$

In each scaling update, ϵ is the relative machine precision. The default value is HS=0. Scaling of the Hessian can be time-consuming in the case where general linear constraints are active.

INHESSIAN<=r>

INHESS < =r >

specifies how the initial estimate of the approximate Hessian is defined for the quasi-Newton techniques QUANEW and DBLDOG. There are two alternatives:

- If you do not use the r specification, the initial estimate of the approximate Hessian is set to the Hessian at $\psi^{(0)}$.
- If you do use the r specification, the initial estimate of the approximate Hessian is set to the multiple of the identity matrix r**I**.

By default (if you do not specify the option INHESSIAN=r), the initial estimate of the approximate Hessian is set to the multiple of the identity matrix r**I**, where the scalar r is computed from the magnitude of the initial gradient.

INSTEP=r

SALPHA=r

RADIUS=r

reduces the length of the first trial step during the line search of the first iterations. For highly nonlinear objective functions, such as the EXP function, the default initial radius of the trust-region algorithm TRUREG or DBLDOG or the default step length of the line-search algorithms can result in arithmetic overflows. If this occurs, you should specify decreasing values of 0 < r < 1 such as INSTEP=1E-1, INSTEP=1E-2, INSTEP=1E-4, and so on, until the iteration starts successfully.

- For trust-region algorithms (TRUREG or DBLDOG), the INSTEP= option specifies a factor r > 0 for the initial radius $\Delta^{(0)}$ of the trust region. The default initial trust-region radius is the length of the scaled gradient. This step corresponds to the default radius factor of r = 1.
- For line-search algorithms (NEWRAP, CONGRA, or QUANEW), the INSTEP= option specifies an upper bound for the initial step length for the line search during the first five iterations. The default initial step length is r = 1.
- For the Nelder-Mead simplex algorithm, by using TECH=NMSIMP, the INSTEP=r option defines the size of the start simplex.

LCDEACT=r

LCD=r

specifies a threshold r for the Lagrange multiplier that determines whether an active inequality constraint remains active or can be deactivated. For maximization, r must be greater than zero; for minimization, r must be smaller than zero. An active inequality constraint can be deactivated only if its Lagrange multiplier is less than the threshold value. The default value is

$$r = \pm \min(0.01, \max(0.1 \times ABSGCONV, 0.001 \times \operatorname{gmax}^{(k)}))$$

where "+" is for maximization, "-" is for minimization, ABSGCONV is the value of the absolute gradient criterion, and $gmax^{(k)}$ is the maximum absolute element of the gradient or the projected gradient.

LCEPSILON=r

LCEPS=r

LCE=r

specifies the range r for active and violated boundary constraints, where $r \ge 0$. If the point $\psi^{(k)}$ satisfies the following condition, the constraint i is recognized as an active constraint:

$$|\sum_{i=1}^{k} a_{ij} \psi_j^{(k)} - b_i| \le r \times (|b_i| + 1)$$

Otherwise, the constraint i is either an inactive inequality or a violated inequality or equality constraint. The default value is r = 1E-8. During the optimization process, the introduction of rounding errors can force the optimization to increase the value of r by a factor of 10^k for some k > 0. If this happens, it is indicated by a message displayed in the log.

LCSINGULAR=r

LCSING=r

LCS=r

specifies a criterion r, where $r \ge 0$, that is used in the update of the QR decomposition and that determines whether an active constraint is linearly dependent on a set of other active constraints. The default value is r = 1E-8. The larger r becomes, the more the active constraints are recognized as being linearly dependent. If the value of r is larger than 0.1, it is reset to 0.1.

LINESEARCH=i

LIS=i

specifies the line-search method for the CONGRA, QUANEW, and NEWRAP optimization techniques. See Fletcher (1987) for an introduction to line-search techniques. The value of i can be $1, \ldots, 8$ as follows. The default is LIS=2.

LIS=1	specifies a line-search method that needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; this method is similar to one used by the Harwell subroutine library.
LIS=2	specifies a line-search method that needs more function than gradient calls for quadratic and cubic interpolation and cubic extrapolation; this method is implemented as shown in Fletcher (1987) and can be modified to an exact line search by using the LSPRECISION= option. This is the default.
LIS=3	specifies a line-search method that needs the same number of function and gradient calls for cubic interpolation and cubic extrapolation; this method is implemented as shown in Fletcher (1987) and can be modified to an exact line search by using the LSPRECISION= option.
LIS=4	specifies a line-search method that needs the same number of function and gradient calls for stepwise extrapolation and cubic interpolation.
LIS=5	specifies a line-search method that is a modified version of LIS=4.
LIS=6	specifies a golden-section line search (Polak 1971), which uses only function values for linear approximation.
LIS=7	specifies a bisection line search (Polak 1971), which uses only function values for linear approximation.

LIS=8

specifies the Armijo line-search technique (Polak 1971), which uses only function values for linear approximation.

LSPRECISION=r

LSP=r

specifies the degree of accuracy that should be obtained by the line-search algorithms LIS=2 and LIS=3. Usually an imprecise line search is inexpensive and successful. For more difficult optimization problems, a more precise and expensive line search might be necessary (Fletcher 1987). The LIS=2 line-search method (which is the default for the NEWRAP, QUANEW, and CONGRA techniques) and the LIS=3 line-search method approach exact line search for small LSPRECISION= values. If you have numerical problems, try to decrease the LSPRECISION= value to obtain a more precise line search. The default values are shown in Table 19.27.

Table 19.27 Default Values for Line-Search Precision

TECH=	UPDATE=	LSP Default
QUANEW	DBFGS, BFGS	r = 0.4
QUANEW	DDFP, DFP	r = 0.06
CONGRA	All	r = 0.1
NEWRAP	No update	r = 0.9

For more details, see Fletcher (1987).

MAXFUNC=i

MAXFU=i

specifies the maximum number i of function calls in the optimization process. The default values are as follows:

- 125 for the TRUREG, NRRIDG, NEWRAP, and LEVMAR techniques
- 500 for the QUANEW and DBLDOG techniques
- 1000 for the CONGRA technique
- 3000 for the NMSIMP technique

Optimization can terminate only after completing a full iteration. Therefore, the number of function calls that are actually performed can exceed the number that is specified by the MAXFUNC= option.

MAXITER=i

MAXIT=i

specifies the maximum number i of iterations in the optimization process. The default values are as follows:

- 50 for the TRUREG, NRRIDG, NEWRAP, and LEVMAR techniques
- 200 for the QUANEW and DBLDOG techniques
- 400 for the CONGRA technique
- 1000 for the NMSIMP technique

These default values are also valid when i is specified as a missing value.

MAXSTEP=r<n>

specifies an upper bound for the step length of the line-search algorithms during the first n iterations. By default, r is the largest double-precision value and n is the largest integer available. Setting this option can improve the speed of convergence for the CONGRA, QUANEW, and NEWRAP techniques.

MAXTIME=r

specifies an upper limit of *r* seconds of CPU time for the optimization process. The default value is the largest floating-point double representation of your computer. The time specified by the MAXTIME= option is checked only once at the end of each iteration. Therefore, the actual running time can be much longer than that specified by the MAXTIME= option. The actual running time includes the rest of the time needed to finish the iteration and the time needed to generate the output of the results.

MINITER=i

MINIT=i

specifies the minimum number of iterations. The default value is 0. If you request more iterations than are actually needed for convergence to a stationary point, the optimization algorithms can behave strangely. For example, the effect of rounding errors can prevent the algorithm from continuing for the required number of iterations.

MSINGULAR=r

MSING=r

specifies a relative singularity criterion r, where R > 0, for the computation of the inertia (number of positive, negative, and zero eigenvalues) of the Hessian and its projected forms. The default value is 1E-12.

NOPRINT

suppresses output that is related to optimization, such as the iteration history. This option, along with all NLOPTIONS statement options for displayed output, are ignored by the GLIMMIX and HPMIXED procedures.

PALL

displays all optional output for optimization. This option is supported only by the CALIS and SUR-VEYPHREG procedures.

PHISTORY

PHIST

displays the optimization history. The PHISTORY option is implied if the PALL option is specified. The PHISTORY option is supported only by the CALIS and SURVEYPHREG procedures.

RESTART=i

REST=i

specifies that the QUANEW or CONGRA technique is restarted with a steepest search direction after at most i iterations, where i > 0. Default values are as follows:

• When TECHNIQUE=CONGRA and UPDATE=PB, restart is performed automatically; so *i* is not used.

- When TECHNIQUE=CONGRA and UPDATE \neq PB, $i = \min(10p, 80)$, where p is the number of parameters.
- When TECHNIQUE=QUANEW, *i* is the largest integer available.

SINGULAR=r

SING=r

specifies the singularity criterion r, $r0 \le r \le 1$, that is used for the inversion of the Hessian matrix. The default value is 1E-8.

SOCKET=fileref

specifies the fileref that contains the information needed for remote monitoring.

TECHNIQUE=*value*

TECH=value

OMETHOD=value

OM=value

specifies the optimization technique. You can find additional information about choosing an optimization technique in the section "Choosing an Optimization Algorithm" on page 506. Valid values for the TECHNIQUE= option are as follows:

CONGRA

performs a conjugate-gradient optimization, which can be more precisely specified with the UPDATE= option and modified with the LINESEARCH= option. When you specify this option, UPDATE=PB by default.

DBLDOG

performs a version of double-dogleg optimization, which can be more precisely specified with the UPDATE= option. When you specify this option, UPDATE=DBFGS by default.

LEVMAR

performs a highly stable, but for large problems memory- and time-consuming, Levenberg-Marquardt optimization technique, a slightly improved variant of the Moré (1978) implementation. You can also specify this technique with the alias LM or MARQUARDT. In the CALIS procedure, this is the default optimization technique if there are fewer than 40 parameters to estimate. The GLIMMIX and HPMIXED procedures do not support this optimization technique.

NMSIMP

performs a Nelder-Mead simplex optimization. The CALIS procedure does not support this optimization technique.

NONE

does not perform any optimization. This option can be used for the following:

- to perform a grid search without optimization
- to compute estimates and predictions that cannot be obtained efficiently with any of the optimization techniques
- to obtain inferences for known values of the covariance parameters

NEWRAP

performs a Newton-Raphson optimization that combines a line-search algorithm with ridging. The line-search algorithm LIS=2 is the default method.

NRRIDG

performs a Newton-Raphson optimization with ridging. This is the default optimization technique in the SURVEYPHREG procedure.

OUANEW

performs a quasi-Newton optimization, which can be defined more precisely with the UPDATE= option and modified with the LINESEARCH= option.

TRUREG

performs a trust-region optimization.

UPDATE=method

UPD=method

specifies the update method for the quasi-Newton, double-dogleg, or conjugate-gradient optimization technique. Not every update method can be used with each optimizer.

The following are the valid methods for the UPDATE= option:

BFGS

performs the original Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the inverse Hessian matrix.

DBFGS

performs the dual BFGS update of the Cholesky factor of the Hessian matrix. This is the default update method.

DDFP

performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the Hessian matrix.

DFP

performs the original DFP update of the inverse Hessian matrix.

PB

performs the automatic restart update method of Powell (1977) and Beale (1972).

FR

performs the Fletcher-Reeves update (Fletcher 1987).

PR

performs the Polak-Ribiere update (Fletcher 1987).

CD

performs a conjugate-descent update of Fletcher (1987).

VERSION=1 | 2

VS=1 | 2

specifies the version of the quasi-Newton optimization technique with nonlinear constraints.

VS=1 specifies the update of the μ vector as in Powell (1978a, 1978b) (update like VF02AD).

VS=2 specifies the update of the μ vector as in Powell (1982a, 1982b) (update like VMCWD).

The default is VERSION=2.

VSINGULAR=r

VSING=r

specifies a relative singularity criterion r, where r > 0, for the computation of the inertia (number of positive, negative, and zero eigenvalues) of the Hessian and its projected forms. The default value is r = 1E-8.

XCONV=r<n>

XTOL=r < n >

specifies the relative parameter convergence criterion:

• For all techniques except NMSIMP, termination requires a small relative parameter change in subsequent iterations:

$$\frac{\max_{j} |\psi_{j}^{(k)} - \psi_{j}^{(k-1)}|}{\max(|\psi_{j}^{(k)}|, |\psi_{j}^{(k-1)}|, XSIZE)} \le r$$

• For the NMSIMP technique, the same formula is used, but $\psi_j^{(k)}$ is defined as the vertex with the lowest function value and $\psi_j^{(k-1)}$ is defined as the vertex with the highest function value in the simplex.

The default value is r = 1E-8 for the NMSIMP technique and r = 0 otherwise. The optional integer value n specifies the number of successive iterations for which the criterion must be satisfied before the process can be terminated.

XSIZE=r

specifies the XSIZE parameter r of the relative parameter termination criterion, where $r \ge 0$. The default value is r = 0. For more details, see the XCONV= option.

Choosing an Optimization Algorithm

First- or Second-Order Algorithms

The factors that go into choosing a particular optimization technique for a particular problem are complex. Trial and error can be involved.

For many optimization problems, computing the gradient takes more computer time than computing the function value. Computing the Hessian sometimes takes *much* more computer time and memory than computing the gradient, especially when there are many decision variables. Unfortunately, optimization techniques that do not use some kind of Hessian approximation usually require many more iterations than techniques that do use a Hessian matrix, and, as a result, the total run time of these techniques is often longer. Techniques that do not use the Hessian also tend to be less reliable. For example, they can terminate more easily at stationary points than at global optima.

Table 19.28	Derivatives Required		
Algorithm		First-Order	Second-Order
LEVMAR		X	X
TRUREG		X	X
NEWRAP		X	X
NRRIDG		X	X
QUANEW		X	-
DBLDOG		X	-
CONGRA		X	-

Table 19.28 shows which derivatives are required for each optimization technique.

NMSIMP

number of parameters in the optimization.

The second-derivative methods TRUREG, NEWRAP, and NRRIDG are best for small problems where the Hessian matrix is not expensive to compute. Sometimes the NRRIDG algorithm can be faster than the TRUREG algorithm, but TRUREG can be more stable. The NRRIDG algorithm requires only one matrix with p(p+1)/2 double words; TRUREG and NEWRAP require two such matrices. Here, p denotes the

The first-derivative methods QUANEW and DBLDOG are best for medium-sized problems where the objective function and the gradient are much faster to evaluate than the Hessian. In general, the QUANEW and DBLDOG algorithms require more iterations than TRUREG, NRRIDG, and NEWRAP, but each iteration can be much faster. The QUANEW and DBLDOG algorithms require only the gradient to update an approximate Hessian, and they require slightly less memory than TRUREG or NEWRAP (essentially one matrix with p(p+1)/2 double words).

The first-derivative method CONGRA is best for large problems where the objective function and the gradient can be computed much faster than the Hessian and where too much memory is required to store the (approximate) Hessian. In general, the CONGRA algorithm requires more iterations than QUANEW or DBLDOG, but each iteration can be much faster. Because CONGRA requires only a factor of p doubleword memory, many large applications can be solved only by CONGRA.

The no-derivative method NMSIMP is best for small problems where derivatives are not continuous or are very difficult to compute.

Each optimization method uses one or more convergence criteria that determine when it has converged. An algorithm is considered to have converged when any one of the convergence criteria is satisfied. For example, under the default settings, the QUANEW algorithm will converge if ABSGCONV <1E-5, FCONV $< 10^{-FDIGITS}$, or GCONV < 1E-8.

Algorithm Descriptions

Trust Region Optimization (TRUREG)

The trust region method uses the gradient $\mathbf{g}(\boldsymbol{\psi}^{(k)})$ and the Hessian matrix $\mathbf{H}(\boldsymbol{\psi}^{(k)})$; thus, it requires that the objective function $f(\psi)$ have continuous first- and second-order derivatives inside the feasible region.

The trust region method iteratively optimizes a quadratic approximation to the nonlinear objective function within a hyperelliptic trust region with radius Δ that constrains the step size that corresponds to the quality of the quadratic approximation. The trust region method is implemented based on Dennis, Gay, and Welsch (1981), Gay (1983), and Moré and Sorensen (1983).

The trust region method performs well for small- to medium-sized problems, and it does not need many function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Newton-Raphson Optimization with Line Search (NEWRAP)

The NEWRAP technique uses the gradient $\mathbf{g}(\boldsymbol{\psi}^{(k)})$ and the Hessian matrix $\mathbf{H}(\boldsymbol{\psi}^{(k)})$; thus, it requires that the objective function have continuous first- and second-order derivatives inside the feasible region. If second-order derivatives are computed efficiently and precisely, the NEWRAP method can perform well for medium-sized to large problems, and it does not need many function, gradient, and Hessian calls.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step reduces the value of the objective function successfully. Otherwise, a combination of ridging and line search is performed to compute successful steps. If the Hessian is not positive definite, a multiple of the identity matrix is added to the Hessian matrix to make it positive definite (Eskow and Schnabel 1991).

In each iteration, a line search is performed along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation (LIS=2).

Newton-Raphson Ridge Optimization (NRRIDG)

The NRRIDG technique uses the gradient $\mathbf{g}(\boldsymbol{\psi}^{(k)})$ and the Hessian matrix $\mathbf{H}(\boldsymbol{\psi}^{(k)})$; thus, it requires that the objective function have continuous first- and second-order derivatives inside the feasible region.

This algorithm uses a pure Newton step when the Hessian is positive definite and when the Newton step reduces the value of the objective function successfully. If at least one of these two conditions is not satisfied, a multiple of the identity matrix is added to the Hessian matrix.

The NRRIDG method performs well for small- to medium-sized problems, and it does not require many function, gradient, and Hessian calls. However, if the computation of the Hessian matrix is computationally expensive, one of the (dual) quasi-Newton or conjugate gradient algorithms might be more efficient.

Because the NRRIDG technique uses an orthogonal decomposition of the approximate Hessian, each iteration of NRRIDG can be slower than that of the NEWRAP technique, which works with a Cholesky decomposition. Usually, however, NRRIDG requires fewer iterations than NEWRAP.

Quasi-Newton Optimization (QUANEW)

The (dual) quasi-Newton method uses the gradient $\mathbf{g}(\boldsymbol{\psi}^{(k)})$, and it does not need to compute second-order derivatives because they are approximated. It works well for medium-sized to moderately large optimization problems, where the objective function and the gradient are much faster to compute than the Hessian. However, in general, it requires more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which compute second-order derivatives. QUANEW is the default optimization algorithm because it provides an appropriate balance between the speed and stability required for most nonlinear mixed model applications.

The QUANEW technique is one of the following, depending upon the value of the UPDATE= option:

- the original quasi-Newton algorithm, which updates an approximation of the inverse Hessian
- the dual quasi-Newton algorithm, which updates the Cholesky factor of an approximate Hessian (this is the default)

You can specify four update formulas with the UPDATE= option:

- DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update of the Cholesky factor of the Hessian matrix. This is the default.
- DDFP performs the dual Davidon, Fletcher, and Powell (DFP) update of the Cholesky factor of the Hessian matrix.
- BFGS performs the original BFGS update of the inverse Hessian matrix.
- DFP performs the original DFP update of the inverse Hessian matrix.

In each iteration, a line search is performed along the search direction to find an approximate optimum. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size α that satisfies the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit of the step size. Violating the left-side Goldstein condition can affect the positive definiteness of the quasi-Newton update. In that case, either the update is skipped or the iterations are restarted with an identity matrix, resulting in the steepest descent or ascent search direction. You can specify line-search algorithms other than the default with the LIS= option.

The QUANEW algorithm uses its own line-search technique. Of the options and parameters that control the line search for other algorithms, only the INSTEP= option applies here. In several applications, large steps in the first iterations are troublesome. You can use the INSTEP= option to impose an upper bound for the step size α during the first five iterations. You can also use the INHESSIAN= option to specify a different starting approximation for the Hessian. If you specify only the INHESSIAN option, the Cholesky factor of a (possibly ridged) finite-difference approximation of the Hessian is used to initialize the quasi-Newton update process.

Double-Dogleg Optimization (DBLDOG)

The double-dogleg optimization method combines the ideas of the quasi-Newton and trust region methods. In each iteration, the double-dogleg algorithm computes the step $\mathbf{s}^{(k)}$ as the linear combination of the steepest descent or ascent search direction $\mathbf{s}_1^{(k)}$ and a quasi-Newton search direction $\mathbf{s}_2^{(k)}$,

$$\mathbf{s}^{(k)} = \alpha_1 \mathbf{s}_1^{(k)} + \alpha_2 \mathbf{s}_2^{(k)}$$

The step is requested to remain within a prespecified trust region radius; see Fletcher (1987, p. 107). Thus, the DBLDOG subroutine uses the dual quasi-Newton update but does not perform a line search. You can specify two update formulas with the UPDATE= option:

• DBFGS performs the dual Broyden, Fletcher, Goldfarb, and Shanno update of the Cholesky factor of the Hessian matrix. This is the default.

 DDFP performs the dual Davidon, Fletcher, and Powell update of the Cholesky factor of the Hessian matrix.

The double-dogleg optimization technique works well for medium-sized to moderately large optimization problems, where the objective function and the gradient are much faster to compute than the Hessian. The implementation is based on Dennis and Mei (1979) and Gay (1983), but it is extended for dealing with boundary and linear constraints. The DBLDOG technique generally requires more iterations than the TRUREG, NEWRAP, and NRRIDG techniques, which require second-order derivatives; however, each of the DBLDOG iterations is computationally cheap. Furthermore, the DBLDOG technique requires only gradient calls for the update of the Cholesky factor of an approximate Hessian.

Conjugate Gradient Optimization (CONGRA)

Second-order derivatives are not required by the CONGRA algorithm and are not even approximated. The CONGRA algorithm can be expensive in function and gradient calls, but it requires only O(p) memory for unconstrained optimization. In general, many iterations are required to obtain a precise solution, but each of the CONGRA iterations is computationally cheap. You can specify four different update formulas for generating the conjugate directions by using the UPDATE= option:

- PB performs the automatic restart update method of Powell (1977) and Beale (1972). This is the default.
- FR performs the Fletcher-Reeves update (Fletcher 1987).
- PR performs the Polak-Ribiere update (Fletcher 1987).
- CD performs a conjugate-descent update of Fletcher (1987).

The default often behaves best for typical examples, whereas UPDATE=CD can perform poorly.

The CONGRA subroutine should be used for optimization problems with large p. For the unconstrained or boundary-constrained case, CONGRA requires only O(p) bytes of working memory, whereas all other optimization methods require order $O(p^2)$ bytes of working memory. During p successive iterations, uninterrupted by restarts or changes in the working set, the conjugate gradient algorithm computes a cycle of p conjugate search directions. In each iteration, a line search is performed along the search direction to find an approximate optimum of the objective function. The default line-search method uses quadratic interpolation and cubic extrapolation to obtain a step size α that satisfies the Goldstein conditions. One of the Goldstein conditions can be violated if the feasible region defines an upper limit for the step size. Other line-search algorithms can be specified with the LIS= option.

Nelder-Mead Simplex Optimization (NMSIMP)

The Nelder-Mead simplex method does not use any derivatives and does not assume that the objective function has continuous derivatives. The objective function itself needs to be continuous. This technique is quite expensive in the number of function calls, and it might be unable to generate precise results for $p \gg 40$.

The original Nelder-Mead simplex algorithm is implemented and extended to boundary constraints. This algorithm does not compute the objective for infeasible points, but it changes the shape of the simplex adapting to the nonlinearities of the objective function, which contributes to an increased speed of convergence. It uses a special termination criterion.

SLICE Statement

This statement applies to the following procedures: GENMOD, GLIMMIX, LOGISTIC, MIXED, ORTHOREG, PHREG, PLM, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG.

The SLICE statement is similar to the LSMEANS statement. You use it to perform inferences on model effects that consist entirely of classification variables. With the SLICE statement, these effects must be higher-order effects of at least two classification variables. The effect is then partitioned into subsets that correspond to variables used in forming the effect. You can use the same options as you use for the LSMEANS statement to perform an analysis for the partitions. This analysis is also known as an analysis of simple effects (Winer 1971).

By default, the interaction effect is partitioned by all main effects. For example, the following statements produce simple-effect differences among the A levels for each level of B and simple-effect differences among the B levels for each level of A:

```
class a b;
model y = a b a*b;
slice a*b / diff nof;
```

For example, if the *model-effect* is a three-way interaction effect, the default output includes comparisons of the two-way interaction means.

Suppose, for example, that the interaction effect A*B is significant in your analysis and that you want to test the effect of A for each level of B. The appropriate statement is

```
slice A*B / sliceBy = B;
```

This produces an F test for each level of B that compares the equality of the levels of A.

For example, assume that in a balanced design factors A and B have a=4 and b=3 levels, respectively. Consider the following statements:

```
class a b;
model y = a b a*b;
slice a*b / sliceby=a diff;
```

The SLICE statement produces four F tests, one per level of A. The first of these tests is constructed by extracting the three rows that correspond to the first level of A from the coefficient matrix for the A*B interaction. Call this matrix L_{a1} and its rows $\mathbf{l}_{a1}^{(1)}$, $\mathbf{l}_{a1}^{(2)}$, and $\mathbf{l}_{a1}^{(3)}$. The slice tests the two-degrees-of-freedom hypothesis

$$H: \left\{ \begin{array}{l} \left(\mathbf{l}_{a1}^{(1)} - \mathbf{l}_{a1}^{(2)}\right) \boldsymbol{\beta} = 0\\ \left(\mathbf{l}_{a1}^{(1)} - \mathbf{l}_{a1}^{(3)}\right) \boldsymbol{\beta} = 0 \end{array} \right.$$

In a balanced design, where μ_{ij} denotes the mean response if A is at level *i* and B is at level *j*, this hypothesis is equivalent to $H: \mu_{11} = \mu_{12} = \mu_{13}$. The DIFF option considers the three rows of \mathbf{L}_{a1} in turn and performs tests of the difference between pairs of rows. By default, all pairwise differences within the subset of \mathbf{L} are considered; in the example this corresponds to tests of the form

$$H: \left(\mathbf{l}_{a1}^{(1)} - \mathbf{l}_{a1}^{(2)}\right) \boldsymbol{\beta} = 0$$

$$H: \left(\mathbf{l}_{a1}^{(1)} - \mathbf{l}_{a1}^{(3)}\right) \boldsymbol{\beta} = 0$$

$$H: \left(\mathbf{l}_{a1}^{(2)} - \mathbf{l}_{a1}^{(3)}\right) \boldsymbol{\beta} = 0$$

In the example, with a=4 and b=3, this produces four sets of least squares means differences. Within each set, factor A is held fixed at a particular level and each set consists of three comparisons.

Syntax: SLICE Statement

SLICE model-effect < / options > ;

You can specify all options of the LSMEANS statement in the SLICE statement. The philosophy of the SLICE statement is to apply the analysis according to the options to the subsets of the L matrix that correspond to chosen partitions.

The following behavior differences between the SLICE and the LSMEANS statement are noteworthy:

- The specification of the *model-effect* is optional in the LSMEANS statement and required in the SLICE statement.
- Only a single SLICE *model-effect* can be specified before the option slash (/). However, you can specify multiple partitioning rules with the SLICEBY option.
- The MEANS option is the default for most procedures in the LSMEANS statement. For the SLICE statement, the default is the NOMEANS option.

Also, the three generalized linear modeling options: EXP, ILINK, and ODDSRATIO in the SLICE statement are additionally supported by PROC GLIMMIX and by PROC PLM when it is used to perform statistical analyses on item stores that were created by PROC GLIMMIX.

In addition to the options in the LSMEANS statement, you can specify the following options in the SLICE statement after the slash (/):

```
SLICEBY <=> slice-specification
```

SIMPLE <=> slice-specification

SLICEBY(slice-specification < , slice-specification < , . . . > >)

```
SIMPLE(slice-specification < , slice-specification < , . . . > >)
```

determines how to construct the partition of the least squares means for the *model-effect*. A *slice-specification* consists of an effect name followed by an optional list of formatted values. For example, the following statements creates partitions of the A*B interaction effect for all levels of variable A:

```
class a b;
model y = a b a*b;
slice a*b / sliceby=a;
```

The following statements produces two partitions of the interaction:

```
class a b;
model y = a b a*b;
slice a*b / sliceby(b='2' a='1') diff;
```

In the first partition the variable B takes on formatted value '2'. In the second partition the variable A takes on the formatted value '1'.

NOF

suppresses the F test for testing the mutual equality of the estimable functions in the partition.

ODS Table Names: SLICE Statement

Each table created by the SLICE statement has a name associated with it, and you can use this name to refer to the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 19.29. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

Table Name	Description	Required Option
Coef	L matrix coefficients	Е
Slices	LS-means slices	MEANS
SliceDiffs	Simple differences of LS-means slices	DIFF or ADJUST= or
		STEPDOWN or NOF
SliceLines	Lines display for LS-means slices	LINES
SliceTests	Tests for LS-means slices	Default

STORE Statement

This statement applies to the following procedures: GENMOD, GLIMMIX, GLM, LOGISTIC, MIXED, ORTHOREG, PHREG, SURVEYLOGISTIC, SURVEYPHREG, and SURVEYREG.

The STORE statement requests that the procedure save the context and results of the statistical analysis into an item store. An item store is a binary file format that cannot be modified by the user. The contents of the item store can be processed with the PLM procedure. One example of item store technology is to perform a time-consuming analysis and to store its results by using the STORE statement. At a later time you can then perform specific statistical analysis tasks based on the saved results of the previous analysis, without having to fit the model again. The following statements show an example in which a mixed model is fit with the MIXED procedure and the postprocessing analysis is performed with the PLM procedure:

```
proc mixed data=MyBigDataSet;
   class Env A B sub;
   model y = A B x / ddfm=KenwardRoger;
   random int A*B / sub=Env;
   repeated / subject=Env*A*B type=AR(1);
   store sasuser.mixed;
run;

proc plm source=sasuser.mixed;
   show cov Parms;
   lsmeans A B / diff;
   score data=NewData out=ScoreResults;
run;
```

The STORE statement in the PROC MIXED step requests that the MIXED procedure save those results that are needed to perform statistical tasks with the PLM procedure. For example, the MIXED procedure saves the necessary pieces of information that relate to the Kenward-Roger degree-of-freedom method. The results from the LSMEANS statement in the PROC PLM step thus apply this technique for calculating denominator degrees of freedom. The SHOW statement in the PLM procedure reveals the contents of the item store in terms of ODS tables, and the SCORE statement computes predicted values in a new data set. For more information about postprocessing tasks based on item stores, see the documentation for the PLM procedure.

Syntax: STORE Statement

```
STORE < OUT = >item-store-name < / LABEL='label' > ;
```

The *item-store-name* is a usual one- or two-level SAS name, like the names that are used for SAS data sets. If you specify a one-level name, then the item store resides in the WORK library and is deleted at the end of the SAS session. Since item stores usually are used to perform postprocessing tasks, typical usage specifies a two-level name of the form *libname.membername*.

If an item store by the same name as specified in the STORE statement already exists, the existing store is replaced.

You can add a custom label with the LABEL= option in the STORE statement after the slash (/). When the PLM procedure processes an item store, the label appears in the PROC PLM output along with other identifying information.

TEST Statement

This statement documentation applies to the following procedures: ORTHOREG, PLM, SURVEYPHREG, and SURVEYREG.

The TEST statement enables you to perform *F* tests for model effects that test Type I, II, or Type III hypotheses. See Chapter 15, "The Four Types of Estimable Functions," for details about the construction of Type I, II, and III estimable functions.

Syntax: TEST Statement

TEST < model-effects > </ options > ;

Table 19.30 summarizes options in the TEST statement.

Table 19.30 TEST Statement Options

Option	Description
CHISQ	Requests chi-square tests
DDF=	Specifies denominator degrees of freedom for fixed effects
E	Requests Type I, Type II, and Type III coefficients
E1	Requests Type I coefficients
E2	Requests Type II coefficients
E3	Requests Type III coefficients
HTYPE=	Indicates the type of hypothesis test to perform
INTERCEPT	Adds a row that corresponds to the overall intercept

You can specify the following options in the TEST statement after the slash (/):

CHISQ

requests that chi-square tests be performed for the relevant effects in addition to the F tests. Type III tests are the default; you can produce the Type I and Type II tests by using the HTYPE= option. This option has no effect when the procedure produces chi-square statistics by default.

DDF=value-list

DF=value-list

specifies the denominator degrees of freedom for the fixed effects. The *value-list* specification is a list of numbers or missing values (.) separated by commas. The order of degrees of freedom should match the order of the fixed effects that are specified in the TEST statement; otherwise it should match the order in which the effects appear in the "Type III Tests of Fixed Effects" table. If you want to retain the default degrees of freedom for a particular effect, use a missing value for its location in the list. In the following example, the first TEST statement assigns 3 denominator degrees of freedom to A and 4.7 to A*B, while those for B remain the same, and the second TEST statement assigns 5 denominator degrees of freedom to A and uses the default degrees of freedom for B.

```
model Y = A B A*B;
test / ddf=3,.,4.7;
test B A / ddf=.,5;
```

Ε

requests that Type I, Type II, and Type III L matrix coefficients be displayed for all relevant effects.

E1 | EI

requests that Type I L matrix coefficients be displayed for all relevant effects.

E2 | EII

requests that Type II L matrix coefficients be displayed for all relevant effects.

E3 | EIII

requests that Type III L matrix coefficients be displayed for all relevant effects.

HTYPE=*value*-list

indicates the type of hypothesis test to perform on the fixed effects. Valid entries for values in the *value-list* are 1, 2, and 3, which correspond to Type II, Type II, and Type III tests, respectively. The default value is 3.

INTERCEPT

INT

adds a row to the tables for Type I, II, and III tests that correspond to the overall intercept.

ODS Table Names: TEST Statement

Each table created by the TEST statement has a name associated with it, and you can use this name to refer to the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed in Table 19.31. For more information about ODS, see Chapter 20, "Using the Output Delivery System."

Table 19.31 ODS Tables Produced by the TEST statement

Table Name	Description	Required Option	
Coef	L matrix coefficients	Е	
Tests1	Type I tests of fixed effects	HTYPE=1	
Tests2	Type II tests of fixed effects	HTYPE=2	
Tests3	Type III tests of fixed effects	Default	

Programming Statements

This section applies to the following procedures: CALIS, GLIMMIX, MCMC, NLIN, NLMIXED, PHREG, and SURVEYPHREG.

The majority of the SAS/STAT modeling procedures can take advantage of the fact that the statistical model can easily be translated into programming syntax (statements and options). However, several procedures require additional flexibility in specifying models—for example, when the model contains general nonlinear functions, when it is necessary to specify complicated restrictions, or when user-supplied expressions need to be evaluated. Procedures that are listed at the beginning of the section support—in addition to the usual procedure statements and options—programming statements that can be used in the SAS DATA step.

The following are valid statements:

```
ABORT;
CALL name < ( expression < , expression ... > ) >;
DELETE;
DO < variable = expression
   <TO expression > < BY expression >
   <, expression < TO expression > < BY expression > ... >
   < WHILE expression > < UNTIL expression >;
END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;
             ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > < ... >;
RETURN;
SELECT < ( expression ) >;
STOP;
SUBSTR( variable, index, length ) = expression;
WHEN (expression) program-statement;
      OTHERWISE program-statement;
```

For the most part, these programming statements work the same as they do in the SAS DATA step, as documented in SAS Language Reference: Concepts. However, there are several differences:

- The ABORT statement does not allow any arguments.
- The DO statement does not allow a character index variable. Thus

```
do i = 1, 2, 3;
```

is supported, whereas the following statement is not supported:

```
do i = 'A', 'B', 'C';
```

- Not all procedures support LAG functionality. For example, the GLIMMIX procedure does not support lags.
- The PUT statement, used mostly for program debugging, supports only some of the features of the DATA step PUT statement, and it has some features that are not available with the DATA step PUT statement:
 - The PUT statement does not support line pointers, factored lists, iteration factors, overprinting, _INFILE_, the colon (:) format modifier, or "\$".

- The PUT statement does support expressions, but the expression must be enclosed in parentheses. For example, the following statement displays the square root of x:

```
put (sqrt(x));
```

- The PUT statement supports the item _PDV_ to display a formatted listing of all variables in the program. For example:

```
put _pdv_;
```

• The WHEN and OTHERWISE statements enable you to specify more than one target statement. That is, DO/END groups are not necessary for multiple-statement WHENs. For example, the following syntax is valid:

```
select;
  when (exp1) stmt1;
    stmt2;
  when (exp2) stmt3;
    stmt4;
end;
```

• The LINK statement is used in a program to jump immediately to the label *statement_label* and to continue program execution at that point. It is not used to specify a link function in a generalized linear model.

Please consult the individual chapters for other, procedure-specific differences between programming statements and the SAS DATA step and for procedure-specific details, limitations, and rules.

When coding your programming statements, avoid defining variables that begin with an underscore (_), because they might conflict with internal variables that are created by procedures that support programming statements.

References

Afifi, A. A. and Azen, S. P. (1972), *Statistical Analysis: A Computer-Oriented Approach*, New York: Academic Press.

Beale, E. M. L. (1972), "A Derivation of Conjugate Gradients," in *Numerical Methods for Nonlinear Optimization*, ed. F. A. Lootsma, London: Academic Press.

Browne, M. W. (1982), "Covariance Structures," in *Topics in Multivariate Analyses*, ed. D. M. Hawkins, New York: Cambridge University Press.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981), "An Adaptive Nonlinear Least-Squares Algorithm," *ACM Transactions on Mathematical Software*, 7, 348–368.

Dennis, J. E. and Mei, H. W. (1979), "Two New Unconstrained Optimization Algorithms Which Use Function and Gradient Values," *Journal of Optimization Theory and Applications*, 28, 453–482.

Dunnett, C. W. (1980), "Pairwise Multiple Comparisons in the Unequal Variance Case," *Journal of the American Statistical Association*, 75, 796–800.

Edwards, D. and Berry, J. J. (1987), "The Efficiency of Simulation-Based Multiple Comparisons," *Biometrics*, 43, 913–928.

Eskow, E. and Schnabel, R. B. (1991), "Algorithm 695: Software for a New Modified Cholesky Factorization," *Transactions on Mathematical Software*, 17(3), 306–312.

Fox, J. (1987), "Effect Displays for Generalized Linear Models," in *Sociological Methodology*, ed. C. C. Clogg, American Sociological Association, Washington DC, 347–361.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester: John Wiley & Sons.

Frankel, S. A. (1961), "Statistical Design of Experiments for Process Development of MBT," *Rubber Age*, 89, 453.

Games, P. A. and Howell, J. F. (1976), "Pairwise Multiple Comparison Procedures with Unequal *n*'s and/or Variances: A Monte Carlo Study," *Journal of Educational Statistics*, 1, 113–125.

Gay, D. M. (1983), "Subroutines for Unconstrained Minimization," *ACM Transactions on Mathematical Software*, 9, 503–524.

Guirguis, G. H. and Tobias, R. D. (2004), "On the Computation of the Distribution for the Analysis of Means," *Communications in Statistics: Simulation and Computation*, 33, 861–888.

Hastie, T., Tibshirani, R., and Friedman, J. (2001), *The Elements of Statistical Learning*, New York: Springer-Verlag.

Holm, S. (1979), "A Simple Sequentially Rejective Multiple Test Procedure," *Scandinavian Journal of Statistics*, 6, 65–70.

Hsu, J. C. (1992), "The Factor Analytic Approach to Simultaneous Inference in the General Linear Model," *Journal of Computational and Graphical Statistics*, 1, 151–168.

Hsu, J. C. (1996), Multiple Comparisons. Theory and Methods, London: Chapman & Hall.

Hsu, J. C. and Peruggia, M. (1994), "Graphical Representation of Tukey's Multiple Comparison Method," *Journal of Computational and Graphical Statistics*, 3: 143–161.

Kenward, M. G. and Roger, J. H. (1997), "Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood," *Biometrics*, 53, 983–997.

Kramer, C. Y. (1956), "Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications," *Biometrics*, 12, 309–310.

Kutner, M. H. (1974), "Hypothesis Testing in Linear Models (Eisenhart Model)," *American Statistician*, 28, 98–100.

Moré, J. J. (1978), "The Levenberg-Marquardt Algorithm: Implementation and Theory," in *Lecture Notes in Mathematics 630*, ed. G.A. Watson, Berlin-Heidelberg-New York: Springer Verlag.

Moré, J. J. and Sorensen, D. C. (1983), "Computing a Trust-Region Step," *SIAM Journal on Scientific and Statistical Computing*, 4, 553–572.

Myers, R. H. (1976), *Response Surface Methodology*, Blacksburg VA: Virginia Polytechnic Institute and State University.

Nelson, P. R. (1982), "Exact Critical Points for the Analysis of Means," *Communications in Statistics*, 11, 699–709.

Nelson, P. R. (1991), "Numerical Evaluation of Multivariate Normal Integrals with Correlations $\rho_{lj} = -\alpha_l \alpha_j$," The Frontiers of Statistical Scientific Theory & Industrial Applications, 97–114.

Nelson, P. R. (1993), "Additional Uses for the Analysis of Means and Extended Tables of Critical Values," *Technometrics*, 35, 61–71.

Ott, E. R. (1967), "Analysis of Means—A Graphical Procedure," *Industrial Quality Control*, 101–109. Reprinted in *Journal of Quality Technology*, 15 (1983), 10–18.

Polak, E. (1971), Computational Methods in Optimization, New York: Academic Press.

Powell, J. M. D. (1977), "Restart Procedures for the Conjugate Gradient Method," *Mathematical Programming*, 12, 241–254.

Powell, J. M. D. (1978a), "A Fast Algorithm for Nonlinearly Constraint Optimization Calculations," in *Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics 630*, ed. G. A. Watson, Berlin: Springer-Verlag, 144–175.

Powell, J. M. D. (1978b), "Algorithms for Nonlinear Constraints That Use Lagrangian Functions," *Mathematical Programming*, 14, 224–248.

Powell, J. M. D. (1982a), "Extensions to Subroutine VF02AD," in *Systems Modeling and Optimization, Lecture Notes in Control and Information Sciences 38*, ed. R. F. Drenick and F. Kozin, Berlin: Springer-Verlag, 529–538.

Powell, J. M. D. (1982b), "VMCWD: A Fortran Subroutine for Constrained Optimization," *DAMTP* 1982/NA4, Cambridge, England.

Royen, T. (1989), "Generalized Maximum Range Tests for Pairwise Comparisons of Several Populations," *Biometrical Journal*, 31, 905–929.

Shaffer, J. P. (1986), "Modified Sequentially Rejective Multiple Test Procedures," *Journal of the American Statistical Association*, 81, 329–335.

Silvapulle, M. J. and Sen, P. K. (2004), *Constrained Statistical Inference: Order, Inequality, and Shape Constraints*, New York: John Wiley & Sons.

Tamhane, A. C. (1979), "A Comparison of Procedures for Multiple Comparisons of Means with Unequal Variances," *Journal of the American Statistical Association*, 74, 471–480.

Westfall, P. H. (1997), "Multiple Testing of General Contrasts Using Logical Constraints and Correlations," *Journal of the American Statistical Association*, 92, 299–306.

Westfall, P. H., Tobias, R. D., Rom, D., Wolfinger, R. D., and Hochberg, Y. (1999), *Multiple Comparisons and Multiple Tests Using the SAS System*, Cary, NC: SAS Institute Inc.

Westfall, P. J. and Young, S. S. (1993), Resampling-Based Multiple Testing, New York: John Wiley & Sons.

Winer, B. J. (1971), *Statistical Principles in Experimental Design*, Second Edition, New York: McGraw-Hill.

Subject Index

В	GLIMMIX procedure, 495, 496, 498, 499, 506
	crossed effects
B-spline	Shared Concepts, 396
spline basis (Shared Concepts), 420	D
B-spline basis	D
GLIMMIX procedure, 420	
GLMSELECT procedure, 420	Davidon-Fletcher-Powell update, 505
HPMIXED procedure, 420	double dogleg
LOGISTIC procedure, 420	method (GLIMMIX), 504
ORTHOREG procedure, 420	double-dogleg method
PHREG procedure, 420	Shared Concepts, 509
PLS procedure, 420	
QUANTREG procedure, 420	E
ROBUSTREG procedure, 420	
SURVEYLOGISTIC procedure, 420	effect parameterization
SURVEYREG procedure, 420	Shared Concepts, 400
bar (l) operator	effect plot
Shared Concepts, 396	EFFECTPLOT statement, 423
F 10, 2 2	EFFECT statement
C	collection effect (Shared Concepts), 406
	lag effect (Shared Concepts), 406
choosing optimization algorithm	multimember effect (Shared Concepts), 409
Shared Concepts, 506	polynomial effect (Shared Concepts), 411
CLASS statement	spline effect (Shared Concepts), 414
Shared Concepts, 392	syntax (Shared Concepts), 404
classification variables	EFFECTPLOT statement
Shared Concepts, 392	ODS graph names, 433
collection effect	syntax (Shared Concepts), 423
GLIMMIX procedure, 406	ESTIMATE statement
GLMSELECT procedure, 406	chi-bar-square statistic, 463
HPMIXED procedure, 406	estimate-specification (Shared Concepts), 449
LOGISTIC procedure, 406	joint hypothesis tests with complex alternatives
ORTHOREG procedure, 406	463
PHREG procedure, 406	multiple comparison adjustment (Shared
PLS procedure, 406	Concepts), 451
ROBUSTREG procedure, 406	positional and nonpositional syntax, 460
SURVEYLOGISTIC procedure, 406	syntax (Shared Concepts), 449
SURVEYREG procedure, 406	Estimate-specification
	ESTIMATE statement, 449
conjugate descent (GLIMMIX), 505	examples, GLIMMIX
	multimember effect, 409
gradient (GLIMMIX), 504	spline effect, 404
conjugate gradient method	examples, GLMSELECT
Shared Concepts, 510	multimember effect, 409
continuous-by-class effects	examples, HPMIXED
Shared Concepts, 398	multimember effect, 409
continuous-nesting-class effects	examples, LOGISTIC
Shared Concepts, 398	multimember effect, 409
convergence criterion	munimember effect, 409

examples, ORTHOREG multimember effect, 409 examples, PHREG multimember effect, 409 examples, PLS multimember effect, 409 examples, ROBUSTREG multimember effect, 409 examples, SURVEYLOGISTIC multimember effect, 409 examples, SURVEYREG multimember effect, 409	GLIMMIX procedure, SLICE statement ODS graph names, 480 GLM parameterization Shared Concepts, 401 GLMSELECT procedure B-spline basis, 420 collection effect, 406 lag effect, 406 multimember effect, 409 Natural cubic spline basis, 422 polynomial effect, 411 spline bases, 418 spline effect, 414 TPF basis, 419 truncated power function basis, 419
first-order algorithm Shared Concepts, 506	Н
G	Hessian scaling GLIMMIX procedure, 499
general effects	HPMIXED procedure
Shared Concepts, 399	B-spline basis, 420
GENMOD procedure	collection effect, 406
analysis of means, 472	lag effect, 406
diffogram, 475	multimember effect, 409
observed margins, 474	Natural cubic spline basis, 422
ODS graph names, 433	polynomial effect, 411
GENMOD procedure, LSMEANS statement	spline bases, 418
ODS graph names, 480	spline effect, 414
ODS table names, 479	TPF basis, 419
GLIMMIX procedure	truncated power function basis, 419
analysis of means, 472	_
B-spline basis, 420	I
collection effect, 406	
convergence criterion, 495, 496, 498, 499, 506	interaction effects
diffogram, 475	Shared Concepts, 396
functional convergence criteria, 497	intercept
Hessian scaling, 499	Shared Concepts, 395
lag effect, 406	T
lag functionality, 518	L
line-search methods, 501	1 00
line-search precision, 502	lag effect
multimember effect, 409	GLIMMIX procedure, 406
Natural cubic spline basis, 422	GLMSELECT procedure, 406
Newton-Raphson algorithm, 504	HPMIXED procedure, 406
Newton-Raphson algorithm with ridging, 505	LOGISTIC procedure, 406
observed margins, 474	ORTHOREG procedure, 406
optimization technique, 504	PHREG procedure, 406
polynomial effect, 411	PLS procedure, 406
remote monitoring, 504	ROBUSTREG procedure, 406
spline bases, 418	SURVEYEE are as done 406
spline effect, 414	SURVEYREG procedure, 406
TPF basis, 419	lag functionality
truncated power function basis, 419	GLIMMIX procedure, 518

levelization	ORTHOREG procedure, 409
Shared Concepts, 392	PHREG procedure, 409
line-search methods	PLS procedure, 409
GLIMMIX procedure, 501	ROBUSTREG procedure, 409
LOGISTIC procedure	SURVEYLOGISTIC procedure, 409
analysis of means, 472	SURVEYREG procedure, 409
B-spline basis, 420	
chi-bar-square statistic, 463	N
collection effect, 406	
diffogram, 475	Natural cubic spline
joint hypothesis tests with complex alternatives,	spline basis (Shared Concepts), 422
463	Natural cubic spline basis
lag effect, 406	GLIMMIX procedure, 422
multimember effect, 409	GLMSELECT procedure, 422
Natural cubic spline basis, 422	HPMIXED procedure, 422
observed margins, 474	LOGISTIC procedure, 422
ODS graph names, 433	ORTHOREG procedure, 422
polynomial effect, 411	PHREG procedure, 422
positional and nonpositional syntax, 460	PLS procedure, 422
spline bases, 418	QUANTREG procedure, 422
spline effect, 414	ROBUSTREG procedure, 422
TPF basis, 419	SURVEYLOGISTIC procedure, 422
truncated power function basis, 419	SURVEYREG procedure, 422
LOGISTIC procedure, ESTIMATE statement	Nelder-Mead simplex
ODS table names, 464	method (GLIMMIX), 504
LOGISTIC procedure, LSMEANS statement	Nelder-Mead simplex method
ODS graph names, 480	Shared Concepts, 510
ODS table names, 479	nested effects
LSMEANS statement	Shared Concepts, 397 nested versus crossed effects
analysis of means (Shared Concepts), 472	
diffogram (Shared Concepts), 475	Shared Concepts, 397
least squares means (Shared Concepts), 465	Newton-Raphson algorithm
multiple comparison adjustment (Shared	GLIMMIX procedure, 504
Concepts), 467	Newton-Raphson algorithm with ridging
observed margins (Shared Concepts), 474	GLIMMIX procedure, 505
syntax (Shared Concepts), 466	Newton-Raphson method
LSMESTIMATE statement	Shared Concepts, 508
syntax (Shared Concepts), 483	Newton-Raphson with ridging
M	Shared Concepts, 508
M	NLOPTIONS statement
	syntax (Shared Concepts), 494
main effects	
Shared Concepts, 396	0
MIXED procedure	
analysis of means, 472	ODS graph names
diffogram, 475	EFFECTPLOT statement, 433
observed margins, 474	GENMOD procedure, 433
MIXED procedure, SLICE statement	LOGISTIC procedure, 433
ODS graph names, 480	ORTHOREG procedure, 433
multimember effect	PLM procedure, 433
GLIMMIX procedure, 409	SLICE statement (GLIMMIX), 480
GLMSELECT procedure, 409	SLICE statement (MIXED), 480
HPMIXED procedure, 409	optimization technique
LOGISTIC procedure, 409	GLIMMIX procedure, 504

options summary	ordinal parameterization
EFFECT statement, 405	Shared Concepts, 401
ESTIMATE statement, 450	ortheffect parameterization
ESTIMATE statement (LOGISTIC), 450	Shared Concepts, 402
ESTIMATE statement (ORTHOREG), 450	orthordinal parameterization
ESTIMATE statement (PHREG), 450	Shared Concepts, 403
ESTIMATE statement (PLM), 450	ORTHOREG procedure
ESTIMATE statement (SURVEYLOGISTIC),	analysis of means, 472
450	B-spline basis, 420
ESTIMATE statement (SURVEYPHREG), 450	chi-bar-square statistic, 463
ESTIMATE statement (SURVEYREG), 450	collection effect, 406
LSMEANS statement (GENMOD), 466	diffogram, 475
LSMEANS statement (LOGISTIC), 466	joint hypothesis tests with complex alternatives,
LSMEANS statement (ORTHOREG), 466	463
LSMEANS statement (PHREG), 466	lag effect, 406
LSMEANS statement (PLM), 466	multimember effect, 409
LSMEANS statement (SURVEYLOGISTIC),	Natural cubic spline basis, 422
466	observed margins, 474
LSMEANS statement (SURVEYPHREG), 466	ODS graph names, 433
LSMEANS statement (SURVEYREG), 466	polynomial effect, 411
LSMESTIMATE statement (GENMOD), 483	positional and nonpositional syntax, 460
LSMESTIMATE statement (LOGISTIC), 483	spline bases, 418
LSMESTIMATE statement (MIXED), 483	spline effect, 414
LSMESTIMATE statement (WITAED), 483	TPF basis, 419
LSMESTIMATE statement (PHREG), 483	truncated power function basis, 419
LSMESTIMATE statement (PLM), 483	ORTHOREG procedure, ESTIMATE statement
LSMESTIMATE statement	ODS table names, 464
(SURVEYLOGISTIC), 483	
	ORTHOREG procedure, LSMEANS statement
LSMESTIMATE statement (SURVEYPHREG),	ODS graph names, 480
483	ODS table names, 479
LSMESTIMATE statement (SURVEYREG),	orthoterm parameterization
483	Shared Concepts, 403
NLOPTIONS statement (CALIS), 494	orthpoly parameterization
NLOPTIONS statement (GLIMMIX), 494	Shared Concepts, 403
NLOPTIONS statement (HPMIXED), 494	orthref parameterization
NLOPTIONS statement (PHREG), 494	Shared Concepts, 403
NLOPTIONS statement (SURVEYPHREG), 494	n
NLOPTIONS statement (VARIOGRAM), 494	P
SLICE statement (GENMOD), 466	
SLICE statement (GLIMMIX), 466	parameterization
SLICE statement (LOGISTIC), 466	effect (Shared Concepts), 400
SLICE statement (MIXED), 466	GLM (Shared Concepts), 401
SLICE statement (ORTHOREG), 466	ordinal (Shared Concepts), 401
SLICE statement (PHREG), 466	ortheffect (Shared Concepts), 402
SLICE statement (PLM), 466	orthordinal (Shared Concepts), 403
SLICE statement (SURVEYLOGISTIC), 466	orthoterm (Shared Concepts), 403
SLICE statement (SURVEYPHREG), 466	orthpoly (Shared Concepts), 403
SLICE statement (SURVEYREG), 466	orthref (Shared Concepts), 403
TEST statement (ORTHOREG), 515	polynomial (Shared Concepts), 401
TEST statement (PLM), 515	reference (Shared Concepts), 402
TEST statement (SURVEYPHREG), 515	Shared Concepts, 395
TEST statement (SURVEYREG), 515	thermometer (Shared Concepts), 401
ordering	PHREG procedure
of class levels (Shared Concepts), 393	analysis of means, 472

B-spline basis, 420	PHREG procedure, 411
chi-bar-square statistic, 463	PLS procedure, 411
collection effect, 406	ROBUSTREG procedure, 411
diffogram, 475	SURVEYLOGISTIC procedure, 411
joint hypothesis tests with complex alternatives,	SURVEYREG procedure, 411
463	polynomial effects
lag effect, 406	Shared Concepts, 396
multimember effect, 409	polynomial parameterization
Natural cubic spline basis, 422	Shared Concepts, 401
observed margins, 474	programming statements
polynomial effect, 411	Shared Concepts, 517
positional and nonpositional syntax, 460	Similar Concepts, 517
spline bases, 418	Q
spline effect, 414	
TPF basis, 419	QUANTREG procedure
truncated power function basis, 419	B-spline basis, 420
PHREG procedure, ESTIMATE statement	Natural cubic spline basis, 422
ODS graph names, 464	spline bases, 418
ODS table names, 464	spline effect, 414
PHREG procedure, LSMEANS statement	TPF basis, 419
ODS graph names, 480	truncated power function basis, 419
ODS graph hames, 460 ODS table names, 479	quasi-Newton method
PLM procedure	Shared Concepts, 508
analysis of means, 472	Shared Concepts, 500
chi-bar-square statistic, 463	R
diffogram, 475	
<u> </u>	reference parameterization
joint hypothesis tests with complex alternatives, 463	Shared Concepts, 402
	regression effects
observed margins, 474	Shared Concepts, 396
ODS graph names, 433	remote monitoring
positional and nonpositional syntax, 460	GLIMMIX procedure, 504
PLM procedure, ESTIMATE statement	ROBUSTREG procedure
ODS graph names, 464	B-spline basis, 420
ODS table names, 464	collection effect, 406
PLM procedure, LSMEANS statement	
ODS graph names, 480	lag effect, 406
ODS table names, 479	multimember effect, 409
PLS procedure	Natural cubic spline basis, 422
B-spline basis, 420	polynomial effect, 411
collection effect, 406	spline bases, 418
lag effect, 406	spline effect, 414
multimember effect, 409	TPF basis, 419
Natural cubic spline basis, 422	truncated power function basis, 419
polynomial effect, 411	S
spline bases, 418	8
spline effect, 414	
TPF basis, 419	second-order algorithm
truncated power function basis, 419	Shared Concepts, 506
polynomial effect	Shared Concepts
GLIMMIX procedure, 411	bar (l) operator, 396
GLMSELECT procedure, 411	choosing optimization algorithm, 506
HPMIXED procedure, 411	CLASS statement, 392
LOGISTIC procedure, 411	classification variables, 392
ORTHOREG procedure, 411	collection effect (EFFECT statement), 406

conjugate gradient method, 510	TEST statement, 515
continuous-by-class effects, 398	thermometer parameterization, 401
continuous-nesting-class effects, 398	trust region method, 507
crossed effects, 396	simplex method
double-dogleg method, 509	Shared Concepts, 510
effect parameterization, 400	singular parameterization
EFFECT statement, 404	Shared Concepts, 396
EFFECTPLOT statement, 423	SLICE statement
ESTIMATE statement, 449	syntax (Shared Concepts), 512
first-order algorithm, 506	sort order
general effects, 399	of class levels (Shared Concepts), 393
GLM parameterization, 401	spline bases
interaction effects, 396	GLIMMIX procedure, 418
intercept, 395	GLMSELECT procedure, 418
lag effect (EFFECT statement), 406	HPMIXED procedure, 418
levelization, 392	LOGISTIC procedure, 418
LSMEANS statement, 466	ORTHOREG procedure, 418
LSMESTIMATE statement, 483	PHREG procedure, 418
main effects, 396	PLS procedure, 418
missing values, class variables, 394	QUANTREG procedure, 418
multimember effect (EFFECT statement), 409	ROBUSTREG procedure, 418
Nelder-Mead simplex method, 510	Shared Concepts, 418
nested effects, 397	SURVEYLOGISTIC procedure, 418
nested versus crossed effects, 397	SURVEYREG procedure, 418
Newton-Raphson method, 508	spline effect
Newton-Raphson with ridging, 508	GLIMMIX procedure, 414
NLOPTIONS statement, 494	GLMSELECT procedure, 414
ORDER= option, 393	HPMIXED procedure, 414
ordering of class levels, 393	LOGISTIC procedure, 414
ordinal parameterization, 401	ORTHOREG procedure, 414
ortheffect parameterization, 402	PHREG procedure, 414
orthordinal parameterization, 403	PLS procedure, 414
orthoterm parameterization, 403	QUANTREG procedure, 414
orthpoly parameterization, 403	ROBUSTREG procedure, 414
orthref parameterization, 403	SURVEYLOGISTIC procedure, 414
parameterization, 395	SURVEYREG procedure, 414
polynomial effect (EFFECT statement), 411	splines
polynomial effects, 396	Shared Concepts, 418
polynomial parameterization, 401	SURVEYLOGISTIC procedure
programming statements, 517	analysis of means, 472
quasi-Newton method, 508	B-spline basis, 420
reference parameterization, 402	chi-bar-square statistic, 463
regression effects, 396	collection effect, 406
second-order algorithm, 506	diffogram, 475
simplex method, 510	joint hypothesis tests with complex alternatives,
singular parameterization, 396	463
SLICE statement, 512	lag effect, 406
sort order of class levels, 393	multimember effect, 409
spline bases, 418	Natural cubic spline basis, 422
spline basis, B-spline, 420	observed margins, 474
	polynomial effect, 411
Spillie basis, Natural cubic spillie. 422	r · 🗸 · · · · · · · · · · · · · · · · ·
spline basis, Natural cubic spline, 422 spline basis, truncated power function, 419	positional and nonpositional syntax, 460
spline basis, Natural cubic spline, 422 spline basis, truncated power function, 419 spline effect (EFFECT statement), 414	positional and nonpositional syntax, 460 spline bases, 418

TPF basis, 419	GLMSELECT procedure, 419
truncated power function basis, 419	HPMIXED procedure, 419
SURVEYLOGISTIC procedure, ESTIMATE	LOGISTIC procedure, 419
statement	ORTHOREG procedure, 419
ODS table names, 464	PHREG procedure, 419
SURVEYLOGISTIC procedure, LSMEANS	PLS procedure, 419
statement	QUANTREG procedure, 419
ODS graph names, 480	ROBUSTREG procedure, 419
ODS table names, 479	SURVEYLOGISTIC procedure, 419
SURVEYPHREG procedure	SURVEYREG procedure, 419
analysis of means, 472	truncated power function
chi-bar-square statistic, 463	spline basis (Shared Concepts), 419
diffogram, 475	truncated power function basis
joint hypothesis tests with complex alternatives,	GLIMMIX procedure, 419
463	GLMSELECT procedure, 419
observed margins, 474	HPMIXED procedure, 419
positional and nonpositional syntax, 460	LOGISTIC procedure, 419
SURVEYPHREG procedure, ESTIMATE statement	ORTHOREG procedure, 419
ODS table names, 464	PHREG procedure, 419
SURVEYPHREG procedure, LSMEANS statement	PLS procedure, 419
ODS graph names, 480	QUANTREG procedure, 419
ODS table names, 479	ROBUSTREG procedure, 419
SURVEYREG procedure	SURVEYLOGISTIC procedure, 419
analysis of means, 472	SURVEYREG procedure, 419
B-spline basis, 420	trust region method
chi-bar-square statistic, 463	Shared Concepts, 507
collection effect, 406	-
diffogram, 475	
joint hypothesis tests with complex alternatives,	
463	
lag effect, 406	
multimember effect, 409	
Natural cubic spline basis, 422	
observed margins, 474	
polynomial effect, 411	
positional and nonpositional syntax, 460	
spline bases, 418	
spline effect, 414	
TPF basis, 419	
truncated power function basis, 419	
SURVEYREG procedure, ESTIMATE statement	
ODS table names, 464	
SURVEYREG procedure, LSMEANS statement	
ODS graph names, 480	
ODS table names, 479	
Т	
1	
TEST statement	
syntax (Shared Concepts), 515	
thermometer parameterization	
Shared Concepts, 401	
TPF basis	
GLIMMIX procedure, 419	

Syntax Index

A	NLOPTIONS statement (PHREG), 496
	NLOPTIONS statement (SURVEYPHREG), 490
ABSCONV option	NLOPTIONS statement (VARIOGRAM), 496
NLOPTIONS statement (CALIS), 495	ADJDFE= option
NLOPTIONS statement (GLIMMIX), 495	ESTIMATE statement (ORTHOREG), 451
NLOPTIONS statement (HPMIXED), 495	ESTIMATE statement (PLM), 451
NLOPTIONS statement (PHREG), 495	ESTIMATE statement (SURVEYPHREG), 451
NLOPTIONS statement (SURVEYPHREG), 495	ESTIMATE statement (SURVEYREG), 451
NLOPTIONS statement (VARIOGRAM), 495	LSMEANS statement (ORTHOREG), 467
ABSFCONV option	LSMEANS statement (PLM), 467
NLOPTIONS statement (CALIS), 496	LSMEANS statement (SURVEYPHREG), 467
NLOPTIONS statement (GLIMMIX), 496	LSMEANS statement (SURVEYREG), 467
NLOPTIONS statement (HPMIXED), 496	LSMESTIMATE statement (MIXED), 484
NLOPTIONS statement (PHREG), 496	LSMESTIMATE statement (ORTHOREG), 484
NLOPTIONS statement (SURVEYPHREG), 496	LSMESTIMATE statement (PLM), 484
NLOPTIONS statement (VARIOGRAM), 496	LSMESTIMATE statement (SURVEYPHREG),
ABSGCONV option	484
NLOPTIONS statement (CALIS), 496	LSMESTIMATE statement (SURVEYREG),
NLOPTIONS statement (GLIMMIX), 496	484
NLOPTIONS statement (HPMIXED), 496	SLICE statement (GLIMMIX), 467
NLOPTIONS statement (PHREG), 496	SLICE statement (MIXED), 467
NLOPTIONS statement (SURVEYPHREG), 496	SLICE statement (ORTHOREG), 467
NLOPTIONS statement (VARIOGRAM), 496	SLICE statement (PLM), 467
ABSGTOL option	ADJUST= option
NLOPTIONS statement (CALIS), 496	ESTIMATE statement (LOGISTIC), 452
NLOPTIONS statement (GLIMMIX), 496	ESTIMATE statement (ORTHOREG), 452
NLOPTIONS statement (HPMIXED), 496	ESTIMATE statement (PHREG), 452
NLOPTIONS statement (PHREG), 496	ESTIMATE statement (PLM), 452
NLOPTIONS statement (SURVEYPHREG), 496	ESTIMATE statement (SURVEYLOGISTIC),
NLOPTIONS statement (VARIOGRAM), 496	452
ABSTOL option	ESTIMATE statement (SURVEYPHREG), 452
NLOPTIONS statement (CALIS), 495	ESTIMATE statement (SURVEYREG), 452
NLOPTIONS statement (GLIMMIX), 495	LSMEANS statement (GENMOD), 468
NLOPTIONS statement (HPMIXED), 495	LSMEANS statement (LOGISTIC), 468
NLOPTIONS statement (PHREG), 495	LSMEANS statement (ORTHOREG), 468
NLOPTIONS statement (SURVEYPHREG), 495	LSMEANS statement (PHREG), 468
NLOPTIONS statement (VARIOGRAM), 495	LSMEANS statement (PLM), 468
ABSXCONV option	LSMEANS statement (SURVEYLOGISTIC),
NLOPTIONS statement (CALIS), 496	468
NLOPTIONS statement (GLIMMIX), 496	LSMEANS statement (SURVEYPHREG), 468
NLOPTIONS statement (HPMIXED), 496	LSMEANS statement (SURVEYREG), 468
NLOPTIONS statement (PHREG), 496	LSMESTIMATE statement (GENMOD), 485
NLOPTIONS statement (SURVEYPHREG), 496	LSMESTIMATE statement (LOGISTIC), 485
NLOPTIONS statement (VARIOGRAM), 496	LSMESTIMATE statement (MIXED), 485
ABSXTOL option	LSMESTIMATE statement (ORTHOREG), 485
NLOPTIONS statement (CALIS), 496	LSMESTIMATE statement (PHREG), 485
NLOPTIONS statement (GLIMMIX), 496	LSMESTIMATE statement (PLM), 485
NLOPTIONS statement (HPMIXED), 496	
11201 110110 statement (III MIALD), 770	

LSMESTIMATE statement	SLICE statement (SURVEYLOGISTIC), 470
(SURVEYLOGISTIC), 485	SLICE statement (SURVEYPHREG), 470
LSMESTIMATE statement (SURVEYPHREG),	SLICE statement (SURVEYREG), 470
485	ASINGULAR= option
LSMESTIMATE statement (SURVEYREG),	NLOPTIONS statement (CALIS), 497
485	NLOPTIONS statement (GLIMMIX), 497
SLICE statement (GENMOD), 468	NLOPTIONS statement (HPMIXED), 497
SLICE statement (GLIMMIX), 468	NLOPTIONS statement (PHREG), 497
SLICE statement (LOGISTIC), 468	NLOPTIONS statement (SURVEYPHREG), 497
SLICE statement (MIXED), 468	NLOPTIONS statement (VARIOGRAM), 497
SLICE statement (ORTHOREG), 468	AT option
SLICE statement (PHREG), 468	EFFECTPLOT statement, 425
SLICE statement (PLM), 468	AT= option
SLICE statement (SURVEYLOGISTIC), 468	LSMEANS statement (GENMOD), 470
SLICE statement (SURVEYPHREG), 468	LSMEANS statement (LOGISTIC), 470
SLICE statement (SURVEYREG), 468	LSMEANS statement (ORTHOREG), 470
ALPHA= option	LSMEANS statement (PHREG), 470
EFFECTPLOT statement, 425	LSMEANS statement (PLM), 470
ESTIMATE statement (LOGISTIC), 452	LSMEANS statement (SURVEYLOGISTIC),
ESTIMATE statement (ORTHOREG), 452	470
ESTIMATE statement (PHREG), 452	LSMEANS statement (SURVEYPHREG), 470
ESTIMATE statement (PLM), 452	LSMEANS statement (SURVEYREG), 470
ESTIMATE statement (SURVEYLOGISTIC),	LSMESTIMATE statement (GENMOD), 485
452	LSMESTIMATE statement (LOGISTIC), 485
ESTIMATE statement (SURVEYPHREG), 452	LSMESTIMATE statement (MIXED), 485
ESTIMATE statement (SURVEYREG), 452	LSMESTIMATE statement (ORTHOREG), 485
LSMEANS statement (GENMOD), 470	LSMESTIMATE statement (PHREG), 485
LSMEANS statement (LOGISTIC), 470	LSMESTIMATE statement (PLM), 485
LSMEANS statement (ORTHOREG), 470	LSMESTIMATE statement
LSMEANS statement (PHREG), 470	(SURVEYLOGISTIC), 485
LSMEANS statement (PLM), 470	LSMESTIMATE statement (SURVEYPHREG),
LSMEANS statement (SURVEYLOGISTIC),	485
470	LSMESTIMATE statement (SURVEYREG),
LSMEANS statement (SURVEYPHREG), 470	485
LSMEANS statement (SURVEYREG), 470	SLICE statement (GENMOD), 470
LSMESTIMATE statement (GENMOD), 485	SLICE statement (GLIMMIX), 470
LSMESTIMATE statement (LOGISTIC), 485	SLICE statement (CLINWITA), 470 SLICE statement (LOGISTIC), 470
LSMESTIMATE statement (MIXED), 485	SLICE statement (MIXED), 470
LSMESTIMATE statement (ORTHOREG), 485	SLICE statement (NIXED), 470 SLICE statement (ORTHOREG), 470
LSMESTIMATE statement (PHREG), 485	SLICE statement (PHREG), 470
LSMESTIMATE statement (PLM), 485	SLICE statement (PLM), 470
LSMESTIMATE statement	SLICE statement (TEW), 470 SLICE statement (SURVEYLOGISTIC), 470
(SURVEYLOGISTIC), 485	SLICE statement (SURVEYPHREG), 470
LSMESTIMATE statement (SURVEYPHREG),	SLICE statement (SURVEYREG), 470
485	ATLEN= option
LSMESTIMATE statement (SURVEYREG),	EFFECTPLOT statement, 426
485	ATORDER= option
SLICE statement (GENMOD), 470	EFFECTPLOT statement, 426
SLICE statement (GLIMMIX), 470 SLICE statement (GLIMMIX), 470	EFFECTFLOT statement, 420
SLICE statement (GLIMMIX), 470 SLICE statement (LOGISTIC), 470	В
SLICE statement (LOGISTIC), 470 SLICE statement (MIXED), 470	~
	PASIS antion
SLICE statement (ORTHOREG), 470	BASIS option EFFECT statement, spling (GLIMMIX), 415
SLICE statement (PHREG), 470	EFFECT statement, spline (GLIMMIX), 415
SLICE statement (PLM), 470	EFFECT statement, spline (GLMSELECT), 415

EFFECT statement, spline (HPMIXED), 415	FCONV option, 497
EFFECT statement, spline (LOGISTIC), 415	FCONV2 option, 498
EFFECT statement, spline (ORTHOREG), 415	FSIZE option, 498
EFFECT statement, spline (PHREG), 415	FTOL option, 497
EFFECT statement, spline (PLS), 415	FTOL2 option, 498
EFFECT statement, spline (QUANTREG), 415	GCONV option, 498
EFFECT statement, spline (QOANTREG), 415	GCONV2 option, 499
EFFECT statement, spline	GTOL option, 498
(SURVEYLOGISTIC), 415	GTOL2 option, 499
EFFECT statement, spline (SURVEYREG), 415	HESCAL option, 499
BYLEVEL option	HS option, 499
LSMEANS statement (GENMOD), 471	INHESSIAN option, 500
LSMEANS statement (LOGISTIC), 471	INSTEP option, 500
LSMEANS statement (DOTHOREG), 471	LCDEACT= option, 500
	*
LSMEANS statement (PHREG), 471	LCEPSILON= option, 501
LSMEANS statement (PLM), 471	LCSINGULAR= option, 501
LSMEANS statement (SURVEYLOGISTIC),	LINESEARCH option, 501
471	LIS option, 501
LSMEANS statement (SURVEYPHREG), 471	LSPRECISION option, 502
LSMEANS statement (SURVEYREG), 471	MAXFU option, 502
LSMESTIMATE statement (GENMOD), 485	MAXFUNC option, 502
LSMESTIMATE statement (LOGISTIC), 485	MAXIT option, 502
LSMESTIMATE statement (MIXED), 485	MAXITER option, 502
LSMESTIMATE statement (ORTHOREG), 485	MAXSTEP option, 503
LSMESTIMATE statement (PHREG), 485	MAXTIME option, 503
LSMESTIMATE statement (PLM), 485	MINIT option, 503
LSMESTIMATE statement	MINITER option, 503
(SURVEYLOGISTIC), 485	MSINGULAR= option, 503
LSMESTIMATE statement (SURVEYPHREG),	REST option, 503
485	RESTART option, 503
LSMESTIMATE statement (SURVEYREG),	SINGULAR= option, 504
485	SOCKET option, 504
SLICE statement (GENMOD), 471	TECH option, 504
SLICE statement (GLIMMIX), 471	TECHNIQUE option, 504
SLICE statement (LOGISTIC), 471	UPD option, 505
SLICE statement (MIXED), 471	VSINGULAR= option, 506
SLICE statement (ORTHOREG), 471	XSIZE option, 506
SLICE statement (PHREG), 471	XTOL option, 506
SLICE statement (PLM), 471	CATEGORY= option
SLICE statement (SURVEYLOGISTIC), 471	ESTIMATE statement (LOGISTIC), 452
SLICE statement (SURVEYPHREG), 471	ESTIMATE statement (PLM), 452
SLICE statement (SURVEYREG), 471	ESTIMATE statement (SURVEYLOGISTIC),
<i>\</i>	452
C	LSMESTIMATE statement (GENMOD), 485
	LSMESTIMATE statement (LOGISTIC), 485
CALIS procedure, NLOPTIONS statement	LSMESTIMATE statement (PLM), 485
ABSCONV option, 495	LSMESTIMATE statement
ABSFCONV option, 496	(SURVEYLOGISTIC), 485
ABSGCONV option, 496	CHISQ option
ABSGTOL option, 496	ESTIMATE statement (ORTHOREG), 453
ABSTOL option, 495	ESTIMATE statement (OKTHOKEG), 433 ESTIMATE statement (PLM), 453
ABSXCONV option, 496	ESTIMATE statement (FLM), 453 ESTIMATE statement (SURVEYPHREG), 453
ABSXTOL option, 496	ESTIMATE statement (SURVEYREG), 453
ASSATOL option, 490 ASINGULAR= option, 497	· · · · · · · · · · · · · · · · · · ·
ASHNOULAK - Upuuli, 47/	LSMESTIMATE statement (MIXED), 486

LSMESTIMATE statement (ORTHOREG), 486 LSMESTIMATE statement (PLM), 486	CLUSTER option EFFECTPLOT statement, 427
LSMESTIMATE statement (SURVEYPHREG), 486	CORR option ESTIMATE statement (LOGISTIC), 453
LSMESTIMATE statement (SURVEYREG),	ESTIMATE statement (ORTHOREG), 453
486	ESTIMATE statement (PHREG), 453
TEST statement (ORTHOREG), 515	ESTIMATE statement (PLM), 453
TEST statement (PLM), 515	ESTIMATE statement (SURVEYLOGISTIC),
TEST statement (SURVEYPHREG), 515	453
TEST statement (SURVEYREG), 515	ESTIMATE statement (SURVEYPHREG), 453
CL option	ESTIMATE statement (SURVEYREG), 453
ESTIMATE statement (LOGISTIC), 453	LSMEANS statement (GENMOD), 471
ESTIMATE statement (ORTHOREG), 453	LSMEANS statement (LOGISTIC), 471
ESTIMATE statement (PHREG), 453	LSMEANS statement (ORTHOREG), 471
ESTIMATE statement (PLM), 453	LSMEANS statement (PHREG), 471
ESTIMATE statement (SURVEYLOGISTIC),	LSMEANS statement (PLM), 471
453	LSMEANS statement (SURVEYLOGISTIC),
ESTIMATE statement (SURVEYPHREG), 453	471
ESTIMATE statement (SURVEYREG), 453	LSMEANS statement (SURVEYPHREG), 471
LSMEANS statement (GENMOD), 471	LSMEANS statement (SURVEYREG), 471
LSMEANS statement (LOGISTIC), 471	LSMESTIMATE statement (GENMOD), 486
LSMEANS statement (ORTHOREG), 471	LSMESTIMATE statement (LOGISTIC), 486
LSMEANS statement (PHREG), 471	LSMESTIMATE statement (MIXED), 486
LSMEANS statement (PLM), 471	LSMESTIMATE statement (ORTHOREG), 486
LSMEANS statement (SURVEYLOGISTIC),	LSMESTIMATE statement (PHREG), 486
471	LSMESTIMATE statement (PLM), 486
LSMEANS statement (SURVEYPHREG), 471	LSMESTIMATE statement
LSMEANS statement (SURVEYREG), 471	(SURVEYLOGISTIC), 486
LSMESTIMATE statement (GENMOD), 486	LSMESTIMATE statement (SURVEYPHREG),
LSMESTIMATE statement (LOGISTIC), 486	486
LSMESTIMATE statement (MIXED), 486	LSMESTIMATE statement (SURVEYREG),
LSMESTIMATE statement (ORTHOREG), 486	486
LSMESTIMATE statement (PHREG), 486	SLICE statement (GENMOD), 471
LSMESTIMATE statement (PLM), 486	SLICE statement (GLIMMIX), 471
LSMESTIMATE statement	SLICE statement (LOGISTIC), 471
(SURVEYLOGISTIC), 486	SLICE statement (MIXED), 471
LSMESTIMATE statement (SURVEYPHREG),	SLICE statement (ORTHOREG), 471
486	SLICE statement (PHREG), 471
LSMESTIMATE statement (SURVEYREG),	SLICE statement (PLM), 471
486	SLICE statement (SURVEYLOGISTIC), 471
SLICE statement (GENMOD), 471	SLICE statement (SURVEYPHREG), 471
SLICE statement (GLIMMIX), 471	SLICE statement (SURVEYREG), 471
SLICE statement (CDGISTIC), 471	COV option
SLICE statement (MIXED), 471	ESTIMATE statement (LOGISTIC), 453
SLICE statement (ORTHOREG), 471	ESTIMATE statement (ORTHOREG), 453
SLICE statement (OKTTIOKES), 471	ESTIMATE statement (PHREG), 453
SLICE statement (PLM), 471	ESTIMATE statement (PLM), 453
SLICE statement (SURVEYLOGISTIC), 471	ESTIMATE statement (SURVEYLOGISTIC),
SLICE statement (SURVEYPHREG), 471	453
SLICE statement (SURVEYREG), 471	ESTIMATE statement (SURVEYPHREG), 453
CLI option EFFECTRI OT statement, 427	ESTIMATE statement (SURVEYREG), 453
EFFECTPLOT statement, 427	LSMEANS statement (GENMOD), 471
CLM option	LSMEANS statement (LOGISTIC), 471
EFFECTPLOT statement, 427	LSMEANS statement (ORTHOREG), 471

LSMEANS statement (PHREG), 471	EFFECT statement, polynomial
LSMEANS statement (PLM), 471	(GLMSELECT), 411
LSMEANS statement (SURVEYLOGISTIC),	EFFECT statement, polynomial (HPMIXED),
471	411
LSMEANS statement (SURVEYPHREG), 471	EFFECT statement, polynomial (LOGISTIC),
LSMEANS statement (SURVEYREG), 471	411
LSMESTIMATE statement (GENMOD), 486	EFFECT statement, polynomial (ORTHOREG),
LSMESTIMATE statement (LOGISTIC), 486	411
LSMESTIMATE statement (MIXED), 486	EFFECT statement, polynomial (PHREG), 411
LSMESTIMATE statement (ORTHOREG), 486	EFFECT statement, polynomial (PLS), 411
LSMESTIMATE statement (PHREG), 486	EFFECT statement, polynomial
LSMESTIMATE statement (PLM), 486	(ROBUSTREG), 411
LSMESTIMATE statement	EFFECT statement, polynomial
(SURVEYLOGISTIC), 486	(SURVEYLOGISTIC), 411
LSMESTIMATE statement (SURVEYPHREG),	EFFECT statement, polynomial
486	(SURVEYREG), 411
LSMESTIMATE statement (SURVEYREG),	EFFECT statement, spline (GLIMMIX), 415
486	EFFECT statement, spline (GLMSELECT), 415
SLICE statement (GENMOD), 471	EFFECT statement, spline (HPMIXED), 415
SLICE statement (GLIMMIX), 471	EFFECT statement, spline (LOGISTIC), 415
SLICE statement (LOGISTIC), 471	EFFECT statement, spline (ORTHOREG), 415
SLICE statement (MIXED), 471	EFFECT statement, spline (PHREG), 415
SLICE statement (ORTHOREG), 471	EFFECT statement, spline (PLS), 415
SLICE statement (PHREG), 471	EFFECT statement, spline (QUANTREG), 415
SLICE statement (PLM), 471	EFFECT statement, spline (ROBUSTREG), 415
SLICE statement (SURVEYLOGISTIC), 471	EFFECT statement, spline
SLICE statement (SURVEYPHREG), 471	(SURVEYLOGISTIC), 415
SLICE statement (SURVEYREG), 471	EFFECT statement, spline (SURVEYREG), 415
SZISZ SMIONION (S SIN ZIIZZS), 171	DESIGNROLE option
D	EFFECT statement, lag (GLIMMIX), 408
	EFFECT statement, lag (GLMSELECT), 408
DAMPSTEP option	EFFECT statement, lag (HPMIXED), 408
NLOPTIONS statement (GLIMMIX), 497	EFFECT statement, lag (LOGISTIC), 408
DATABOUNDARY option	EFFECT statement, lag (ORTHOREG), 408
EFFECT statement, spline (GLIMMIX), 415	EFFECT statement, lag (PHREG), 408
EFFECT statement, spline (GLMSELECT), 415	EFFECT statement, lag (PLS), 408
EFFECT statement, spline (HPMIXED), 415	EFFECT statement, lag (ROBUSTREG), 408
EFFECT statement, spline (LOGISTIC), 415	EFFECT statement, lag (SURVEYLOGISTIC),
EFFECT statement, spline (ORTHOREG), 415	408
EFFECT statement, spline (PHREG), 415	EFFECT statement, lag (SURVEYREG), 408
EFFECT statement, spline (PLS), 415	DETAILS option
EFFECT statement, spline (QUANTREG), 415	EFFECT statement, lag (GLIMMIX), 409
EFFECT statement, spline (ROBUSTREG), 415	EFFECT statement, lag (GLMSELECT), 409
EFFECT statement, spline	EFFECT statement, lag (HPMIXED), 409
(SURVEYLOGISTIC), 415	EFFECT statement, lag (LOGISTIC), 409
EFFECT statement, spline (SURVEYREG), 415	EFFECT statement, lag (ORTHOREG), 409
DDF= option	EFFECT statement, lag (PHREG), 409
TEST statement (ORTHOREG), 516	EFFECT statement, lag (PLS), 409
TEST statement (PLM), 516	EFFECT statement, lag (ROBUSTREG), 409
TEST statement (FLW), 510 TEST statement (SURVEYPHREG), 516	EFFECT statement, lag (KOBUSTREG), 409 EFFECT statement, lag (SURVEYLOGISTIC),
TEST statement (SURVEYREG), 516	409
DEGREE option	サリフ
DIATING OUTON	EFFECT statement log (CLIDVEVDEC) 400
<u> •</u>	EFFECT statement, lag (SURVEYREG), 409
EFFECT statement, polynomial (GLIMMIX), 411	EFFECT statement, lag (SURVEYREG), 409 EFFECT statement, multimember (GLIMMIX), 410

EFFECT statement, multimember	LSMEANS statement (SURVEYREG), 471
(GLMSELECT), 410	LSMESTIMATE statement (MIXED), 486
EFFECT statement, multimember (HPMIXED),	LSMESTIMATE statement (ORTHOREG), 486
410	LSMESTIMATE statement (PLM), 486
EFFECT statement, multimember (LOGISTIC), 410	LSMESTIMATE statement (SURVEYPHREG). 486
EFFECT statement, multimember	
,	LSMESTIMATE statement (SURVEYREG), 486
(ORTHOREG), 410	
EFFECT statement, multimember (PHREG), 410	SLICE statement (GLIMMIX), 471
EFFECT statement, multimember (PLS), 410	SLICE statement (MIXED), 471
EFFECT statement, multimember	SLICE statement (ORTHOREG), 471
(ROBUSTREG), 410	SLICE statement (PLM), 471
EFFECT statement, multimember	SLICE statement (SURVEYPHREG), 471
(SURVEYLOGISTIC), 410	SLICE statement (SURVEYREG), 471
EFFECT statement, multimember	DIFF option
(SURVEYREG), 410	LSMEANS statement (GENMOD), 471
EFFECT statement, polynomial (GLIMMIX),	LSMEANS statement (LOGISTIC), 471
411	LSMEANS statement (ORTHOREG), 471
EFFECT statement, polynomial	LSMEANS statement (PHREG), 471
(GLMSELECT), 411	LSMEANS statement (PLM), 471
EFFECT statement, polynomial (HPMIXED),	LSMEANS statement (SURVEYLOGISTIC),
411	471
EFFECT statement, polynomial (LOGISTIC),	LSMEANS statement (SURVEYPHREG), 471
411	LSMEANS statement (SURVEYREG), 471
EFFECT statement, polynomial (ORTHOREG),	SLICE statement (GENMOD), 471
411	SLICE statement (GLIMMIX), 471
EFFECT statement, polynomial (PHREG), 411	SLICE statement (LOGISTIC), 471
EFFECT statement, polynomial (PLS), 411	SLICE statement (MIXED), 471
EFFECT statement, polynomial	SLICE statement (ORTHOREG), 471
(ROBUSTREG), 411	SLICE statement (PHREG), 471
EFFECT statement, polynomial	SLICE statement (PLM), 471
(SURVEYLOGISTIC), 411	SLICE statement (SURVEYLOGISTIC), 471
EFFECT statement, polynomial	SLICE statement (SURVEYPHREG), 471
(SURVEYREG), 411	SLICE statement (SURVEYREG), 471
EFFECT statement, spline (GLIMMIX), 415	DIVISOR= option
EFFECT statement, spline (GLMSELECT), 415	ESTIMATE statement (LOGISTIC), 454
EFFECT statement, spline (HPMIXED), 415	ESTIMATE statement (ORTHOREG), 454
EFFECT statement, spline (LOGISTIC), 415	ESTIMATE statement (PHREG), 454
EFFECT statement, spline (ORTHOREG), 415	ESTIMATE statement (PLM), 454
EFFECT statement, spline (PHREG), 415	ESTIMATE statement (SURVEYLOGISTIC),
EFFECT statement, spline (PLS), 415	454
EFFECT statement, spline (QUANTREG), 415	ESTIMATE statement (SURVEYPHREG), 454
EFFECT statement, spline (ROBUSTREG), 415	ESTIMATE statement (SURVEYREG), 454
EFFECT statement, spline	LSMESTIMATE statement (GENMOD), 486
(SURVEYLOGISTIC), 415	LSMESTIMATE statement (LOGISTIC), 486
EFFECT statement, spline (SURVEYREG), 415	LSMESTIMATE statement (MIXED), 486
DF= option	LSMESTIMATE statement (ORTHOREG), 486
ESTIMATE statement (ORTHOREG), 453	LSMESTIMATE statement (PHREG), 486
ESTIMATE statement (PLM), 453	LSMESTIMATE statement (PLM), 486
ESTIMATE statement (FEM), 453 ESTIMATE statement (SURVEYPHREG), 453	LSMESTIMATE statement
ESTIMATE statement (SURVEYREG), 453 ESTIMATE statement (SURVEYREG), 453	(SURVEYLOGISTIC), 486
LSMEANS statement (ORTHOREG), 471	LSMESTIMATE statement (SURVEYPHREG).
	486
LSMEANS statement (PLM), 471	400
LSMEANS statement (SURVEYPHREG), 471	

LSMESTIMATE statement (SURVEYREG), 486	E2 option TEST statement (ORTHOREG), 516
	TEST statement (PLM), 516
E	TEST statement (SURVEYPHREG), 516
	TEST statement (SURVEYREG), 516
E option	E3 option
ESTIMATE statement (LOGISTIC), 454	TEST statement (ORTHOREG), 516
ESTIMATE statement (ORTHOREG), 454	TEST statement (PLM), 516
ESTIMATE statement (PHREG), 454	TEST statement (SURVEYPHREG), 516
ESTIMATE statement (PLM), 454	TEST statement (SURVEYREG), 516
ESTIMATE statement (SURVEYLOGISTIC),	EFFECT statement
454	collection effect, 406
ESTIMATE statement (SURVEYPHREG), 454	GLIMMIX procedure, 404
ESTIMATE statement (SURVEYREG), 454	GLMSELECT procedure, 404
LSMEANS statement (GENMOD), 472	HPMIXED procedure, 404
LSMEANS statement (LOGISTIC), 472	lag effect, 406
LSMEANS statement (ORTHOREG), 472	LOGISTIC procedure, 404
LSMEANS statement (PHREG), 472	multimember effect, 409
LSMEANS statement (PLM), 472	ORTHOREG procedure, 404
LSMEANS statement (SURVEYLOGISTIC),	PHREG procedure, 404
472	PLS procedure, 404
LSMEANS statement (SURVEYPHREG), 472	polynomial effect, 411
LSMEANS statement (SURVEYREG), 472	QUANTREG procedure, 404
LSMESTIMATE statement (GENMOD), 487	ROBUSTREG procedure, 404
LSMESTIMATE statement (LOGISTIC), 487	spline effect, 414
LSMESTIMATE statement (MIXED), 487	SURVEYLOGISTIC procedure, 404
LSMESTIMATE statement (ORTHOREG), 487	SURVEYREG procedure, 404
LSMESTIMATE statement (PHREG), 487	EFFECTPLOT statement
LSMESTIMATE statement (PLM), 487	GENMOD procedure, 423
LSMESTIMATE statement	LOGISTIC procedure, 423
(SURVEYLOGISTIC), 487	ORTHOREG procedure, 423
LSMESTIMATE statement (SURVEYPHREG),	PLM procedure, 423
487	ELSM option
LSMESTIMATE statement (SURVEYREG),	LSMESTIMATE statement (GENMOD), 487
487	LSMESTIMATE statement (LOGISTIC), 487
SLICE statement (GENMOD), 472	LSMESTIMATE statement (MIXED), 487
SLICE statement (GLIMMIX), 472	LSMESTIMATE statement (ORTHOREG), 487
SLICE statement (LOGISTIC), 472	LSMESTIMATE statement (PHREG), 487
SLICE statement (MIXED), 472	LSMESTIMATE statement (PLM), 487
SLICE statement (ORTHOREG), 472	LSMESTIMATE statement
SLICE statement (PHREG), 472	(SURVEYLOGISTIC), 487
SLICE statement (PLM), 472	LSMESTIMATE statement (SURVEYPHREG),
SLICE statement (SURVEYLOGISTIC), 472	487
SLICE statement (SURVEYPHREG), 472	LSMESTIMATE statement (SURVEYREG),
SLICE statement (SURVEYREG), 472	487
TEST statement (ORTHOREG), 516	ESTIMATE statement
TEST statement (PLM), 516	LOGISTIC procedure, 449
TEST statement (SURVEYPHREG), 516	ORTHOREG procedure, 449
TEST statement (SURVEYREG), 516	PHREG procedure, 449
E1 option	PLM procedure, 449
TEST statement (ORTHOREG), 516	SURVEYLOGISTIC procedure, 449
TEST statement (PLM), 516	SURVEYPHREG procedure, 449
TEST statement (SURVEYPHREG), 516	SURVEYREG procedure, 449
TEST statement (SURVEYREG), 516	EXP option

ESTIMATE statement (LOGISTIC), 454	NLOPTIONS statement (SURVEYPHREG), 497
ESTIMATE statement (PHREG), 454	NLOPTIONS statement (VARIOGRAM), 497
ESTIMATE statement (PLM), 454	FTOL2 option
ESTIMATE statement (SURVEYLOGISTIC),	NLOPTIONS statement (CALIS), 498
454	NLOPTIONS statement (GLIMMIX), 498
LSMEANS statement (GENMOD), 473	NLOPTIONS statement (HPMIXED), 498
LSMEANS statement (LOGISTIC), 473	NLOPTIONS statement (PHREG), 498
LSMEANS statement (PHREG), 473	NLOPTIONS statement (SURVEYPHREG), 498
LSMEANS statement (PLM), 473	NLOPTIONS statement (VARIOGRAM), 498
LSMEANS statement (SURVEYLOGISTIC),	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
473	G
LSMESTIMATE statement (GENMOD), 487	
LSMESTIMATE statement (LOGISTIC), 487	GCONV option
LSMESTIMATE statement (PHREG), 487	NLOPTIONS statement (CALIS), 498
LSMESTIMATE statement (PLM), 487	NLOPTIONS statement (GLIMMIX), 498
LSMESTIMATE statement (1 EW), 467	NLOPTIONS statement (HPMIXED), 498
(SURVEYLOGISTIC), 487	NLOPTIONS statement (PHREG), 498
SLICE statement (GENMOD), 473	NLOPTIONS statement (SURVEYPHREG), 498
SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473	NLOPTIONS statement (VARIOGRAM), 498
	* * * * * * * * * * * * * * * * * * * *
SLICE statement (LOGISTIC), 473	GCONV2 option
SLICE statement (PHREG), 473	NLOPTIONS statement (CALIS), 499
SLICE statement (PLM), 473	NLOPTIONS statement (GLIMMIX), 499
SLICE statement (SURVEYLOGISTIC), 473	NLOPTIONS statement (HPMIXED), 499
EXTEND= option	NLOPTIONS statement (PHREG), 499
EFFECTPLOT statement, 427	NLOPTIONS statement (SURVEYPHREG), 499
To	NLOPTIONS statement (VARIOGRAM), 499
\mathbf{F}	GENMOD procedure, EFFECTPLOT statement
	ALPHA= option, 425
FCONV option	AT option, 425
NLOPTIONS statement (CALIS), 497	ATLEN= option, 426
NLOPTIONS statement (GLIMMIX), 497	ATORDER= option, 426
NLOPTIONS statement (HPMIXED), 497	CLI option, 427
NLOPTIONS statement (PHREG), 497	CLM option, 427
NLOPTIONS statement (SURVEYPHREG), 497	CLUSTER option, 427
NLOPTIONS statement (VARIOGRAM), 497	EXTEND= option, 427
FCONV2 option	GRIDSIZE= option, 427
NLOPTIONS statement (CALIS), 498	ILINK option, 427
NLOPTIONS statement (GLIMMIX), 498	INDIVIDUAL option, 427
NLOPTIONS statement (HPMIXED), 498	LIMITS option, 427
NLOPTIONS statement (PHREG), 498	LINK option, 427
NLOPTIONS statement (SURVEYPHREG), 498	MOFF option, 428
NLOPTIONS statement (VARIOGRAM), 498	NCOLS= option, 428
FSIZE option	NOCLI option, 428
NLOPTIONS statement (CALIS), 498	NOCLM option, 428
NLOPTIONS statement (GLIMMIX), 498	NOLIMITS option, 428
NLOPTIONS statement (HPMIXED), 498	NOOBS option, 428
NLOPTIONS statement (PHREG), 498	NROWS= option, 428
NLOPTIONS statement (SURVEYPHREG), 498	OBS option, 428
NLOPTIONS statement (VARIOGRAM), 498	PLOTBY= option, 431
FTOL option	PLOTBYLEN= option, 432
NLOPTIONS statement (CALIS), 497	POLYBAR option, 432
NLOPTIONS statement (GLIMMIX), 497	PREDLABEL= option, 432
NLOPTIONS statement (HPMIXED), 497	SHOWCLEGEND option, 432
NLOPTIONS statement (PHREG), 497	SLICEBY= option, 432
TYLOT TIOTYS STATEMENT (TIMEO), 47/	SEICED I - OPHOII, +32

SMOOTH option, 432	ADJUST= option, 468
UNPACK option, 432	ALPHA= option, 470
X = option, 432	AT= option, 470
Y= option, 433	BYLEVEL option, 471
YRANGE= option, 433	CL option, 471
GENMOD procedure, LSMEANS statement	CORR option, 471
ADJUST= option, 468	COV option, 471
ALPHA= option, 470	DIFF option, 471
AT= option, 470	E option, 472
BYLEVEL option, 471	EXP option, 473
CL option, 471	ILINK option, 473
CORR option, 471	LINES option, 473
COV option, 471	MEANS or NOMEANS option, 473
DIFF option, 471	NOF option, 513
E option, 472	OBSMARGINS= option, 474
EXP option, 473	ODDSRATIO option, 473
ILINK option, 473	ODS table names, 513
LINES option, 473	PDIFF option, 474
MEANS or NOMEANS option, 473	PLOTS= option, 474
<u>*</u> ·	•
OBSMARGINS= option, 474	SEED= option, 478
ODDSRATIO option, 473	SIMPLE= option, 513
ODS graph names, 480	SINGULAR= option, 478
ODS table names, 479	SLICEBY= option, 513
PDIFF option, 474	STEPDOWN option, 478
PLOTS= option, 474	GLIMMIX procedure, EFFECT statement
SEED= option, 478	BASIS option (spline), 415
SINGULAR= option, 478	collection effect, 406
STEPDOWN option, 478	DATABOUNDARY option (spline), 415
GENMOD procedure, LSMESIIMATE statement	DEGREE option (polynomial), 411
ADJUST= option, 485	DEGREE option (spline), 415
ALPHA= option, 485	DESIGNROLE option (lag), 408
AT= option, 485	DETAILS option (lag), 409
BYLEVEL option, 485	DETAILS option (multimember), 410
CATEGORY= option, 485	DETAILS option (polynomial), 411
CL option, 486	DETAILS option (spline), 415
CORR option, 486	KNOTMAX option (spline), 415
COV option, 486	KNOTMETHOD option (spline), 415
DIVISOR= option, 486	KNOTMIN option (spline), 417
E option, 487	LABELSTYLE option (polynomial), 411
ELSM option, 487	lag effect, 406
EXP option, 487	MDEGREE option (polynomial), 412
ILINK option, 487	multimember effect, 409
JOINT option, 488	NATURALCUBIC option (spline), 417
LOWER option, 489	NLAG option (lag), 409
OBSMARGINS= option, 489	NOEFFECT option (multimember), 410
ODS graph names, 493	NOSEPARATE option (polynomial), 412
ODS table names, 492	PERIOD option (lag), 408
PLOTS= option, 489	polynomial effect, 411
SEED= option, 490	SEPARATE option (spline), 417
SINGULAR= option, 491	spline effect, 414
STEPDOWN option, 491	STANDARDIZE option (polynomial), 412
TESTVALUE= option, 492	WITHIN option (lag), 408
UPPER option, 492	GLIMMIX procedure, NLOPTIONS statement
GENMOD procedure, SLICE statement	ABSCONV option, 495

ABSFCONV option, 496	AT= option, 470
ABSGCONV option, 496	BYLEVEL option, 471
ABSGTOL option, 496	CL option, 471
ABSTOL option, 495	CORR option, 471
ABSXCONV option, 496	COV option, 471
ABSXTOL option, 496	DF= option, 471
ASINGULAR= option, 497	DIFF option, 471
DAMPSTEP option, 497	E option, 472
FCONV option, 497	EXP option, 473
FCONV2 option, 498	ILINK option, 473
FSIZE option, 498	LINES option, 473
FTOL option, 497	MEANS or NOMEANS option, 473
FTOL2 option, 498	NOF option, 513
GCONV option, 498	OBSMARGINS= option, 474
GCONV2 option, 499	ODDSRATIO option, 473
GTOL option, 498	ODS graph names, 480
GTOL2 option, 499	ODS table names, 513
HESCAL option, 499	PDIFF option, 474
HS option, 499	PLOTS= option, 474
INHESS option, 500	SEED= option, 478
INHESSIAN option, 500	SIMPLE= option, 513
INSTEP option, 500	SINGULAR= option, 478
LCDEACT= option, 500	SLICEBY= option, 513
LCEPSILON= option, 501	STEPDOWN option, 478
LCSINGULAR= option, 501	GLMSELECT procedure, EFFECT statement
LINESEARCH option, 501	BASIS option (spline), 415
LIS option, 501	collection effect, 406
LSP option, 502	DATABOUNDARY option (spline), 415
LSPRECISION option, 502	DEGREE option (polynomial), 411
MAXFU option, 502	DEGREE option (spline), 415
MAXFUNC option, 502	DESIGNROLE option (lag), 408
MAXIT option, 502	DETAILS option (lag), 409
<u>*</u>	DETAILS option (rag), 409 DETAILS option (multimember), 410
MAXITER option, 502	DETAILS option (multimember), 410 DETAILS option (polynomial), 411
MAXSTEP option, 503	· · · · · · · · · · · · · · · ·
MAXTIME option, 503	DETAILS option (spline), 415
MINITED artism, 503	KNOTMAX option (spline), 415
MINITER option, 503	KNOTMETHOD option (spline), 417
MSINGULAR= option, 503	KNOTMIN option (spline), 417
REST option, 503	LABELSTYLE option (polynomial), 411
RESTART option, 503	lag effect, 406
SINGULAR= option, 504	MDEGREE option (polynomial), 412
SOCKET option, 504	multimember effect, 409
TECH option, 504	NATURALCUBIC option (spline), 417
TECHNIQUE option, 504	NLAG option (lag), 409
UPD option, 505	NOEFFECT option (multimember), 410
UPDATE option, 505	NOSEPARATE option (polynomial), 412
VSINGULAR= option, 506	PERIOD option (lag), 408
XCONV option, 506	polynomial effect, 411
XSIZE option, 506	SEPARATE option (spline), 417
XTOL option, 506	spline effect, 414
GLIMMIX procedure, SLICE statement	SPLIT option (spline), 417
ADJDFE= option, 467	STANDARDIZE option (polynomial), 412
ADJUST= option, 468	WITHIN option (lag), 408
ALPHA= option, 470	GRIDSIZE= option

EFFECTPLOT statement, 427	HPMIXED procedure, NLOPTIONS statement
GTOL option	ABSCONV option, 495
NLOPTIONS statement (CALIS), 498	ABSFCONV option, 496
NLOPTIONS statement (GLIMMIX), 498	ABSGCONV option, 496
NLOPTIONS statement (HPMIXED), 498	ABSGTOL option, 496
NLOPTIONS statement (PHREG), 498	ABSTOL option, 495
NLOPTIONS statement (SURVEYPHREG), 498	ABSXCONV option, 496
NLOPTIONS statement (VARIOGRAM), 498	ABSXTOL option, 496
GTOL2 option	ASINGULAR= option, 497
NLOPTIONS statement (CALIS), 499	FCONV option, 497
NLOPTIONS statement (GLIMMIX), 499	FCONV2 option, 498
NLOPTIONS statement (HPMIXED), 499	FSIZE option, 498
NLOPTIONS statement (PHREG), 499	FTOL option, 497
NLOPTIONS statement (SURVEYPHREG), 499	FTOL2 option, 498
NLOPTIONS statement (VARIOGRAM), 499	GCONV option, 498
, , , , , , , , , , , , , , , , , , , ,	GCONV2 option, 499
H	GTOL option, 498
	GTOL2 option, 499
HESCAL option	HESCAL option, 499
NLOPTIONS statement (CALIS), 499	HS option, 499
NLOPTIONS statement (GLIMMIX), 499	INHESSIAN option, 500
NLOPTIONS statement (HPMIXED), 499	INSTEP option, 500
NLOPTIONS statement (PHREG), 499	LCDEACT= option, 500
NLOPTIONS statement (SURVEYPHREG), 499	LCEPSILON= option, 501
NLOPTIONS statement (VARIOGRAM), 499	LCSINGULAR= option, 501
HPMIXED procedure, EFFECT statement	LINESEARCH option, 501
BASIS option (spline), 415	LIS option, 501
collection effect, 406	LSP option, 502
DATABOUNDARY option (spline), 415	LSPRECISION option, 502
DEGREE option (polynomial), 411	MAXFU option, 502
DEGREE option (spline), 415	MAXFUNC option, 502
DESIGNROLE option (lag), 408	MAXIT option, 502
DETAILS option (lag), 409	MAXITER option, 502
DETAILS option (multimember), 410	MAXSTEP option, 503
DETAILS option (polynomial), 411	MAXTIME option, 503
DETAILS option (spline), 415	MINIT option, 503
KNOTMAX option (spline), 415	MINITER option, 503
KNOTMETHOD option (spline), 415	MSINGULAR= option, 503
KNOTMIN option (spline), 417	REST option, 503
LABELSTYLE option (polynomial), 411	RESTART option, 503
lag effect, 406	SINGULAR= option, 504
MDEGREE option (polynomial), 412	SOCKET option, 504
multimember effect, 409	TECH option, 504
NATURALCUBIC option (spline), 417	TECHNIQUE option, 504
NLAG option (lag), 409	UPD option, 505
NOEFFECT option (multimember), 410	XSIZE option, 506
NOSEPARATE option (polynomial), 412	XTOL option, 506
PERIOD option (lag), 408	<u> -</u>
polynomial effect, 411	HS option NLOPTIONS statement (CALIS), 499
SEPARATE option (spline), 417	
spline effect, 414	NLOPTIONS statement (GLIMMIX), 499
SPLIT option (spline), 417	NLOPTIONS statement (HPMIXED), 499
	NLOPTIONS statement (PHREG), 499
STANDARDIZE option (polynomial), 412	NLOPTIONS statement (SURVEYPHREG), 499
WITHIN option (lag), 408	NLOPTIONS statement (VARIOGRAM), 499

ILINK option EFFECTPLOT statement, 427 ESTIMATE statement (LOGISTIC), 455 ESTIMATE statement (LOGISTIC), 455 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (SURVEYLOGISTIC), 454 LSMEANS statement (GENMOD), 473 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (GENMOD), 473 LSMEANS statement (GENMOD), 473 LSMEANS statement (GENMOD), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 473 SLICE statement (GURVEYLOGISTIC), 473 SNDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCALIS), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS Statement (HTYPE= option	TEST statement (PLM), 516
TEST statement (SURVEYPHREG), 516 TEST statement (SURVEYREG), 516 ILINK option EFFECTPLOT statement, 427 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (CRIN, 454 ESTIMATE statement (PLM), 454 ESTIMATE statement (GLMVEYELOGISTIC), 454 LSMEANS statement (GLMVEYELOGISTIC), 473 LSMEANS statement (GLMVEYELOGISTIC), 473 LSMEANS statement (GLMVEYELOGISTIC), 473 LSMEANS statement (EVEVEYLOGISTIC), 473 LSMESTIMATE statement (GENMOD), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (COGISTIC), 487 LSMESTIMATE statement (COGISTIC), 487 SLICE statement (GLMMIX), 473 SLICE statement (GLMMIX), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement	TEST statement (ORTHOREG), 516	TEST statement (SURVEYPHREG), 516
ILINK option EFFECTPLOT statement (LOGISTIC), 454 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (GENMOD), 473 LSMEANS statement (GENMOD), 473 LSMEANS statement (PLM), 445 LSMEANS statement (GENMOD), 473 LSMEANS statement (GENMOD), 487 LSMESTIMATE statement (COGISTIC), 487 SLICE statement (GENMOD), 473 SLICE statement (GENMOD), 474 SLICE statement, spline (GLIMMIX), 415 EFFEC	TEST statement (PLM), 516	TEST statement (SURVEYREG), 516
LLINK option EFFECTPLOT statement, 427 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (PLM), 454 ESTIMATE statement (GLM), 454 ESTIMATE statement (GLM), 454 ESTIMATE statement (GLM), 455 ESTIMATE statement (PLM), 455 ESTIMATE statement (PLM), 455 ESTIMATE statement (PLM), 455 LSMEANS statement (GENMOD), 473 LSMEANS statement (GURVEYLOGISTIC), 473 LSMEANS statement (GURVEYLOGISTIC), 473 LSMESTIMATE statement (GURVEYLOGISTIC), 487 LSMESTIMATE statement (GURVEYLOGISTIC), 487 LSMESTIMATE statement (COGISTIC), 487 LSMESTIMATE statement (COGISTIC), 487 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (GURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GURVEYPHREG), 500 NLOPTIONS statement (GURVEYPHREG), 500 NLOPTIONS statement (CRILMIX), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS stat	TEST statement (SURVEYPHREG), 516	
ILINK option EFFECTPLOT statement, 427 ESTIMATE statement (LOGISTIC), 455 ESTIMATE statement (LOGISTIC), 455 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (SURVEYLOGISTIC), 454 LSMEANS statement (GENMOD), 473 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (GENMOD), 473 LSMEANS statement (GENMOD), 473 LSMEANS statement (GENMOD), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 473 SLICE statement (GURVEYLOGISTIC), 473 SNDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCALIS), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS Statement (TEST statement (SURVEYREG), 516	J
LINK option EFFECTPLOT statement, 427 ESTIMATE statement (LOGISTIC), 455 ESTIMATE statement (PREG), 455 ESTIMATE statement (SURVEYLOGISTIC), 454 ESTIMATE statement (SURVEYLOGISTIC), 473 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (SURVEYLOGISTIC), 473 LSMESTIMATE statement (SURVEYPHREG), 455 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 SLICE statement (GENMOD), 473 SLICE statement (GENMOD), 473 SLICE statement (GENMOD), 473 SLICE statement (GENMOD), 473 SLICE statement (LOGISTIC), 473 SLICE statement (GURVEYLOGISTIC), 473 SLICE statement (GURVEYLOGISTIC), 473 SLICE statement (GURVEYLOGISTIC), 473 SLICE statement (GURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (GURNOD), 488 LSMESTIMATE statement (SURVEYPHREG), 488 LSMESTIMATE statement (SURVEYPHREG), 488 LSMESTIMATE statement (SURVEYPHREG), 489 LSMESTIMATE statement (SURVEYPHREG), 489 LSMESTIMATE statement (SURVEYPHREG), 473 SLICE statement (LOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYPHREG), 500 NLOPTIONS statement (PLMIX), 500 NLOPTIONS statement (PLMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (FREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (FREG), 500 NLOPTIONS statement (FRE	I	JOINT option
LILIK option EFFECTPLOT statement, 427 ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (PLM), 454 ESTIMATE statement (PLM), 454 ESTIMATE statement (GENMOD), 473 LSMEANS statement (GENMOD), 473 LSMEANS statement (PLM), 473 LSMEANS statement (PLM), 473 LSMEANS statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (GENMOD), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (FHERG), 455 LSMESTIMATE statement (IOGISTIC), 487 SLICE statement (GENMOD), 473 SLICE statement (GILMMIX), 500 NIOPTIONS statement (CALIS), 500 NIOPTIONS statement (CALIS), 500 NIOPTIONS statement (CALIS), 500 NIOPTIONS statement (CALIS), 500 NIOPTIONS statement (VARIOGRAM), 500 INSTEP option NIOPTIONS statement (VARIOGRAM), 500 INSTEP option NIOPTIONS statement (CALIS), 500 NIOPTIONS statement (CALIS), 500 NIOPTIONS statement (PHREG), 500 NIOPTIONS statem		÷
EFFECTPLOT statement (LOGISTIC), 454 ESTIMATE statement (PIREG), 455 ESTIMATE statement (PIREG), 455 ESTIMATE statement (PIREG), 455 ESTIMATE statement (PIREG), 455 ESTIMATE statement (SURVEYLOGISTIC), 454 LSMEANS statement (GENMOD), 473 LSMEANS statement (COGISTIC), 473 LSMEANS statement (PIM, 473 LSMEANS statement (PIM, 473 LSMEANS statement (SURVEYLOGISTIC), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PIM, 487 LSMESTIMATE statement (PIM, 487 LSMESTIMATE statement (PIM, 487 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (GURVEYLOGISTIC), 475 EFFECT statement, spline (GUNTHOREG), 415 EFFECT statement, spline (GLIMMIX), 41	ILINK option	· · · · · · · · · · · · · · · · · · ·
ESTIMATE statement (LOGISTIC), 454 ESTIMATE statement (SURVEYLOGISTIC), 454 LSMEANS statement (GENMOD), 473 LSMEANS statement (PLM), 473 LSMEANS statement (PLM), 473 LSMEANS statement (PLM), 473 LSMEANS statement (PLM), 473 LSMESTIMATE statement (SURVEYLOGISTIC), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GUNFEC), 487 SLICE statement (GUNFEC), 473 SLICE statement (FPLM), 473 SLICE statement (GUNFEC), 473 SLICE statement (FPLM), 473 SLICE statement (GUNFEC), 473 SLICE statement (GUNFEC), 473 SLICE statement (FPLM), 473 SLICE statement (GUNFEC),		ESTIMATE statement (PHREG), 455
ESTIMATE statement (SURVEYLOGISTIC), 454 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (RIMNE), 473 LSMEANS statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (GENMOD), 473 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (LOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (FIMIX), 500 NLOPTIONS statement (FIMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SU		ESTIMATE statement (PLM), 455
ESTIMATE statement (SURVEYLOGISTIC), 454 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (LOGISTIC), 473 LSMEANS statement (RIMNE), 473 LSMEANS statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (GENMOD), 473 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (LOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (FIMIX), 500 NLOPTIONS statement (FIMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SU	ESTIMATE statement (PLM), 454	ESTIMATE statement (SURVEYLOGISTIC),
LSMEANS statement (LOGISTIC), 473 LSMEANS statement (PLM), 473 LSMEANS statement (PLM), 473 LSMEANS statement (PLM), 473 LSMEANS statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (PLM), 487 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (PLM), 473 SLICE statement, spline (GLIMMIX), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PLM), 415 EFFECT statement, spline (PLM), 415 EFFECT statement, spline (PLM), 415 EFFECT statement, spline (ESTIMATE statement (SURVEYLOGISTIC),	455
LSMEANS statement (LOGISTIC), 473 LSMEANS statement (PLM), 473 LSMEANS statement (SURVEYLOGISTIC), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (GENMOD), 473 SLICE statement (LOGISTIC), 473 SLICE statement (LOGISTIC), 473 SLICE statement (LOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FPERG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS STATEMENT CORDITION COR	454	ESTIMATE statement (SURVEYPHREG), 455
LSMEANS statement (PLM), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 488 LSMESTIMATE statement (COGISTIC), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (GLMMIX), 473 SLICE statement (GLMMIX), 473 SLICE statement (GLMMIX), 473 SLICE statement (GLMMIX), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (GUMMIX), 500 NLOPTIONS statement (GUMMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CIMMIX), 500 NLOPTIONS STATEMENT CORRESSION CONTROL (CIMMIX), 415 EFFECT Statement, spline (CIMMIX),	LSMEANS statement (GENMOD), 473	ESTIMATE statement (SURVEYREG), 455
LSMEANS statement (SURVEYLOGISTIC), 473 LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 SLICE statement (GENMOD), 473 SLICE statement (GENMOD), 473 SLICE statement (HOMIX), 473 SLICE statement (LOGISTIC), 473 SLICE statement (LOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (VARIOGRAM), 500 INLOPTIONS statement (FIREG), 500 NLOPTIONS statement (CILIMMIX), 500 NLOPTIONS	LSMEANS statement (LOGISTIC), 473	LSMESTIMATE statement (GENMOD), 488
LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (GUNMOD), 473 SLICE statement (GENMOD), 473 SLICE statement (GLIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (ELIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (CALIS), 500 NLO	LSMEANS statement (PLM), 473	LSMESTIMATE statement (LOGISTIC), 488
LSMESTIMATE statement (GENMOD), 487 LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 SLICE statement (GENMOD), 473 SLICE statement (GLIMMIX), 473 SLICE statement (LOGISTIC), 473 SLICE statement (PLM), 473 SLICE statement (PLM), 473 SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (WARIOGRAM), 500 INLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (FMIXED), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (FMIXED), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (FMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (FMIXED), 500 NLOPTIONS STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT ST	LSMEANS statement (SURVEYLOGISTIC),	LSMESTIMATE statement (MIXED), 488
LSMESTIMATE statement (LOGISTIC), 487 LSMESTIMATE statement (PLM), 487 LSMESTIMATE statement (PLM), 487 SLICE Statement (GENMOD), 473 SLICE statement (GENMOD), 473 SLICE statement (LOGISTIC), 473 SLICE statement (LOGISTIC), 473 SLICE statement (BURVEYLOGISTIC), 473 SLICE statement (BURVEYLOGISTIC), 473 SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (PHIXED), 500 NLOPTIONS statement (PHIXED), 500 NLOPTIONS statement (PHIXED), 500 NLOPTIONS statement (PHIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (FLM), 488 LSMESTIMATE statement (SURVEYPHREG), 488 LSMESTIMATE statement (SURVEYPREG), 448 LSMESTIMATE statement (SURVEYPERG), 448 LSMESTIMATE statement (SURVEYPERG), 448 LSMESTIMATE statement (SURVEYPERG), 448 LSMESTIMATE statement (SURVEYPERG), 448 LSMESTIMATE statem	473	LSMESTIMATE statement (ORTHOREG), 488
LSMESTIMATE statement LSMESTIMATE statement (SURVEYLOGISTIC), 487 SLICE statement (GENMOD), 473 SLICE statement (GEIMMIX), 473 SLICE statement (GLIMMIX), 473 SLICE statement (BURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (VARIOGRAM), 500 NLOPTIONS statement (CALIS), 500 NL	LSMESTIMATE statement (GENMOD), 487	LSMESTIMATE statement (PHREG), 488
LSMESTIMATE statement (SURVEYLOGISTIC), 487 SLICE statement (GENMOD), 473 SLICE statement (IOGISTIC), 473 SLICE statement (IOGISTIC), 473 SLICE statement (PLM), 473 SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement	LSMESTIMATE statement (LOGISTIC), 487	LSMESTIMATE statement (PLM), 488
(SURVEYLOGISTIC), 487 SLICE statement (GEIMMOD), 473 SLICE statement (GLIMMIX), 473 SLICE statement (LOGISTIC), 473 SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INOPTIONS statement (VARIOGRAM), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (CALIS), 500 NLOPTIO	LSMESTIMATE statement (PLM), 487	LSMESTIMATE statement
SLICE statement (GLIMMIX), 473 SLICE statement (LOGISTIC), 473 SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SUMSLICE), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 475 SLICE statement (SURVEYLOGISTIC), 475 SLICE statement (CLIMMIX), 473 SLICE statement (SURVEYLOGISTIC), 475 SLICE statement (CLIMMIX), 473 SLICE statement (SURVEYLOGISTIC), 475 SLICE statement, spline (GLIMMIX), 415 SEFFECT statement, splin		· · · · · · · · · · · · · · · · · · ·
SLICE statement (LOGISTIC), 473 SLICE statement (PLM), 473 SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 SLICE statement (SURVEYLOGISTIC), 473 K INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option SLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 INHESSIAN option INHESSIAN option INHESSIAN option NLOPTIONS statement (VARIOGRAM), 500 INLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option INSTEP option SINSTEP option INIOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 EFFECT statement, spline (GLIMMIX), 415 E		
SLICE statement (PLM), 473 SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (FPREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (GLIMMIX), 500 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (SURVEYPREG), 415 NLOPTIONS statement (CALIS), 500 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spl		
SLICE statement (PLM), 473 SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (ELIMMIX), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FIREG), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FIREG),		
SLICE statement (SURVEYLOGISTIC), 473 INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (FHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FREG), 500 NLOPTIONS STAT		488
INDIVIDUAL option EFFECTPLOT statement, 427 INHESS option RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (HPMIXED), 500 RLOPTIONS statement (SURVEYPHREG), 500 RLOPTIONS statement (SURVEYPHREG), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (HPMIXED), 500 RLOPTIONS statement (HPMIXED), 500 RLOPTIONS statement (HPREG), 500 RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (VARIOGRAM), 500 RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (CALIS), 500 RLOPTIONS statement (GLIMMIX), 500 RLOPTIONS statement (GLIMMIX), 500 REFFECT statement, spline (GUMNIX), 415 EFFECT statement, spline (ROBUSTREG), 415 KNOTMAX option EFFECT statement, spline (LOGISTIC), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (ROBUSTREG), 415 EFFECT statement, spline (ROBUSTREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PLS), 415 EFFECT s		•
EFFECTPLOT statement, 427 INHESS option INLOPTIONS statement (CALIS), 500 INLOPTIONS statement (GLIMMIX), 500 INLOPTIONS statement (HPMIXED), 500 INLOPTIONS statement (HPMIXED), 500 INLOPTIONS statement (BURVEYPHREG), 500 INLOPTIONS statement (SURVEYPHREG), 500 INLOPTIONS statement (GLIMMIX), 500 INLOPTIONS statement (GLIMMIX), 500 INLOPTIONS statement (GLIMMIX), 500 INLOPTIONS statement (GLIMMIX), 500 INLOPTIONS statement (HPMIXED), 500 INLOPTIONS statement (PHREG), 500 INLOPTIONS statement (SURVEYPHREG), 500 INLOPTIONS statement (TCLAIS), 500 INLOPTIONS statement (VARIOGRAM), 500 INLOPTIONS statement (CALIS), 500 INLOPTIONS statement (CALIS), 500 INLOPTIONS statement (GLIMMIX), 500 INLOPTIONS STATEMENT		K
INHESS option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 SEFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (GLIMMIX), 500 SURVEYLOGISTIC, 415 EFFECT statement, spline (GLIMMIX), 500 SURVEYLOGIS	-	************
NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FHREG), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FHREG), 500 FFFECT statement, spline (GLIMMIX), 415 FFFECT s		*
NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 INSTEP option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (FHREG), 500 NLOPTIONS statement (FIREG), 500 FFFECT statement, spline (FIREG), 415 FFFECT statement, spline (GLIMMIX), 415 FFFECT statement, spline (GLIMMIX), 415 FFFECT statement, spline (GLIMMIX), 415 FFFECT statement, spline (FIREG), 415 FFFECT statem	•	•
NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415 EFFECT statement, spline (ROBUSTREG), 415 EFFECT statement, spline (SURVEYPEG), 415 EFFECT statement, spline (SURVEYREG), 415 EFFECT statement, spline (SURVEYREG), 415 EFFECT statement, spline (SURVEYREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (SURVEYREG), 415 EFFECT statement, spline (GUANTREG), 415 EFFECT statement, spli		•
NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (GLIMMIX), 500	· · · · · · · · · · · · · · · · · · ·	
NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 INSTEP option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 EFFECT statement, spline (PHREG), 415 KNOTMETHOD option EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT st		
NLOPTIONS statement (VARIOGRAM), 500 INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (GLIMER), 415 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (PLS), 415	· · · · · · · · · · · · · · · · · · ·	•
INHESSIAN option NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (SURVEYPHREG), 500 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (QLIMMIX), 415 EFFECT statement		•
NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTI		
NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INTERCEPT option EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (HPMIXED), 415 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415 EFFECT statement, spline (ROBUSTREG), 415		
NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INTERCEPT option (SURVEYLOGISTIC), 415 EFFECT statement, spline (SURVEYREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (HPMIXED), 415 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ORTHOREG), 415		
NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INTERCEPT option EFFECT statement, spline (SURVEYREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (HPMIXED), 415 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (GUMSELECT), 415 EFFECT statement, spline (GUMSEL		<u>*</u>
NLOPTIONS statement (TCLAIS), 500 NLOPTIONS statement (VARIOGRAM), 500 INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 INTERCEPT option KNOTMETHOD option EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (HPMIXED), 415 EFFECT statement, spline (ORTHOREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415 EFFECT statement, spline (ROBUSTREG), 415	· · · · · · · · · · · · · · · · · · ·	
NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (GLIMMIX), 415 EFFECT statement, spline (GLMSELECT), 415 NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415 EFFECT statement, spline (ROBUSTREG), 415		
INSTEP option NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415		•
NLOPTIONS statement (CALIS), 500 NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415		•
NLOPTIONS statement (GLIMMIX), 500 NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415	*	•
NLOPTIONS statement (HPMIXED), 500 NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415		•
NLOPTIONS statement (PHREG), 500 NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (PHREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415		
NLOPTIONS statement (SURVEYPHREG), 500 NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (PLS), 415 EFFECT statement, spline (QUANTREG), 415 EFFECT statement, spline (ROBUSTREG), 415		<u> </u>
NLOPTIONS statement (VARIOGRAM), 500 EFFECT statement, spline (QUANTREG), 415 INTERCEPT option EFFECT statement, spline (ROBUSTREG), 415		
INTERCEPT option EFFECT statement, spline (ROBUSTREG), 415		
		• • • • • • • • • • • • • • • • • • • •
TEST statement (OTTITOTES); 510	TEST statement (ORTHOREG), 516	, in () = 20), iso

EFFECT statement, spline	NLOPTIONS statement (GLIMMIX), 501
(SURVEYLOGISTIC), 415	NLOPTIONS statement (HPMIXED), 501
EFFECT statement, spline (SURVEYREG), 415	NLOPTIONS statement (PHREG), 501
KNOTMIN option	NLOPTIONS statement (SURVEYPHREG), 501
EFFECT statement, spline (GLIMMIX), 417	NLOPTIONS statement (VARIOGRAM), 501
EFFECT statement, spline (GLMSELECT), 417	LIMITS option
EFFECT statement, spline (HPMIXED), 417	EFFECTPLOT statement, 427
EFFECT statement, spline (LOGISTIC), 417	LINES option
EFFECT statement, spline (ORTHOREG), 417	LSMEANS statement (GENMOD), 473
EFFECT statement, spline (PHREG), 417	LSMEANS statement (LOGISTIC), 473
EFFECT statement, spline (PLS), 417	LSMEANS statement (ORTHOREG), 473
EFFECT statement, spline (QUANTREG), 417	LSMEANS statement (PHREG), 473
EFFECT statement, spline (ROBUSTREG), 417	LSMEANS statement (PLM), 473
EFFECT statement, spline (ROBOSTRES), 417	LSMEANS statement (SURVEYLOGISTIC),
(SURVEYLOGISTIC), 417	473
EFFECT statement, spline (SURVEYREG), 417	LSMEANS statement (SURVEYPHREG), 473
EFFECT statement, spinic (SORVETREO), 417	LSMEANS statement (SURVEYREG), 473
L	SLICE statement (GENMOD), 473
-	SLICE statement (GLIMMIX), 473
I ADEL CTVI E antion	SLICE statement (CLIMINIA), 473 SLICE statement (LOGISTIC), 473
LABELSTYLE option	
EFFECT statement, polynomial (GLIMMIX),	SLICE statement (MIXED), 473
411	SLICE statement (ORTHOREG), 473
EFFECT statement, polynomial	SLICE statement (PHREG), 473
(GLMSELECT), 411	SLICE statement (PLM), 473
EFFECT statement, polynomial (HPMIXED),	SLICE statement (SURVEYLOGISTIC), 473
411	SLICE statement (SURVEYPHREG), 473
EFFECT statement, polynomial (LOGISTIC),	SLICE statement (SURVEYREG), 473
411	LINESEARCH option
EFFECT statement, polynomial (ORTHOREG),	NLOPTIONS statement (CALIS), 501
411	NLOPTIONS statement (GLIMMIX), 501
EFFECT statement, polynomial (PHREG), 411	NLOPTIONS statement (HPMIXED), 501
EFFECT statement, polynomial (PLS), 411	NLOPTIONS statement (PHREG), 501
EFFECT statement, polynomial	NLOPTIONS statement (SURVEYPHREG), 501
(ROBUSTREG), 411	NLOPTIONS statement (VARIOGRAM), 501
EFFECT statement, polynomial	LINK option
(SURVEYLOGISTIC), 411	EFFECTPLOT statement, 427
EFFECT statement, polynomial	LIS option
(SURVEYREG), 411	NLOPTIONS statement (CALIS), 501
LCDEACT= option	NLOPTIONS statement (GLIMMIX), 501
NLOPTIONS statement (CALIS), 500	NLOPTIONS statement (HPMIXED), 501
NLOPTIONS statement (GLIMMIX), 500	NLOPTIONS statement (PHREG), 501
NLOPTIONS statement (HPMIXED), 500	NLOPTIONS statement (SURVEYPHREG), 501
NLOPTIONS statement (PHREG), 500	NLOPTIONS statement (VARIOGRAM), 501
NLOPTIONS statement (SURVEYPHREG), 500	LOGISTIC procedure, EFFECT statement
NLOPTIONS statement (VARIOGRAM), 500	BASIS option (spline), 415
LCEPSILON= option	collection effect, 406
NLOPTIONS statement (CALIS), 501	DATABOUNDARY option (spline), 415
NLOPTIONS statement (GLIMMIX), 501	DEGREE option (polynomial), 411
NLOPTIONS statement (HPMIXED), 501	DEGREE option (spline), 415
NLOPTIONS statement (PHREG), 501	DESIGNROLE option (lag), 408
NLOPTIONS statement (SURVEYPHREG), 501	DETAILS option (lag), 409
NLOPTIONS statement (VARIOGRAM), 501	DETAILS option (multimember), 410
LCSINGULAR= option	DETAILS option (polynomial), 411
NLOPTIONS statement (CALIS), 501	DETAILS option (spline), 415
* "	1 1 //

KNOTMAX option (spline), 415	CATEGORY= option, 452
KNOTMETHOD option (spline), 415	CL option, 453
KNOTMIN option (spline), 417	CORR option, 453
LABELSTYLE option (polynomial), 411	COV option, 453
lag effect, 406	DIVISOR= option, 454
MDEGREE option (polynomial), 412	E option, 454
multimember effect, 409	EXP option, 454
NATURALCUBIC option (spline), 417	ILINK option, 454
NLAG option (lag), 409	JOINT option, 455
NOEFFECT option (multimember), 410	LOWER option, 456
NOSEPARATE option (polynomial), 412	NOFILL option, 456
PERIOD option (lag), 408	ODS table names, 464
polynomial effect, 411	SEED= option, 458
SEPARATE option (spline), 417	SINGULAR= option, 458
spline effect, 414	STEPDOWN option, 458
SPLIT option (spline), 417	TESTVALUE option, 459
STANDARDIZE option (polynomial), 412	UPPER option, 459
WITHIN option (lag), 408	LOGISTIC procedure, LSMEANS statement
LOGISTIC procedure, EFFECTPLOT statement	ADJUST= option, 468
ALPHA= option, 425	ALPHA= option, 470
AT option, 425	AT= option, 470
ATLEN= option, 426	BYLEVEL option, 471
ATORDER= option, 426	CL option, 471
CLI option, 427	CORR option, 471
CLM option, 427	COV option, 471
CLUSTER option, 427	DIFF option, 471
EXTEND= option, 427	E option, 472
GRIDSIZE= option, 427	EXP option, 473
ILINK option, 427	
÷	ILINK option, 473 LINES option, 473
INDIVIDUAL option, 427	
LIMITS option, 427	MEANS or NOMEANS option, 473
LINK option, 427	OBSMARGINS= option, 474
MOFF option, 428	ODDSRATIO option, 473
NCOLS= option, 428	ODS graph names, 480
NOCLI option, 428	ODS table names, 479
NOCLM option, 428	PDIFF option, 474
NOLIMITS option, 428	PLOTS= option, 474
NOOBS option, 428	SEED= option, 478
NROWS= option, 428	SINGULAR= option, 478
OBS option, 428	STEPDOWN option, 478
PLOTBY= option, 431	LOGISTIC procedure, LSMESIIMATE statement
PLOTBYLEN= option, 432	ADJUST= option, 485
POLYBAR option, 432	ALPHA= option, 485
PREDLABEL= option, 432	AT= option, 485
SHOWCLEGEND option, 432	BYLEVEL option, 485
SLICEBY= option, 432	CATEGORY= option, 485
SMOOTH option, 432	CL option, 486
UNPACK option, 432	CORR option, 486
X= option, 432	COV option, 486
Y= option, 433	DIVISOR= option, 486
YRANGE= option, 433	E option, 487
LOGISTIC procedure, ESTIMATE statement	ELSM option, 487
ADJUST= option, 452	EXP option, 487
ALPHA= option, 452	ILINK option, 487

JOINT option, 488	LSMESTIMATE statement (SURVEYREG),
LOWER option, 489	489
OBSMARGINS= option, 489	LSMEANS statement
ODS table names, 492	GENMOD procedure, 465
PLOTS= option, 489	LOGISTIC procedure, 465
SEED= option, 490	ORTHOREG procedure, 465
SINGULAR= option, 491	PHREG procedure, 465
STEPDOWN option, 491	PLM procedure, 465
TESTVALUE= option, 492	SURVEYLOGISTIC procedure, 465
UPPER option, 492	SURVEYPHREG procedure, 465
LOGISTIC procedure, SLICE statement	SURVEYREG procedure, 465
ADJUST= option, 468	LSMESTIMATE statement
ALPHA= option, 470	GENMOD procedure, 481
AT= option, 470	LOGISTIC procedure, 481
BYLEVEL option, 471	MIXED procedure, 481
CL option, 471	ORTHOREG procedure, 481
CORR option, 471	PHREG procedure, 481
COV option, 471	PLM procedure, 481
DIFF option, 471	SURVEYLOGISTIC procedure, 481
E option, 472	SURVEYPHREG procedure, 481
EXP option, 473	SURVEYREG procedure, 481
•	•
ILINK option, 473	LSP option
LINES option, 473	NLOPTIONS statement (CLIMMIX) 502
MEANS or NOMEANS option, 473	NLOPTIONS statement (GLIMMIX), 502
NOF option, 513	NLOPTIONS statement (HPMIXED), 502
OBSMARGINS= option, 474	NLOPTIONS statement (PHREG), 502
ODDSRATIO option, 473	NLOPTIONS statement (SURVEYPHREG), 502
ODS table names, 513	NLOPTIONS statement (VARIOGRAM), 502
PDIFF option, 474	LSPRECISION option
PLOTS= option, 474	NLOPTIONS statement (CALIS), 502
SEED= option, 478	NLOPTIONS statement (GLIMMIX), 502
SIMPLE= option, 513	NLOPTIONS statement (HPMIXED), 502
SINGULAR= option, 478	NLOPTIONS statement (PHREG), 502
SLICEBY= option, 513	NLOPTIONS statement (SURVEYPHREG), 502
STEPDOWN option, 478	NLOPTIONS statement (VARIOGRAM), 502
LOWER option	3.6
ESTIMATE statement (LOGISTIC), 456	M
ESTIMATE statement (ORTHOREG), 456	
ESTIMATE statement (PHREG), 456	MAXFU option
ESTIMATE statement (PLM), 456	NLOPTIONS statement (CALIS), 502
ESTIMATE statement (SURVEYLOGISTIC),	NLOPTIONS statement (GLIMMIX), 502
456	NLOPTIONS statement (HPMIXED), 502
ESTIMATE statement (SURVEYPHREG), 456	NLOPTIONS statement (PHREG), 502
ESTIMATE statement (SURVEYREG), 456	NLOPTIONS statement (SURVEYPHREG), 502
LSMESTIMATE statement (GENMOD), 489	NLOPTIONS statement (VARIOGRAM), 502
LSMESTIMATE statement (LOGISTIC), 489	MAXFUNC option
LSMESTIMATE statement (MIXED), 489	NLOPTIONS statement (CALIS), 502
LSMESTIMATE statement (ORTHOREG), 489	NLOPTIONS statement (GLIMMIX), 502
LSMESTIMATE statement (PHREG), 489	NLOPTIONS statement (HPMIXED), 502
LSMESTIMATE statement (PLM), 489	NLOPTIONS statement (PHREG), 502
LSMESTIMATE statement	NLOPTIONS statement (SURVEYPHREG), 502
(SURVEYLOGISTIC), 489	NLOPTIONS statement (VARIOGRAM), 502
LSMESTIMATE statement (SURVEYPHREG),	MAXIT option
489	NLOPTIONS statement (CALIS), 502

NLOPTIONS statement (GLIMMIX), 502	LSMEANS statement (SURVEYREG), 473
NLOPTIONS statement (HPMIXED), 502	SLICE statement (GENMOD), 473
NLOPTIONS statement (PHREG), 502	SLICE statement (GLIMMIX), 473
NLOPTIONS statement (SURVEYPHREG), 502	SLICE statement (LOGISTIC), 473
NLOPTIONS statement (VARIOGRAM), 502	SLICE statement (MIXED), 473
MAXITER option	SLICE statement (ORTHOREG), 473
NLOPTIONS statement (CALIS), 502	SLICE statement (PHREG), 473
NLOPTIONS statement (GLIMMIX), 502	SLICE statement (PLM), 473
NLOPTIONS statement (HPMIXED), 502	SLICE statement (SURVEYLOGISTIC), 473
NLOPTIONS statement (PHREG), 502	SLICE statement (SURVEYPHREG), 473
NLOPTIONS statement (SURVEYPHREG), 502	SLICE statement (SURVEYREG), 473
NLOPTIONS statement (VARIOGRAM), 502	MINIT option
MAXSTEP option	NLOPTIONS statement (CALIS), 503
NLOPTIONS statement (CALIS), 503	NLOPTIONS statement (GLIMMIX), 503
NLOPTIONS statement (GLIMMIX), 503	NLOPTIONS statement (HPMIXED), 503
NLOPTIONS statement (HPMIXED), 503	NLOPTIONS statement (PHREG), 503
NLOPTIONS statement (PHREG), 503	NLOPTIONS statement (SURVEYPHREG), 503
NLOPTIONS statement (SURVEYPHREG), 503	NLOPTIONS statement (VARIOGRAM), 503
NLOPTIONS statement (VARIOGRAM), 503	MINITER option
MAXTIME option	NLOPTIONS statement (CALIS), 503
NLOPTIONS statement (CALIS), 503	NLOPTIONS statement (GLIMMIX), 503
NLOPTIONS statement (GLIMMIX), 503	NLOPTIONS statement (HPMIXED), 503
NLOPTIONS statement (HPMIXED), 503	NLOPTIONS statement (PHREG), 503
NLOPTIONS statement (PHREG), 503	NLOPTIONS statement (SURVEYPHREG), 503
NLOPTIONS statement (SURVEYPHREG), 503	NLOPTIONS statement (VARIOGRAM), 503
NLOPTIONS statement (VARIOGRAM), 503	MIXED procedure, LSMESIIMATE statement
MDEGREE option	ADJDFE= option, 484
EFFECT statement, polynomial (GLIMMIX),	ADJUST= option, 485
412	ALPHA= option, 485
EFFECT statement, polynomial	AT= option, 485
(GLMSELECT), 412	BYLEVEL option, 485
EFFECT statement, polynomial (HPMIXED),	CHISQ option, 486
412	CL option, 486
EFFECT statement, polynomial (LOGISTIC),	CORR option, 486
412	COV option, 486
EFFECT statement, polynomial (ORTHOREG),	DF= option, 486
412	DIVISOR= option, 486
EFFECT statement, polynomial (PHREG), 412	E option, 487
EFFECT statement, polynomial (PLS), 412	ELSM option, 487
EFFECT statement, polynomial	JOINT option, 488
(ROBUSTREG), 412	LOWER option, 489
EFFECT statement, polynomial	OBSMARGINS= option, 489
(SURVEYLOGISTIC), 412	ODS table names, 492
EFFECT statement, polynomial	PLOTS= option, 489
(SURVEYREG), 412	SEED= option, 490
MEANS or NOMEANS option	SINGULAR= option, 491
LSMEANS statement (GENMOD), 473	STEPDOWN option, 491
LSMEANS statement (LOGISTIC), 473	TESTVALUE= option, 492
LSMEANS statement (ORTHOREG), 473	UPPER option, 492
LSMEANS statement (PHREG), 473	MIXED procedure, SLICE statement
LSMEANS statement (PLM), 473	ADJDFE= option, 467
LSMEANS statement (SURVEYLOGISTIC),	ADJUST= option, 468
473	ALPHA= option, 470
LSMEANS statement (SURVEYPHREG), 473	AT= option, 470 AT= option, 470
Establish to successful (SOKYETTIMES), 473	ni – option, 170

BYLEVEL option, 471	EFFECT statement, lag (PLS), 409
CL option, 471	EFFECT statement, lag (ROBUSTREG), 409
CORR option, 471	EFFECT statement, lag (SURVEYLOGISTIC),
COV option, 471	409
DF= option, 471	EFFECT statement, lag (SURVEYREG), 409
DIFF option, 471	NLMIXED procedure, NLOPTIONS statement
E option, 472	VSINGULAR= option, 506
LINES option, 473	NLOPTIONS statement
MEANS or NOMEANS option, 473	CALIS procedure, 494
NOF option, 513	GLIMMIX procedure, 494
OBSMARGINS= option, 474	HPMIXED procedure, 494
ODS graph names, 480	PHREG procedure, 494
	SURVEYPHREG procedure, 494
ODS table names, 513	
PDIFF option, 474	VARIOGRAM procedure, 494
PLOTS= option, 474	NOCLI option
SEED= option, 478	EFFECTPLOT statement, 428
SIMPLE= option, 513	NOCLM option
SINGULAR= option, 478	EFFECTPLOT statement, 428
SLICEBY= option, 513	NOEFFECT option
STEPDOWN option, 478	EFFECT statement, multimember (GLIMMIX),
MOFF option	410
EFFECTPLOT statement, 428	EFFECT statement, multimember
MSINGULAR= option	(GLMSELECT), 410
NLOPTIONS statement (CALIS), 503	EFFECT statement, multimember (HPMIXED),
NLOPTIONS statement (GLIMMIX), 503	410
NLOPTIONS statement (HPMIXED), 503	EFFECT statement, multimember (LOGISTIC),
NLOPTIONS statement (PHREG), 503	410
NLOPTIONS statement (SURVEYPHREG), 503	EFFECT statement, multimember
NLOPTIONS statement (VARIOGRAM), 503	(ORTHOREG), 410
, , , , , , , , , , , , , , , , , , , ,	EFFECT statement, multimember (PHREG), 410
N	EFFECT statement, multimember (PLS), 410
	EFFECT statement, multimember
NATURALCUBIC option	(ROBUSTREG), 410
EFFECT statement, spline (GLIMMIX), 417	EFFECT statement, multimember
EFFECT statement, spline (GLMSELECT), 417	(SURVEYLOGISTIC), 410
EFFECT statement, spline (HPMIXED), 417	EFFECT statement, multimember
EFFECT statement, spline (LOGISTIC), 417	(SURVEYREG), 410
EFFECT statement, spline (ORTHOREG), 417 EFFECT statement, spline (PHREG), 417	NOF option SLICE statement (CENMOD), 512
EFFECT statement, spline (PLS), 417 EFFECT statement, spline (PLS), 417	SLICE statement (GENMOD), 513
• ' ' '	SLICE statement (GLIMMIX), 513
EFFECT statement, spline (QUANTREG), 417	SLICE statement (LOGISTIC), 513
EFFECT statement, spline (ROBUSTREG), 417	SLICE statement (MIXED), 513
EFFECT statement, spline	SLICE statement (ORTHOREG), 513
(SURVEYLOGISTIC), 417	SLICE statement (PHREG), 513
EFFECT statement, spline (SURVEYREG), 417	SLICE statement (PLM), 513
NCOLS= option	SLICE statement (SURVEYLOGISTIC), 513
EFFECTPLOT statement, 428	SLICE statement (SURVEYPHREG), 513
NLAG option	SLICE statement (SURVEYREG), 513
EFFECT statement, lag (GLIMMIX), 409	NOFILL option
EFFECT statement, lag (GLMSELECT), 409	ESTIMATE statement (LOGISTIC), 456
EFFECT statement, lag (HPMIXED), 409	ESTIMATE statement (ORTHOREG), 456
EFFECT statement, lag (LOGISTIC), 409	ESTIMATE statement (PHREG), 456
EFFECT statement, lag (ORTHOREG), 409	ESTIMATE statement (PLM), 456
EFFECT statement, lag (PHREG), 409	, //

ESTIMATE statement (SURVEYLOGISTIC), 456	LSMESTIMATE statement (SURVEYREG), 489
ESTIMATE statement (SURVEYPHREG), 456	SLICE statement (GENMOD), 474
ESTIMATE statement (SURVEYREG), 456	SLICE statement (GLIMMIX), 474
NOLIMITS option	SLICE statement (LOGISTIC), 474
EFFECTPLOT statement, 428	SLICE statement (MIXED), 474
NOOBS option	SLICE statement (ORTHOREG), 474
EFFECTPLOT statement, 428	SLICE statement (PHREG), 474
NOSEPARATE option	SLICE statement (PLM), 474
EFFECT statement, polynomial (GLIMMIX),	SLICE statement (SURVEYLOGISTIC), 474
412	SLICE statement (SURVEYPHREG), 474
EFFECT statement, polynomial	SLICE statement (SURVEYREG), 474
(GLMSELECT), 412	ODDSRATIO option
EFFECT statement, polynomial (HPMIXED),	LSMEANS statement (GENMOD), 473
412	LSMEANS statement (LOGISTIC), 473
EFFECT statement, polynomial (LOGISTIC),	LSMEANS statement (PLM), 473
412	LSMEANS statement (SURVEYLOGISTIC),
EFFECT statement, polynomial (ORTHOREG),	473
412	SLICE statement (GENMOD), 473
EFFECT statement, polynomial (PHREG), 412	SLICE statement (GLIMMIX), 473
EFFECT statement, polynomial (PLS), 412	SLICE statement (LOGISTIC), 473
EFFECT statement, polynomial	SLICE statement (PLM), 473
(ROBUSTREG), 412	SLICE statement (SURVEYLOGISTIC), 473
EFFECT statement, polynomial	ODS graph names
(SURVEYLOGISTIC), 412	ESTIMATE statement (PHREG), 464
EFFECT statement, polynomial	ESTIMATE statement (PLM), 464
(SURVEYREG), 412	LSMEANS statement (GENMOD), 480
NROWS= option	LSMEANS statement (LOGISTIC), 480
EFFECTPLOT statement, 428	LSMEANS statement (ORTHOREG), 480
	LSMEANS statement (PHREG), 480
0	LSMEANS statement (PLM), 480
	LSMEANS statement (SURVEYLOGISTIC),
OBS option	480
EFFECTPLOT statement, 428	LSMEANS statement (SURVEYPHREG), 480
OBSMARGINS= option	LSMEANS statement (SURVEYREG), 480
LSMEANS statement (GENMOD), 474	LSMESTIMATE statement (GENMOD), 493
LSMEANS statement (LOGISTIC), 474	LSMESTIMATE statement (PHREG), 493
LSMEANS statement (ORTHOREG), 474	LSMESTIMATE statement (PLM), 493
LSMEANS statement (PHREG), 474	SLICE statement (GENMOD), 480
LSMEANS statement (PLM), 474	SLICE statement (GLIMMIX), 480
LSMEANS statement (SURVEYLOGISTIC),	SLICE statement (LOGISTIC), 480
474	SLICE statement (MIXED), 480
LSMEANS statement (SURVEYPHREG), 474	SLICE statement (ORTHOREG), 480
LSMEANS statement (SURVEYREG), 474	SLICE statement (PHREG), 480
LSMESTIMATE statement (GENMOD), 489	SLICE statement (PLM), 480
LSMESTIMATE statement (LOGISTIC), 489	SLICE statement (SURVEYLOGISTIC), 480
LSMESTIMATE statement (MIXED), 489	SLICE statement (SURVEYPHREG), 480
LSMESTIMATE statement (ORTHOREG), 489	SLICE statement (SURVEYREG), 480
LSMESTIMATE statement (PHREG), 489	ODS table names
LSMESTIMATE statement (PLM), 489	ESTIMATE statement (LOGISTIC), 464
LSMESTIMATE statement	ESTIMATE statement (ORTHOREG), 464
(SURVEYLOGISTIC), 489	ESTIMATE statement (PHREG), 464
LSMESTIMATE statement (SURVEYPHREG), 489	ESTIMATE statement (PLM), 464

ESTIMATE statement (SURVEYLOGISTIC),	lag effect, 406
464	MDEGREE option (polynomial), 412
ESTIMATE statement (SURVEYPHREG), 464	multimember effect, 409
ESTIMATE statement (SURVEYREG), 464	NATURALCUBIC option (spline), 417
LSMEANS statement (GENMOD), 479	NLAG option (lag), 409
LSMEANS statement (LOGISTIC), 479	NOEFFECT option (multimember), 410
LSMEANS statement (ORTHOREG), 479	NOSEPARATE option (polynomial), 412
LSMEANS statement (PHREG), 479	PERIOD option (lag), 408
LSMEANS statement (PLM), 479	polynomial effect, 411
LSMEANS statement (SURVEYLOGISTIC),	SEPARATE option (spline), 417
479	spline effect, 414
	SPLIT option (spline), 417
LSMEANS statement (SURVEYPHREG), 479	
LSMEANS statement (SURVEYREG), 479	STANDARDIZE option (polynomial), 412
LSMESTIMATE statement (GENMOD), 492	WITHIN option (lag), 408
LSMESTIMATE statement (LOGISTIC), 492	ORTHOREG procedure, EFFECTPLOT statement
LSMESTIMATE statement (MIXED), 492	ALPHA= option, 425
LSMESTIMATE statement (ORTHOREG), 492	AT option, 425
LSMESTIMATE statement (PHREG), 492	ATLEN= option, 426
LSMESTIMATE statement (PLM), 492	ATORDER= option, 426
LSMESTIMATE statement	CLI option, 427
(SURVEYLOGISTIC), 492	CLM option, 427
LSMESTIMATE statement (SURVEYPHREG),	CLUSTER option, 427
492	EXTEND= option, 427
LSMESTIMATE statement (SURVEYREG),	GRIDSIZE= option, 427
492	ILINK option, 427
SLICE statement (GENMOD), 513	INDIVIDUAL option, 427
SLICE statement (GLIMMIX), 513	LIMITS option, 427
SLICE statement (LOGISTIC), 513	LINK option, 427
SLICE statement (MIXED), 513	MOFF option, 428
SLICE statement (ORTHOREG), 513	NCOLS= option, 428
SLICE statement (PHREG), 513	NOCLI option, 428
SLICE statement (PLM), 513	NOCLM option, 428
SLICE statement (SURVEYLOGISTIC), 513	NOLIMITS option, 428
SLICE statement (SURVEYPHREG), 513	NOOBS option, 428
SLICE statement (SURVEYREG), 513	NROWS= option, 428
TEST statement (ORTHOREG), 517	OBS option, 428
TEST statement (OKTHOKEG), 517 TEST statement (PLM), 517	PLOTBY= option, 431
TEST statement (SURVEYPHREG), 517	PLOTBYLEN= option, 432
TEST statement (SURVEYREG), 517	POLYBAR option, 432
	*
ORTHOREG procedure, EFFECT statement	PREDLABEL= option, 432
BASIS option (spline), 415	SHOWCLEGEND option, 432
collection effect, 406	SLICEBY= option, 432
DATABOUNDARY option (spline), 415	SMOOTH option, 432
DEGREE option (polynomial), 411	UNPACK option, 432
DEGREE option (spline), 415	X= option, 432
DESIGNROLE option (lag), 408	Y= option, 433
DETAILS option (lag), 409	YRANGE= option, 433
DETAILS option (multimember), 410	ORTHOREG procedure, ESTIMATE statement
DETAILS option (polynomial), 411	ADJDFE= option, 451
DETAILS option (spline), 415	ADJUST= option, 452
KNOTMAX option (spline), 415	ALPHA= option, 452
KNOTMETHOD option (spline), 415	CHISQ option, 453
KNOTMIN option (spline), 417	CL option, 453
LABELSTYLE option (polynomial), 411	CORR option, 453

COV option, 453	SEED= option, 490
DF= option, 453	SINGULAR= option, 491
DIVISOR= option, 454	STEPDOWN option, 491
E option, 454	TESTVALUE= option, 492
JOINT option, 455	UPPER option, 492
LOWER option, 456	ORTHOREG procedure, SLICE statement
NOFILL option, 456	ADJDFE= option, 467
	ADJUST= option, 468
ODS table names, 464 SEED= option, 458	ALPHA= option, 470
•	÷
SINGULAR= option, 458	AT= option, 470
STEPDOWN option, 458	BYLEVEL option, 471
TESTVALUE option, 459	CL option, 471
UPPER option, 459	CON action 471
ORTHOREG procedure, LSMEANS statement	COV option, 471
ADJDFE= option, 467	DF= option, 471
ADJUST= option, 468	DIFF option, 471
ALPHA= option, 470	E option, 472
AT= option, 470	LINES option, 473
BYLEVEL option, 471	MEANS or NOMEANS option, 473
CL option, 471	NOF option, 513
CORR option, 471	OBSMARGINS= option, 474
COV option, 471	ODS table names, 513
DF= option, 471	PDIFF option, 474
DIFF option, 471	PLOTS= option, 474
E option, 472	SEED= option, 478
LINES option, 473	SIMPLE= option, 513
MEANS or NOMEANS option, 473	SINGULAR= option, 478
OBSMARGINS= option, 474	SLICEBY= option, 513
ODS graph names, 480	STEPDOWN option, 478
ODS table names, 479	ORTHOREG procedure, TEST statement
PDIFF option, 474	CHISQ option, 515
PLOTS= option, 474	DDF= option, 516
SEED= option, 478	E option, 516
SINGULAR= option, 478	E1 option, 516
STEPDOWN option, 478	E2 option, 516
ORTHOREG procedure, LSMESIIMATE statement	E3 option, 516
ADJDFE= option, 484	HTYPE= option, 516
ADJUST= option, 485	INTERCEPT option, 516
ALPHA= option, 485	ODS table names, 517
AT= option, 485	
BYLEVEL option, 485	P
CHISQ option, 486	
CL option, 486	PDIFF option
CORR option, 486	LSMEANS statement (GENMOD), 474
COV option, 486	LSMEANS statement (LOGISTIC), 474
DF= option, 486	LSMEANS statement (ORTHOREG), 474
DIVISOR= option, 486	LSMEANS statement (PHREG), 474
E option, 487	LSMEANS statement (PLM), 474
ELSM option, 487	LSMEANS statement (SURVEYLOGISTIC),
JOINT option, 488	474
LOWER option, 489	LSMEANS statement (SURVEYPHREG), 474
OBSMARGINS= option, 489	LSMEANS statement (SURVEYREG), 474
ODS table names, 492	SLICE statement (GENMOD), 474
PLOTS= option, 489	SLICE statement (GLIMMIX), 474 SLICE statement (GLIMMIX), 474
1 LO13- option, 407	SLICE Statement (OLIVIVIIA), 4/4

SLICE statement (LOGISTIC), 474	COV option, 453
SLICE statement (MIXED), 474	DIVISOR= option, 454
SLICE statement (ORTHOREG), 474	E option, 454
SLICE statement (PHREG), 474	EXP option, 454
SLICE statement (PLM), 474	JOINT option, 455
SLICE statement (SURVEYLOGISTIC), 474	LOWER option, 456
SLICE statement (SURVEYPHREG), 474	NOFILL option, 456
SLICE statement (SURVEYREG), 474	ODS graph names, 464
PERIOD option	ODS table names, 464
EFFECT statement, lag (GLIMMIX), 408	PLOTS= option, 457
EFFECT statement, lag (GLMSELECT), 408	SEED= option, 458
EFFECT statement, lag (HPMIXED), 408	SINGULAR= option, 458
EFFECT statement, lag (LOGISTIC), 408	STEPDOWN option, 458
EFFECT statement, lag (ORTHOREG), 408	TESTVALUE option, 459
EFFECT statement, lag (PHREG), 408	UPPER option, 459
EFFECT statement, lag (PLS), 408	PHREG procedure, LSMEANS statement
EFFECT statement, lag (ROBUSTREG), 408	ADJUST= option, 468
EFFECT statement, lag (SURVEYLOGISTIC),	ALPHA= option, 470
408	AT= option, 470
EFFECT statement, lag (SURVEYREG), 408	BYLEVEL option, 471
PHREG procedure, EFFECT statement	CL option, 471
BASIS option (spline), 415	CORR option, 471
collection effect, 406	COV option, 471
DATABOUNDARY option (spline), 415	DIFF option, 471
DEGREE option (polynomial), 411	E option, 472
DEGREE option (spline), 415	EXP option, 472
DESIGNROLE option (lag), 408	LINES option, 473
DETAILS option (lag), 409	MEANS or NOMEANS option, 473
DETAILS option (multimember), 410	OBSMARGINS= option, 474
DETAILS option (multimember), 410 DETAILS option (polynomial), 411	<u> •</u>
	ODS graph names, 480
DETAILS option (spline), 415	ODS table names, 479
KNOTMAX option (spline), 415	PDIFF option, 474
KNOTMETHOD option (spline), 415	PLOTS= option, 474
KNOTMIN option (spline), 417	SEED= option, 478
LABELSTYLE option (polynomial), 411	SINGULAR= option, 478
lag effect, 406	STEPDOWN option, 478
MDEGREE option (polynomial), 412	PHREG procedure, LSMESIIMATE statement
multimember effect, 409	ADJUST= option, 485
NATURALCUBIC option (spline), 417	ALPHA= option, 485
NLAG option (lag), 409	AT= option, 485
NOEFFECT option (multimember), 410	BYLEVEL option, 485
NOSEPARATE option (polynomial), 412	CL option, 486
PERIOD option (lag), 408	CORR option, 486
polynomial effect, 411	COV option, 486
SEPARATE option (spline), 417	DIVISOR= option, 486
spline effect, 414	E option, 487
SPLIT option (spline), 417	ELSM option, 487
STANDARDIZE option (polynomial), 412	EXP option, 487
WITHIN option (lag), 408	JOINT option, 488
PHREG procedure, ESTIMATE statement	LOWER option, 489
ADJUST= option, 452	OBSMARGINS= option, 489
ALPHA= option, 452	ODS graph names, 493
CL option, 453	ODS table names, 492
CORR option, 453	PLOTS= option, 489

SEED= option, 490	ALPHA= option, 470
SINGULAR= option, 491	AT= option, 470
STEPDOWN option, 491	BYLEVEL option, 471
TESTVALUE= option, 492	CL option, 471
UPPER option, 492	CORR option, 471
•	1
PHREG procedure, NLOPTIONS statement	COV option, 471
ABSCONV option, 495	DIFF option, 471
ABSFCONV option, 496	E option, 472
ABSGCONV option, 496	EXP option, 473
ABSGTOL option, 496	LINES option, 473
ABSTOL option, 495	MEANS or NOMEANS option, 473
ABSXCONV option, 496	NOF option, 513
ABSXTOL option, 496	OBSMARGINS= option, 474
ASINGULAR= option, 497	ODS table names, 513
FCONV option, 497	PDIFF option, 474
FCONV2 option, 498	PLOTS= option, 474
FSIZE option, 498	SEED= option, 478
FTOL option, 497	SIMPLE= option, 513
FTOL2 option, 498	SINGULAR= option, 478
GCONV option, 498	SLICEBY= option, 513
GCONV2 option, 499	STEPDOWN option, 478
GTOL option, 498	PLM procedure, EFFECTPLOT statement
GTOL2 option, 499	ALPHA= option, 425
HESCAL option, 499	AT option, 425
HS option, 499	ATLEN= option, 426
INHESSIAN option, 500	ATORDER= option, 426
	<u> -</u>
INSTEP option, 500	CLI option, 427
LCDEACT= option, 500	CLM option, 427
LCEPSILON= option, 501	CLUSTER option, 427
LCSINGULAR= option, 501	EXTEND= option, 427
LINESEARCH option, 501	GRIDSIZE= option, 427
LSP option, 502	ILINK option, 427
LSPRECISION option, 502	INDIVIDUAL option, 427
MAXFU option, 502	LIMITS option, 427
MAXFUNC option, 502	LINK option, 427
MAXIT option, 502	MOFF option, 428
MAXITER option, 502	NCOLS= option, 428
MAXSTEP option, 503	NOCLI option, 428
MAXTIME option, 503	NOCLM option, 428
MINIT option, 503	NOLIMITS option, 428
MINITER option, 503	NOOBS option, 428
MSINGULAR= option, 503	NROWS= option, 428
REST option, 503	OBS option, 428
RESTART option, 503	PLOTBY= option, 431
SINGULAR= option, 504	PLOTBYLEN= option, 432
SOCKET option, 504	POLYBAR option, 432
TECH option, 504	PREDLABEL= option, 432
TECHNIQUE option, 504	SHOWCLEGEND option, 432
~ *	
UPD option, 505	SLICEBY= option, 432
VSINGULAR= option, 506	SMOOTH option, 432
XSIZE option, 506	UNPACK option, 432
XTOL option, 506	X= option, 432
PHREG procedure, SLICE statement	Y= option, 433
ADJUST= option, 468	YRANGE= option, 433

DIM 1 ECTIMATE	AT 405
PLM procedure, ESTIMATE statement	AT= option, 485
ADJDFE= option, 451	BYLEVEL option, 485
ADJUST= option, 452	CATEGORY= option, 485
ALPHA= option, 452	CHISQ option, 486
CATEGORY= option, 452	CL option, 486
CHISQ option, 453	CORR option, 486
CL option, 453	COV option, 486
CORR option, 453	DF= option, 486
COV option, 453	DIVISOR= option, 486
DF= option, 453	E option, 487
DIVISOR= option, 454	ELSM option, 487
E option, 454	EXP option, 487
EXP option, 454	ILINK option, 487
ILINK option, 454	JOINT option, 488
JOINT option, 455	LOWER option, 489
LOWER option, 456	OBSMARGINS= option, 489
NOFILL option, 456	ODS graph names, 493
ODS graph names, 464	ODS table names, 492
ODS table names, 464	PLOTS= option, 489
PLOTS= option, 457	SEED= option, 490
SEED= option, 458	SINGULAR= option, 491
SINGULAR= option, 458	STEPDOWN option, 491
STEPDOWN option, 458	TESTVALUE= option, 492
TESTVALUE option, 459	UPPER option, 492
UPPER option, 459	PLM procedure, SLICE statement
PLM procedure, LSMEANS statement	ADJDFE= option, 467
ADJDFE= option, 467	ADJUST= option, 468
ADJUST= option, 468	ALPHA= option, 470
ALPHA= option, 470	AT= option, 470
AT= option, 470	BYLEVEL option, 471
BYLEVEL option, 471	CL option, 471
CL option, 471	CORR option, 471
CORR option, 471	COV option, 471
COV option, 471	DF= option, 471
DF= option, 471	DIFF option, 471
DIFF option, 471	E option, 472
E option, 472	EXP option, 473
EXP option, 473	ILINK option, 473
ILINK option, 473	LINES option, 473
LINES option, 473	MEANS or NOMEANS option, 473
MEANS or NOMEANS option, 473	NOF option, 513
OBSMARGINS= option, 474	OBSMARGINS= option, 474
ODDSRATIO option, 473	ODDSRATIO option, 473
ODS graph names, 480	ODS table names, 513
ODS graph names, 480 ODS table names, 479	PDIFF option, 474
PDIFF option, 474	PLOTS= option, 474
PLOTS= option, 474	•
1	SEED= option, 478
SEED= option, 478	SIMPLE= option, 513
SINGULAR= option, 478	SINGULAR= option, 478
STEPDOWN option, 478	SLICEBY= option, 513
PLM procedure, LSMESIIMATE statement	STEPDOWN option, 478
ADJDFE= option, 484	PLM procedure, TEST statement
ADJUST= option, 485	CHISQ option, 515
ALPHA= option, 485	DDF= option, 516

E option, 516	DETAILS option (polynomial), 411
E1 option, 516	DETAILS option (spline), 415
E2 option, 516	KNOTMAX option (spline), 415
E3 option, 516	KNOTMETHOD option (spline), 415
HTYPE= option, 516	KNOTMIN option (spline), 417
INTERCEPT option, 516	LABELSTYLE option (polynomial), 411
ODS table names, 517	lag effect, 406
PLOTBY= option	MDEGREE option (polynomial), 412
EFFECTPLOT statement, 431	multimember effect, 409
PLOTBYLEN= option	NATURALCUBIC option (spline), 417
EFFECTPLOT statement, 432	NLAG option (lag), 409
PLOTS= option	NOEFFECT option (multimember), 410
ESTIMATE statement (PHREG), 457	NOSEPARATE option (polynomial), 412
ESTIMATE statement (PLM), 457	PERIOD option (lag), 408
LSMEANS statement (GENMOD), 474	polynomial effect, 411
LSMEANS statement (LOGISTIC), 474	SEPARATE option (spline), 417
LSMEANS statement (ORTHOREG), 474	spline effect, 414
LSMEANS statement (PHREG), 474	SPLIT option (spline), 417
LSMEANS statement (PLM), 474	STANDARDIZE option (polynomial), 412
LSMEANS statement (SURVEYLOGISTIC),	WITHIN option (lag), 408
474	POLYBAR option
LSMEANS statement (SURVEYPHREG), 474	EFFECTPLOT statement, 432
LSMEANS statement (SURVEYREG), 474	PREDLABEL= option
LSMESTIMATE statement (GENMOD), 489	EFFECTPLOT statement, 432
LSMESTIMATE statement (LOGISTIC), 489	
LSMESTIMATE statement (MIXED), 489	Q
LSMESTIMATE statement (ORTHOREG), 489	
LSMESTIMATE statement (PHREG), 489	QUANTREG procedure, EFFECT statement
LSMESTIMATE statement (PLM), 489	BASIS option (spline), 415
LSMESTIMATE statement	DATABOUNDARY option (spline), 415
(SURVEYLOGISTIC), 489	DEGREE option (spline), 415
LSMESTIMATE statement (SURVEYPHREG),	DETAILS option (spline), 415
489	KNOTMAX option (spline), 415
LSMESTIMATE statement (SURVEYREG),	KNOTMETHOD option (spline), 415
489	KNOTMIN option (spline), 417
SLICE statement (GENMOD), 474	NATURALCUBIC option (spline), 417
SLICE statement (GLIMMIX), 474	SEPARATE option (spline), 417
SLICE statement (LOGISTIC), 474	spline effect, 414
SLICE statement (MIXED), 474	SPLIT option (spline), 417
SLICE statement (ORTHOREG), 474	
SLICE statement (PHREG), 474	R
SLICE statement (PLM), 474	
SLICE statement (SURVEYLOGISTIC), 474	REST option
SLICE statement (SURVEYPHREG), 474	NLOPTIONS statement (CALIS), 503
SLICE statement (SURVEYREG), 474	NLOPTIONS statement (GLIMMIX), 503
PLS procedure, EFFECT statement	NLOPTIONS statement (HPMIXED), 503
BASIS option (spline), 415	NLOPTIONS statement (PHREG), 503
collection effect, 406	NLOPTIONS statement (SURVEYPHREG), 503
DATABOUNDARY option (spline), 415	NLOPTIONS statement (VARIOGRAM), 503
DEGREE option (polynomial), 411	RESTART option
DEGREE option (spline), 415	NLOPTIONS statement (CALIS), 503
DESIGNROLE option (lag), 408	NLOPTIONS statement (GLIMMIX), 503
DETAILS option (lag), 409	NLOPTIONS statement (HPMIXED), 503
DETAILS option (multimember), 410	NLOPTIONS statement (PHREG), 503

NLOPTIONS statement (SURVEYPHREG), 503	LSMESTIMATE statement (MIXED), 490
NLOPTIONS statement (VARIOGRAM), 503	LSMESTIMATE statement (ORTHOREG), 490
ROBUSTREG procedure, EFFECT statement	LSMESTIMATE statement (PHREG), 490
BASIS option (spline), 415	LSMESTIMATE statement (PLM), 490
collection effect, 406	LSMESTIMATE statement
DATABOUNDARY option (spline), 415	(SURVEYLOGISTIC), 490
DEGREE option (polynomial), 411	LSMESTIMATE statement (SURVEYPHREG),
DEGREE option (spline), 415	490
DESIGNROLE option (lag), 408	LSMESTIMATE statement (SURVEYREG),
DETAILS option (lag), 409	490
DETAILS option (multimember), 410	SLICE statement (GENMOD), 478
DETAILS option (polynomial), 411	SLICE statement (GLIMMIX), 478
DETAILS option (spline), 415	SLICE statement (LOGISTIC), 478
KNOTMAX option (spline), 415	SLICE statement (MIXED), 478
KNOTMETHOD option (spline), 415	SLICE statement (ORTHOREG), 478
KNOTMIN option (spline), 417	SLICE statement (PHREG), 478
LABELSTYLE option (polynomial), 411	SLICE statement (PLM), 478
lag effect, 406	SLICE statement (SURVEYLOGISTIC), 478
MDEGREE option (polynomial), 412	SLICE statement (SURVEYPHREG), 478
multimember effect, 409	SLICE statement (SURVEYREG), 478
NATURALCUBIC option (spline), 417	SEPARATE option
NLAG option (lag), 409	EFFECT statement, spline (GLIMMIX), 417
NOEFFECT option (multimember), 410	EFFECT statement, spline (GLMSELECT), 417
NOSEPARATE option (polynomial), 412	EFFECT statement, spline (GLMSELECT), 417 EFFECT statement, spline (HPMIXED), 417
PERIOD option (lag), 408	EFFECT statement, spline (LOGISTIC), 417
± · · · · · · · · · · · · · · · · · · ·	
polynomial effect, 411	EFFECT statement, spline (ORTHOREG), 417
SEPARATE option (spline), 417	EFFECT statement, spline (PHREG), 417
spline effect, 414	EFFECT statement, spline (PLS), 417
SPLIT option (spline), 417	EFFECT statement, spline (QUANTREG), 417
STANDARDIZE option (polynomial), 412	EFFECT statement, spline (ROBUSTREG), 417
WITHIN option (lag), 408	EFFECT statement, spline
S	(SURVEYLOGISTIC), 417
5	EFFECT statement, spline (SURVEYREG), 417
GEED	SHOWCLEGEND option
SEED= option	EFFECTPLOT statement, 432
ESTIMATE statement (LOGISTIC), 458	SIMPLE= option
ESTIMATE statement (ORTHOREG), 458	SLICE statement (GENMOD), 513
ESTIMATE statement (PHREG), 458	SLICE statement (GLIMMIX), 513
ESTIMATE statement (PLM), 458	SLICE statement (LOGISTIC), 513
ESTIMATE statement (SURVEYLOGISTIC),	SLICE statement (MIXED), 513
458	SLICE statement (ORTHOREG), 513
ESTIMATE statement (SURVEYPHREG), 458	SLICE statement (PHREG), 513
ESTIMATE statement (SURVEYREG), 458	SLICE statement (PLM), 513
LSMEANS statement (GENMOD), 478	SLICE statement (SURVEYLOGISTIC), 513
LSMEANS statement (LOGISTIC), 478	SLICE statement (SURVEYPHREG), 513
LSMEANS statement (ORTHOREG), 478	SLICE statement (SURVEYREG), 513
LSMEANS statement (PHREG), 478	SINGULAR= option
LSMEANS statement (PLM), 478	ESTIMATE statement (LOGISTIC), 458
LSMEANS statement (SURVEYLOGISTIC),	ESTIMATE statement (ORTHOREG), 458
478	ESTIMATE statement (PHREG), 458
LSMEANS statement (SURVEYPHREG), 478	ESTIMATE statement (PLM), 458
LSMEANS statement (SURVEYREG), 478	ESTIMATE statement (SURVEYLOGISTIC),
LSMESTIMATE statement (GENMOD), 490	458
LSMESTIMATE statement (LOGISTIC), 490	ESTIMATE statement (SURVEYPHREG), 458

ESTIMATE statement (SURVEYREG), 458	SLICE statement (MIXED), 513
LSMEANS statement (GENMOD), 478	SLICE statement (ORTHOREG), 513
LSMEANS statement (LOGISTIC), 478	SLICE statement (PHREG), 513
LSMEANS statement (ORTHOREG), 478	SLICE statement (PLM), 513
LSMEANS statement (PHREG), 478	SLICE statement (SURVEYLOGISTIC), 513
LSMEANS statement (PLM), 478	SLICE statement (SURVEYPHREG), 513
LSMEANS statement (SURVEYLOGISTIC),	SLICE statement (SURVEYREG), 513
478	SMOOTH option
LSMEANS statement (SURVEYPHREG), 478	EFFECTPLOT statement, 432
LSMEANS statement (SURVEYREG), 478	SOCKET option
LSMESTIMATE statement (GENMOD), 491	NLOPTIONS statement (CALIS), 504
LSMESTIMATE statement (LOGISTIC), 491	NLOPTIONS statement (GLIMMIX), 504
LSMESTIMATE statement (MIXED), 491	NLOPTIONS statement (HPMIXED), 504
LSMESTIMATE statement (ORTHOREG), 491	NLOPTIONS statement (PHREG), 504
LSMESTIMATE statement (PHREG), 491	NLOPTIONS statement (SURVEYPHREG), 504
LSMESTIMATE statement (PLM), 491 LSMESTIMATE statement (PLM), 491	NLOPTIONS statement (VARIOGRAM), 504
	· · · · · · · · · · · · · · · · · · ·
LSMESTIMATE statement	SPLIT option
(SURVEYLOGISTIC), 491	EFFECT statement, spline (GLMSELECT), 417
LSMESTIMATE statement (SURVEYPHREG),	EFFECT statement, spline (HPMIXED), 417
491	EFFECT statement, spline (LOGISTIC), 417
LSMESTIMATE statement (SURVEYREG),	EFFECT statement, spline (ORTHOREG), 417
491	EFFECT statement, spline (PHREG), 417
NLOPTIONS statement (CALIS), 504	EFFECT statement, spline (PLS), 417
NLOPTIONS statement (GLIMMIX), 504	EFFECT statement, spline (QUANTREG), 417
NLOPTIONS statement (HPMIXED), 504	EFFECT statement, spline (ROBUSTREG), 417
NLOPTIONS statement (PHREG), 504	EFFECT statement, spline
NLOPTIONS statement (SURVEYPHREG), 504	(SURVEYLOGISTIC), 417
NLOPTIONS statement (VARIOGRAM), 504	EFFECT statement, spline (SURVEYREG), 417
SLICE statement (GENMOD), 478	SRUVEYPHREG procedure, NLOPTIONS statement
SLICE statement (GLIMMIX), 478	ABSCONV option, 495
SLICE statement (LOGISTIC), 478	STANDARDIZE option
SLICE statement (MIXED), 478	EFFECT statement, polynomial (GLIMMIX),
SLICE statement (ORTHOREG), 478	412
SLICE statement (PHREG), 478	EFFECT statement, polynomial
SLICE statement (PLM), 478	(GLMSELECT), 412
SLICE statement (SURVEYLOGISTIC), 478	EFFECT statement, polynomial (HPMIXED),
SLICE statement (SURVEYPHREG), 478	412
SLICE statement (SURVEYREG), 478	EFFECT statement, polynomial (LOGISTIC),
SLICE statement	412
GENMOD procedure, 511	EFFECT statement, polynomial (ORTHOREG),
GLIMMIX procedure, 511	412
LOGISTIC procedure, 511	EFFECT statement, polynomial (PHREG), 412
MIXED procedure, 511	EFFECT statement, polynomial (PLS), 412
ORTHOREG procedure, 511	EFFECT statement, polynomial
PHREG procedure, 511	(ROBUSTREG), 412
PLM procedure, 511	EFFECT statement, polynomial
SURVEYLOGISTIC procedure, 511	(SURVEYLOGISTIC), 412
SURVEYPHREG procedure, 511	EFFECT statement, polynomial
SURVEYREG procedure, 511	(SURVEYREG), 412
SLICEBY= option	STEPDOWN option ESTIMATE statement (LOCISTIC), 458
EFFECTPLOT statement, 432	ESTIMATE statement (LOGISTIC), 458
SLICE statement (GENMOD), 513	ESTIMATE statement (ORTHOREG), 458
SLICE statement (GLIMMIX), 513	ESTIMATE statement (PHREG), 458
SLICE statement (LOGISTIC), 513	ESTIMATE statement (PLM), 458

ESTIMATE statement (SURVEYLOGISTIC),	DESIGNROLE option (lag), 408
458	DETAILS option (lag), 409
ESTIMATE statement (SURVEYPHREG), 458	DETAILS option (multimember), 410
ESTIMATE statement (SURVEYREG), 458	DETAILS option (polynomial), 411
LSMEANS statement (GENMOD), 478	DETAILS option (spline), 415
LSMEANS statement (LOGISTIC), 478	KNOTMAX option (spline), 415
LSMEANS statement (ORTHOREG), 478	KNOTMETHOD option (spline), 415
LSMEANS statement (PHREG), 478	KNOTMIN option (spline), 417
LSMEANS statement (PLM), 478	LABELSTYLE option (polynomial), 411
LSMEANS statement (SURVEYLOGISTIC),	- · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	lag effect, 406
478	MDEGREE option (polynomial), 412
LSMEANS statement (SURVEYPHREG), 478	multimember effect, 409
LSMEANS statement (SURVEYREG), 478	NATURALCUBIC option (spline), 417
LSMESTIMATE statement (GENMOD), 491	NLAG option (lag), 409
LSMESTIMATE statement (LOGISTIC), 491	NOEFFECT option (multimember), 410
LSMESTIMATE statement (MIXED), 491	NOSEPARATE option (polynomial), 412
LSMESTIMATE statement (ORTHOREG), 491	PERIOD option (lag), 408
LSMESTIMATE statement (PHREG), 491	polynomial effect, 411
LSMESTIMATE statement (PLM), 491	SEPARATE option (spline), 417
LSMESTIMATE statement	spline effect, 414
(SURVEYLOGISTIC), 491	SPLIT option (spline), 417
LSMESTIMATE statement (SURVEYPHREG),	STANDARDIZE option (polynomial), 412
491	WITHIN option (lag), 408
LSMESTIMATE statement (SURVEYREG),	SURVEYLOGISTIC procedure, ESTIMATE
491	statement
SLICE statement (GENMOD), 478	ADJUST= option, 452
SLICE statement (GLIMMIX), 478	ALPHA= option, 452
SLICE statement (LOGISTIC), 478	CATEGORY= option, 452
SLICE statement (MIXED), 478	CL option, 453
SLICE statement (ORTHOREG), 478	CORR option, 453
SLICE statement (PHREG), 478	COV option, 453
SLICE statement (PLM), 478	DIVISOR= option, 454
SLICE statement (SURVEYLOGISTIC), 478	E option, 454
SLICE statement (SURVEYPHREG), 478	EXP option, 454
SLICE statement (SURVEYREG), 478	ILINK option, 454
STORE statement	JOINT option, 455
GENMOD procedure, 514	LOWER option, 456
GLIMMIX procedure, 514	NOFILL option, 456
GLM procedure, 514	ODS table names, 464
LOGISTIC procedure, 514	SEED= option, 458
MIXED procedure, 514	SINGULAR= option, 458
ORTHOREG procedure, 514	STEPDOWN option, 458
	<u> •</u>
PHREG procedure, 514	TESTVALUE option, 459
SURVEYLOGISTIC procedure, 514	UPPER option, 459
SURVEYPHREG procedure, 514	SURVEYLOGISTIC procedure, LSMEANS
SURVEYREG procedure, 514	statement
SUREYREG procedure, EFFECT statement	ADJUST= option, 468
DESIGNROLE option (lag), 408	ALPHA= option, 470
SURVEYLOGISTIC procedure, EFFECT statement	AT= option, 470
BASIS option (spline), 415	BYLEVEL option, 471
collection effect, 406	CL option, 471
DATABOUNDARY option (spline), 415	CORR option, 471
DEGREE option (polynomial), 411	COV option, 471
DEGREE option (spline), 415	DIFF option, 471

E option, 472	OBSMARGINS= option, 474
EXP option, 473	ODDSRATIO option, 473
ILINK option, 473	ODS table names, 513
LINES option, 473	PDIFF option, 474
MEANS or NOMEANS option, 473	PLOTS= option, 474
OBSMARGINS= option, 474	SEED= option, 478
ODDSRATIO option, 473	SIMPLE= option, 513
ODS graph names, 480	SINGULAR= option, 478
ODS table names, 479	SLICEBY= option, 513
PDIFF option, 474	STEPDOWN option, 478
PLOTS= option, 474	SURVEYPHREG procedure, ESTIMATE statement
SEED= option, 478	ADJDFE= option, 451
SINGULAR= option, 478	ADJUST= option, 451 ADJUST= option, 452
STEPDOWN option, 478	ALPHA= option, 452
SURVEYLOGISTIC procedure, LSMESIIMATE	CHISQ option, 453
statement	CL option, 453
ADJUST= option, 485	CORR option, 453
ALPHA= option, 485	COV option, 453
AT= option, 485	DF= option, 453
BYLEVEL option, 485	DIVISOR= option, 454
CATEGORY= option, 485	E option, 454
CL option, 486	JOINT option, 455
CORR option, 486	LOWER option, 456
COV option, 486	NOFILL option, 456
DIVISOR= option, 486	ODS table names, 464
E option, 487	SEED= option, 458
ELSM option, 487	SINGULAR= option, 458
EXP option, 487	STEPDOWN option, 458
ILINK option, 487	TESTVALUE option, 459
JOINT option, 488	UPPER option, 459
LOWER option, 489	SURVEYPHREG procedure, LSMEANS statement
OBSMARGINS= option, 489	ADJDFE= option, 467
ODS table names, 492	ADJUST= option, 468
PLOTS= option, 489	ALPHA= option, 470
SEED= option, 490	AT= option, 470
SINGULAR= option, 491	BYLEVEL option, 471
STEPDOWN option, 491	CL option, 471
TESTVALUE= option, 492	CORR option, 471
UPPER option, 492	COV option, 471
SURVEYLOGISTIC procedure, SLICE statement	DF= option, 471
ADJUST= option, 468	DIFF option, 471
ALPHA= option, 470	E option, 472
AT= option, 470	LINES option, 473
BYLEVEL option, 471	MEANS or NOMEANS option, 473
CL option, 471	OBSMARGINS= option, 474
CORR option, 471	ODS graph names, 480
COV option, 471	· ·
*	ODS table names, 479
DIFF option, 471	PDIFF option, 474
E option, 472	PLOTS= option, 474
EXP option, 473	SEED= option, 478
ILINK option, 473	SINGULAR= option, 478
LINES option, 473	STEPDOWN option, 478
MEANS or NOMEANS option, 473	SURVEYPHREG procedure, LSMESIIMATE
NOF option, 513	statement

ADJDFE= option, 484	MAXSTEP option, 503
ADJUST= option, 485	MAXTIME option, 503
ALPHA= option, 485	MINIT option, 503
AT= option, 485	MINITER option, 503
BYLEVEL option, 485	MSINGULAR= option, 503
CHISQ option, 486	REST option, 503
CL option, 486	RESTART option, 503
CORR option, 486	SINGULAR= option, 504
COV option, 486	SOCKET option, 504
DF= option, 486	TECH option, 504
DIVISOR= option, 486	TECHNIQUE option, 504
E option, 487	UPD option, 505
ELSM option, 487	VSINGULAR= option, 506
JOINT option, 488	XSIZE option, 506
LOWER option, 489	XTOL option, 506
OBSMARGINS= option, 489	SURVEYPHREG procedure, SLICE statement
ODS table names, 492	ADJUST= option, 468
PLOTS= option, 489	ALPHA= option, 470
SEED= option, 490	AT= option, 470
SINGULAR= option, 491	BYLEVEL option, 471
STEPDOWN option, 491	CL option, 471
TESTVALUE= option, 492	CORR option, 471
÷	<u>*</u>
UPPER option, 492 SURVEYPHREG procedure, NLOPTIONS statement	COV option, 471
<u>.</u>	DF= option, 471
ABSECONV option, 496	DIFF option, 471
ABSGCONV option, 496	E option, 472
ABSGTOL option, 496	LINES option, 473
ABSTOL option, 495	MEANS or NOMEANS option, 473
ABSXCONV option, 496	NOF option, 513
ABSXTOL option, 496	OBSMARGINS= option, 474
ASINGULAR= option, 497	ODS table names, 513
FCONV option, 497	PDIFF option, 474
FCONV2 option, 498	PLOTS= option, 474
FSIZE option, 498	SEED= option, 478
FTOL option, 497	SIMPLE= option, 513
FTOL2 option, 498	SINGULAR= option, 478
GCONV option, 498	SLICEBY= option, 513
GCONV2 option, 499	STEPDOWN option, 478
GTOL option, 498	SURVEYPHREG procedure, TEST statement
GTOL2 option, 499	CHISQ option, 515
HESCAL option, 499	DDF= option, 516
HS option, 499	E option, 516
INHESSIAN option, 500	E1 option, 516
INSTEP option, 500	E2 option, 516
LCDEACT= option, 500	E3 option, 516
LCEPSILON= option, 501	HTYPE= option, 516
LCSINGULAR= option, 501	INTERCEPT option, 516
LINESEARCH option, 501	ODS table names, 517
LSP option, 502	SURVEYREG procedure, EFFECT statement
LSPRECISION option, 502	BASIS option (spline), 415
MAXFU option, 502	collection effect, 406
MAXFUNC option, 502	DATABOUNDARY option (spline), 415
MAXIT option, 502	DEGREE option (polynomial), 411
MAXITER option, 502	DEGREE option (spline), 415
· r · · · · · · · ·	(-F),

DETAILS option (lag), 409	LINES option, 473
DETAILS option (multimember), 410	MEANS or NOMEANS option, 473
DETAILS option (polynomial), 411	OBSMARGINS= option, 474
DETAILS option (spline), 415	ODS graph names, 480
KNOTMAX option (spline), 415	ODS table names, 479
KNOTMETHOD option (spline), 415	PDIFF option, 474
KNOTMIN option (spline), 417	PLOTS= option, 474
LABELSTYLE option (polynomial), 411	SEED= option, 474
lag effect, 406	SINGULAR= option, 478
MDEGREE option (polynomial), 412	STEPDOWN option, 478
	-
multimember effect, 409	SURVEYREG procedure, LSMESIIMATE statement
NATURALCUBIC option (spline), 417	ADJUST antian 485
NLAG option (lag), 409	ADJUST= option, 485
NOEFFECT option (multimember), 410	ALPHA= option, 485
NOSEPARATE option (polynomial), 412	AT= option, 485
PERIOD option (lag), 408	BYLEVEL option, 485
polynomial effect, 411	CHISQ option, 486
SEPARATE option (spline), 417	CL option, 486
spline effect, 414	CORR option, 486
SPLIT option (spline), 417	COV option, 486
STANDARDIZE option (polynomial), 412	DF= option, 486
WITHIN option (lag), 408	DIVISOR= option, 486
SURVEYREG procedure, ESTIMATE statement	E option, 487
ADJDFE= option, 451	ELSM option, 487
ADJUST= option, 452	JOINT option, 488
ALPHA= option, 452	LOWER option, 489
CHISQ option, 453	OBSMARGINS= option, 489
CL option, 453	ODS table names, 492
CORR option, 453	PLOTS= option, 489
COV option, 453	SEED= option, 490
DF= option, 453	SINGULAR= option, 491
DIVISOR= option, 454	STEPDOWN option, 491
E option, 454	TESTVALUE= option, 492
JOINT option, 455	UPPER option, 492
LOWER option, 456	SURVEYREG procedure, SLICE statement
	ADJUST= option, 468
NOFILL option, 456	-
ODS table names, 464	ALPHA= option, 470
SEED= option, 458	AT= option, 470
SINGULAR= option, 458	BYLEVEL option, 471
STEPDOWN option, 458	CL option, 471
TESTVALUE option, 459	CORR option, 471
UPPER option, 459	COV option, 471
SURVEYREG procedure, LSMEANS statement	DF= option, 471
ADJDFE= option, 467	DIFF option, 471
ADJUST= option, 468	E option, 472
ALPHA= option, 470	LINES option, 473
AT= option, 470	MEANS or NOMEANS option, 473
BYLEVEL option, 471	NOF option, 513
CL option, 471	OBSMARGINS= option, 474
CORR option, 471	ODS table names, 513
COV option, 471	PDIFF option, 474
DF= option, 471	PLOTS= option, 474
DIFF option, 471	SEED= option, 478
E option, 472	SIMPLE= option, 513
<u> - </u>	<u>*</u>

SINGULAR= option, 478	LSMESTIMATE statement (SURVEYREG),
SLICEBY= option, 513	492
STEPDOWN option, 478	
SURVEYREG procedure, TEST statement	U
CHISQ option, 515	
DDF= option, 516	UNPACK option
E option, 516	EFFECTPLOT statement, 432
E1 option, 516	UPD option
E2 option, 516	NLOPTIONS statement (CALIS), 505
E3 option, 516	NLOPTIONS statement (GLIMMIX), 505
HTYPE= option, 516	NLOPTIONS statement (HPMIXED), 505
INTERCEPT option, 516	NLOPTIONS statement (PHREG), 505
ODS table names, 517	NLOPTIONS statement (SURVEYPHREG), 505
obb were manes, err	NLOPTIONS statement (VARIOGRAM), 505
T	UPDATE option
	NLOPTIONS statement (CALIS), 505
TECH option	NLOPTIONS statement (GLIMMIX), 505
NLOPTIONS statement (CALIS), 504	NLOPTIONS statement (HPMIXED), 505
NLOPTIONS statement (GLIMMIX), 504	NLOPTIONS statement (PHREG), 505
NLOPTIONS statement (HPMIXED), 504	NLOPTIONS statement (SURVEYPHREG), 505
NLOPTIONS statement (PHREG), 504	NLOPTIONS statement (VARIOGRAM), 505
NLOPTIONS statement (SURVEYPHREG), 504	UPPER option
NLOPTIONS statement (VARIOGRAM), 504	ESTIMATE statement (LOGISTIC), 459
TECHNIQUE option	ESTIMATE statement (COGISTIC), 439 ESTIMATE statement (ORTHOREG), 459
NLOPTIONS statement (CALIS), 504	
· · · · · · · · · · · · · · · · · · ·	ESTIMATE statement (PHREG), 459 ESTIMATE statement (PLM), 459
NLOPTIONS statement (GLIMMIX), 504	
NLOPTIONS statement (HPMIXED), 504	ESTIMATE statement (SURVEYLOGISTIC),
NLOPTIONS statement (PHREG), 504	459
NLOPTIONS statement (SURVEYPHREG), 504	ESTIMATE statement (SURVEYPHREG), 459
NLOPTIONS statement (VARIOGRAM), 504	ESTIMATE statement (SURVEYREG), 459
TEST statement	LSMESTIMATE statement (GENMOD), 492
ORTHOREG procedure, 515	LSMESTIMATE statement (LOGISTIC), 492
PLM procedure, 515	LSMESTIMATE statement (MIXED), 492
SURVEYPHREG procedure, 515	LSMESTIMATE statement (ORTHOREG), 492
SURVEYREG procedure, 515	LSMESTIMATE statement (PHREG), 492
TESTVALUE= option	LSMESTIMATE statement (PLM), 492
ESTIMATE statement (LOGISTIC), 459	LSMESTIMATE statement
ESTIMATE statement (ORTHOREG), 459	(SURVEYLOGISTIC), 492
ESTIMATE statement (PHREG), 459	LSMESTIMATE statement (SURVEYPHREG),
ESTIMATE statement (PLM), 459	492
ESTIMATE statement (SURVEYLOGISTIC),	LSMESTIMATE statement (SURVEYREG),
459	492
ESTIMATE statement (SURVEYPHREG), 459	¥7
ESTIMATE statement (SURVEYREG), 459	V
LSMESTIMATE statement (GENMOD), 492	
LSMESTIMATE statement (LOGISTIC), 492	VARIOGRAM procedure, NLOPTIONS statement
LSMESTIMATE statement (MIXED), 492	ABSCONV option, 495
LSMESTIMATE statement (ORTHOREG), 492	ABSFCONV option, 496
LSMESTIMATE statement (PHREG), 492	ABSGCONV option, 496
LSMESTIMATE statement (PLM), 492	ABSGTOL option, 496
LSMESTIMATE statement	ABSTOL option, 495
(SURVEYLOGISTIC), 492	ABSXCONV option, 496
LSMESTIMATE statement (SURVEYPHREG),	ABSXTOL option, 496
492	ASINGULAR= option, 497

FCONV option, 497 FCONV2 option, 498 FSIZE option, 498 FTOL option, 497 FTOL2 option, 498 GCONV option, 498 GCONV2 option, 499 GTOL option, 498 GTOL2 option, 499 HESCAL option, 499 HS option, 499	EFFECT statement, lag (ORTHOREG), 408 EFFECT statement, lag (PHREG), 408 EFFECT statement, lag (PLS), 408 EFFECT statement, lag (ROBUSTREG), 408 EFFECT statement, lag (SURVEYLOGISTIC), 408 EFFECT statement, lag (SURVEYREG), 408 X X= option
INHESSIAN option, 500 INSTEP option, 500 LCDEACT= option, 500 LCEPSILON= option, 501 LCSINGULAR= option, 501 LINESEARCH option, 501 LSPRECISION option, 502 MAXFU option, 502 MAXFUNC option, 502 MAXITER option, 502 MAXITER option, 502 MAXITER option, 503 MAXTIME option, 503 MINIT option, 503 MINIT option, 503 MINITER option, 503 REST option, 503 RESTART option, 503 SINGULAR= option, 504 SOCKET option, 504 TECH option, 504	EFFECTPLOT statement, 432 XCONV option NLOPTIONS statement (CALIS), 506 NLOPTIONS statement (GLIMMIX), 506 NLOPTIONS statement (HPMIXED), 506 NLOPTIONS statement (PHREG), 506 NLOPTIONS statement (SURVEYPHREG), 506 NLOPTIONS statement (VARIOGRAM), 506 XSIZE option NLOPTIONS statement (CALIS), 506 NLOPTIONS statement (GLIMMIX), 506 NLOPTIONS statement (HPMIXED), 506 NLOPTIONS statement (PHREG), 506 NLOPTIONS statement (VARIOGRAM), 506 XTOL option NLOPTIONS statement (CALIS), 506 NLOPTIONS statement (GLIMMIX), 506 NLOPTIONS statement (GLIMMIX), 506 NLOPTIONS statement (HPMIXED), 506 NLOPTIONS statement (HPMIXED), 506 NLOPTIONS statement (PHREG), 506 NLOPTIONS statement (SURVEYPHREG), 506 NLOPTIONS statement (SURVEYPHREG), 506 NLOPTIONS statement (SURVEYPHREG), 506 NLOPTIONS statement (SURVEYPHREG), 506
UPD option, 505 VSINGULAR= option, 506 XSIZE option, 506 XTOL option, 506 VARIOGRAMprocedure, NLOPTIONS statement LSP option, 502 VSINGULAR= option NLOPTIONS statement (CALIS), 506 NLOPTIONS statement (GLIMMIX), 506 NLOPTIONS statement (HPMIXED), 506 NLOPTIONS statement (PHREG), 506 NLOPTIONS statement (SURVEYPHREG), 506 NLOPTIONS statement (SURVEYPHREG), 506 NLOPTIONS statement (VARIOGRAM), 506	Y Y= option EFFECTPLOT statement, 433 YRANGE= option EFFECTPLOT statement, 433
W WITHIN option EFFECT statement, lag (GLIMMIX), 408 EFFECT statement, lag (GLMSELECT), 408 EFFECT statement, lag (HPMIXED), 408 EFFECT statement, lag (LOGISTIC), 408	

Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.

SAS® Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS* Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

SAS® Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

SAS® Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF free on the Web.
- Hard-copy books.

support.sas.com/publishing

SAS® Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.

support.sas.com/spn

Sas THE POWER TO KNOW